
[bookmark: _GoBack]3GPP TSG RAN WG1 Ad Hoc #92	 	R1-1802537
Athens, Greece, Feb 26th - Mar 2nd, 2018

Agenda item:		7.1.3.1.2
Source:	Nokia, Nokia Shanghai Bell
Title:	On NR operation under PDCCH channel estimation and BD limits
Document for: 	Discussion and Decision
Introduction
During RAN plenary #78, the release 15 NR specifications were approved. Furthermore, it was agreed that during the first quarter of 2018, RAN1 will continue to focus on the stabilizing of the basic and essential functionalities within the scope of the December drop.
This contribution deals with the following conclusion reached in RAN1 #91 [1]:
Conclusion:
· RAN1 common understanding is that the PDCCH channel estimation complexity is not negligible at least in some cases.
· FFS: Possible solutions to resolve the channel estimation complexity issue together with the impact on PDCCH blocking probability
· Opt.1: Define the limits of “the number of CCEs for PDCCH channel estimation which refers to the union of the sets of CCEs for PDCCH candidates”
· Note: the overlapped CCEs associated with different CORESETs are counted separately.
· FFS: CCEs for the same precoder-granularity are counted as one channel estimation
· FFS: whether/how to handle the variation on the actual number of CCEs for PDCCH channel estimation and BDs over time
· Application of overbooking is considered
· Strive for not having specific UE capability to report the maximum number of CCEs for PDCCH channel estimation.
· Study the solutions considering the cases 1-1, 1-2, 2, and 2’.
· Opt.2: Modify the hashing function
· Opt.3: Increase the size of the precoder granularity

In ad-hoc meeting AH1801 it was further agreed as WA:

Working assumption:
· At least for case 1-1 and case 1-2, all UE supports channel estimation capability for 48 CCEs for a given slot per scheduled cell
· FFS: cross-carrier scheduling
· FFS: wideband RS
· FFS: overbooking and/or nested structure
· FFS: exceptional case of CCE counting
· FFS: for case 2

In the subsections of Section 2, we analyse the consequences and limitations of above WA and propose a solution to alleviate/overcome the limitations imposed by limited chipset capability.
An analysis of impact of CCE and BD limits on network performance
NR specifics are the following:
· Each BWP configured to a UE can be associated with up to 3 CORESETs and up to 10 search space sets.
· Wide range of configurability of user-specific search spaces, in particular, the number of PDCCH candidates per aggregation level can be configured among {0, 1, 2, 3, 4, 5, 6, 8}, monitoring periodicities of different search-space sets can be different and be selected from a set of possible values given as {1, 2, 4, 5, 8, 10, 16, 20} slots.
· The hashing function of user-specific search space is [slot dependent].

With above specifics, we selected a practical deployment scenario in NR illustrated on Figure 1. A TDD carrier, 30kHz SCS, with 100MHz channel band, gNB operates two BWPs for the UEs, a default BWP#0 with CORESET#0 for initial access/power-saving spanning 48RBs, and BWP#1 spanning 273RBs.

Figure 1 Typical NR deployment in 100MHz channel band

The BWP#1, would also be associated with CORESET#0 (3OS long) carrying the CSS#0 for initial access, paging, RACH response messages. This enables the gNB to serve broadcast and RA to all UEs irrespective of whether they are in the default BWP#0 or in BWP#1. This means that in every monitoring occasion in CSS#0 in CORESET#0 of 24CCEs, where the number of PDCCH candidates for ALs {4, 8, 16} are {4, 2, 1}, a UE would perform channel estimation for 22CCE. The hashing for CORESET#0 is illustrated in Figure 2.

[bookmark: _Ref506576303]Figure 2 CSS EPDCCH hashing in CORESET of 24CCEs

A CORESET#0 would be primarily occupied by DCI scheduling broadcast, random-access, and unicast for UEs on default BWP#0. A gNB would also configure CORESET#1 with USS#1 on the wide BWP#1, and it could configure an additional CSS#1 for preemption and/or SFI GC-PDCCH. The CSS#1 of let’s say 1x AL4 + 1x AL8 would remove 12CCEs from the UE’s CCE channel estimation allowance. The USS#1 would be left with the channel estimation allowance of 14CCEs, assuming CSS#1, CSS#0, USS#1 monitoring occasions may collide in a single slot. In addition, on 100MHz a gNB would like to schedule up to 8 UEs in DL (including MUMIMO) and potentially 8 UEs in UL in the same slot with C-RNTI. This requires accommodation of up to 16DCIs, therefore CORESET#1 would need to be large, e.g. 64CCE.
Observation #1: In practical NR deployments, UE’s USS may be restricted to approximately 16CCEs in certain slots because of collision of multiple search space sets.

We investigated the impact of 16CCE channel estimation limit on blocking probability for USS of ALs {1, 2, 4, 8} of {6, 6, 2, 2} PDCCH candidates, with 3 different hashing functions, for the following cases:
· Case 1: Nested search space with 16CCE allowance (dotted lines in Figure 3)
· Case 2: Non-nested search space with candidate dropping with 16CCE allowance (dashed lines in Figure 3)
· Case 3: Non-nested search space with no CCE restrictions (solid lines in Figure 3)

[image:]
[bookmark: _Ref506574730]Figure 3 Blocking probability (with fall back to higher AL) for 3 simulated Cases and 3 different hashing functions
The blocking probabilities obtained for the three Cases are shown in Figure 3. Among the investigated hashing functions, EPDCCH hashing has the worst blocking performance, while hashing function proposed in Section 4 has the lowest blocking probability. With the hashing function of LTE EPDCCH, both Case-1-nesting and Case-2-dropping exceed the 10% blocking probability, while Case-2-dropping performs worse than Case-1-nesting. Simulations assumptions are summarized in Appendix A.
Observation #2: Among the investigated hashing functions, “EPDCCH hashing” performs the worst and “EPDCCH hashing randomized in subband” performs the best in terms of blocking probability.
Observation #3: With 16CCE channel estimation allowance, “EPDCCH hashing CASE3” performs the same as “EPDCCH hashing randomized in subband CASE1” in terms of blocking probability.
Observation #4: With 48CCE channel estimation limit and currently supported hashing function, the performance of many practical NR deployments will be significantly impacted:
· Adoption of nested EPDCCH hashing function is beneficial, but does not fully solve the problem. Moreover, blocking probability for nested search-space is 10x worse than for non-nested search-space.
· Support of overbooking with dynamic dropping/nesting would limit the problem to few slots where monitoring occasions of multiple search space sets collide.
· Adoption of EPDCCH hashing randomized in subbands from Section 4 together with nesting can solve the problem.

In addition, different services and corresponding search space sets may use different PDCCH monitoring periodicities. To manage different services in an optimal manner, it would be preferable to configure PDCCH monitoring in different search space sets independently from each other. The consequence of this is that the number of BDs configured may vary from slot to slot, e.g. according to the number of search space sets monitored in the slot. We think that NR should allow over-booking of the BDs for some time instances, as for majority of time instances the BDs would be below the maximum.
Observation #5: When a gNB serves multiple services with different PDCCH monitoring periodicity, infrequent monitoring peaks may occur. The gNB should be allowed to over-book BDs during these infrequent peaks, to avoid BD restrictions in other monitoring occasions.
Proposal #1: NR supports search-space-set configurations that may result in over-booking BDs and CCEs in a slot.
· FFS: How to perform PDCCH candidate dropping in slots where CCE and BD limit are exceeded.

Dropping of BDs/candidates due to channel estimation and BD limitations
To support over-booking of the BDs and CCEs, there is a need to reduce the number of BDs down to the allowed level in some slots. This requires definition of some rules to reduce the number of BDs and/or CCEs in those slots. There are two separate cases, which require attention:
· Case 1: Maximum number of PDCCH BDs per slot exceeded
· Case 2: Channel estimation complexity in terms of number of CCEs per slot exceeded

It is noted that explicit upper limits for the number of PDCCH BDs covering different scenarios of Case 1 have already been agreed in RAN1#91. There are three candidate solutions identified in RAN1#91 to manage the channel estimation complexity issue (Case 2) and variation of BDs (Case 1). It can be noted that, that Case 1 and Case 2 are dependent, because reducing the number of PDCCH candidates will also reduce the channel estimation burden at the UE side. Case 1 and Case 2 can also occur both simultaneously.

BD reduction due to limited number of BDs per
To support over-booking of the BDs, we propose to define explicit rules how to reduce the PDCCH candidates down to the allowed level. To avoid RAN2 impact, the rule should be such that it does not introduce additional RRC signalling.
We think that BD reduction should operate within the predefined search space sets. Generally speaking, it makes sense to apply BD reduction only for UE-specific search space sets. In other words, PDCCH candidates in common search space sets should never be dropped.
We propose that BD dropping rule within USS is based on predefined BD priority numbers. The priority number is counted separately for each PDCCH candidate subject to BD dropping. The priority number depends on:
· The PDCCH candidate index ms(L) for a certain search space set s and aggregation level L. PDCCH candidates can be indexed according to the index m defined by the hashing function for the search space set and aggregation level.
· The total number PDCCH candidates within the search space set and aggregation level.

We propose that the priority number, denoted as , is defined as
.
· is the search space set index,
· L is the aggregation level index,
·
is the number of PDCCH candidates in the search-space,
· is the index of the PDCCH candidate in the search-space.

To define the rules for BD reduction, we denote:
· R is the configured number of PDCCH BDs per slot,
· N is the maximum number of PDCCH BDs per slot supported by UE.
There is a need for BD reduction (dropping) when R>N for a certain slot:
· K’ PDCCH candidates corresponding to K BD from one or more UE-specific search space sets are dropped, K=R-N,
· K’ PDCCH candidates to be dropped are defined according to the smallest within all the involved UE-specific search space sets subject to BD dropping.
· If multiple PDCCH candidates have the same priority, dropping order is defined according to the predefined priorities, for example:
· PDCCH candidate with a lower AL L is dropped first.
· PDCCH candidate with a lower search space set priority is dropped first. Search space set priority can be derived implicitly e.g. from search space set ID s.

It can be noted that the proposed BD reduction operates in such a manner that it reduces PDCCH candidates from different aggregation levels and search space sets quite evenly. Furthermore, it allows pre-calculation of the number of PDCCH candidates to be dropped in advance. Finally, it does not require any additional RRC signaling (on top of the existing one).
Proposal #2: BD dropping in a serving cell is based on the predefined rules and it should not introduce additional RRC signaling.

Proposal #3: BD dropping in a serving cell is applied only for UE-specific search space sets.

[bookmark: _Hlk503280436]Proposal #4: BD dropping in a serving cell is based on predefined BD priority number .

[bookmark: _Hlk503280241]Proposal #5: When there is a need for BD dropping in a slot, PDCCH candidates to be dropped are defined according to the smallest within all the involved UE-specific search space sets subject to BD dropping. If multiple PDCCH candidates have the same priority, dropping order is defined according to the predefined priorities:
· PDCCH candidate with the lowest AL L is dropped first.
· PDCCH candidate with the lowest search space set priority is dropped first. Search space set priority is derived implicitly from the search space set IDs.

CCE reduction due to limited channel estimation capability
There are three candidate solutions identified in RAN1#91 to manage the UE channel estimation complexity issue:
· Opt.1: Define the limits of “the number of CCEs for PDCCH channel estimation which refers to the union of the sets of CCEs for PDCCH candidates
· Opt.2: Modify the hashing function
· Opt.3: Increase the size of the precoder granularity

In the following we consider CCE reduction based on Opt.1. The simplest approach for limiting the number of CCEs for PDCCH channel estimation might be to have a common solution for both BD reduction and CCE reduction. We also think that CCE reduction should operate with full PDCCH candidates. In other words, if at least one CCE of a PDCCH candidate is dropped then all the CCEs of the same PDCCH candidate become dropped.
Proposal #6: If CCE reduction scheme is defined according to Opt1, strive for a common solution for BD reduction and CCE reduction.
If there is a need for CCE reduction scheme according to Opt. 1, we propose to make it based on the predefined BD priority number defined for BD reduction. Reusing BD priority number is not an optimal solution for CCE reduction, but having a common solution for BD reduction and CCE reduction is preferable.

Proposal #7: In the proposed CCE reduction scheme, UE drops one PDCCH candidate after another according to the BD priority number, until the CCE cap is reached.

Proposal #8: Consider a rule where predefined CCEs such as CCEs belonging to TYPE0 and TYPE0A are never dropped.

BD reduction and CCE reduction at the same time slot
It is possible that the need for CCE reduction exists at the same time with the need for BD reduction. In this case UE drops the NR PDCCH candidates according to priority number until both limits are fulfilled.
Proposal #9: In the cases when the need for CCE reduction exists at the same time with the need for BD reduction, a UE drops the NR PDCCH candidates according to priority number until both limits are fulfilled for the slot.

38.213 Text proposal Subclause 10.1:
	(add the following text)
When in given slot, the number of configured PDCCH candidates results in number of blind decodes exceeding the UE’s capability or number of CCE exceeding the UE’s channel estimation capability, the PDCCH candidates with the smallest priority number are dropped, until the both UE’s capabilities are fulfilled. Only the UE-specific search space candidates are labelled with priority number, and the priority number is defined as . When multiple PDCCH candidates have the same priority, dropping order is defined according to the predefined priorities. PDCCH candidate with a lowest L is dropped first, and if multiple PDCCH candidates in different search-space-set have the same priority number and same L, PDCCH candidate with lowest search space set index s is dropped first.

Revisiting the NR hashing function
In RAN#91, it was concluded that hashing function modification is one way to reduce the number of required BDs and CCEs to be channel estimated.
The NR hashing function of LTE EPDCCH (currently supported) randomizes the allocation of the PDCCH candidates within the CORESET according to

,
where
· L is the number of CCEs for the aggregation level (AL) the UE monitors,
· b is search-space offset for scheduling cell of CIF value equal to b,
· is the total number of CCEs for the given p-th CORESET in subframe/TTI k,
· m is 0, 1, …, , where M is the number of PDCCH candidates for the aggregation level that the UE monitors,
· is the nominal or maximum number of PDCCH candidates for the aggregation level,
· i (0, 1, …,) is the contiguous CCE index of the PDCCH candidate,
· is a pseudo-random variable based on the RNTI of the user and based on subframe index k (0, 1, …, 9),
· p is for indication of a EPDCCH resource set, and
· denotes the floor operation.
Randomized resource allocation is separate for each aggregation level L, and comes with a deterministic offset given by between the first (m=0) and a further (m=1, 2, …, M-1) PDCCH candidate, with wrap-around over the full CORESET size.
A particularity of LTE EPDCCH hashing function is that it can divide a CORESET into a number of subbands and allocates a single PDCCH candidate within a subband, where only the starting point of the first (m=0) PDCCH candidate is randomized, while the allocation of the further (m=1, 2, …, M-1) PDCCH candidates is deterministic and approximately equidistant. If the CORESET is configured with non-interleaved CCE-to-REG mapping, this property enables the allocation of a PDCCH candidate in a frequency-selective manner.

This principle can be extended, such that the CORESET can be divided into subbands, but the allocation of the PDCCH candidate within a subband is randomized. For this purpose, the generation of further pseudo-random numbers is required. Like with EPCCH hashing function, this procedure enables the allocation of a PDCCH candidate in a frequency-selective manner, but, as can be seen in Figure 3, compared to EPDCCH hashing function it often results in significantly lower blocking probability.

The division of the CORESET into subbands for aggregation level L can be expressed by the start points of the mth subbands, given by . Within the mth subband, the number of opportunities to pseudo-randomly allocate a PDCCH candidate is given by . By introducing the pseudo-random variable to randomize the starting position within the subband, the following Hashing function is obtained:

where provides the EPDCCH functionality of having the ‘starting subband /offset’ randomized for the candidate.

In case the specification would allow the number of sub-bands to be larger than what the CORESET in number of CCEs could support (i.e.), a further max{1,…} function is required to prevent zero as input to the modulo operator, and we obtain the hashing function as follows:

, (1)

with . The ECCE denoting the NR CCE.

An example for the allocation of PDCCH candidates with Hashing function (1) is illustrated in Figure 4 for , and = (6, 6, 2, 2) for aggregation levels L = (1, 2, 4, 8).

[image:]

[bookmark: _Ref506579523]Figure 4 : Example allocation of PDCCH candidates with Hashing function (1).

Concerning the generation of the pseudo-random numbers , we can apply similar approaches as known from LTE hashing functions, e.g. randomization along subframe numbers can be carried out using anEPDCCH random generator:
, for k = 0, 1, … 9,
with A = 39829, D = 65537 and , while randomization along the PDCCH candidates can be carried out using another random generator, e.g. the one of LTE PDCCH:
, for m = 1, 2, …, M-1,

with A’ = 39827 and D = 65537.

Although the mathematical expressions appear different, the hashing function proposed in equation (1) should be considered a refinement of the hashing function of LTE EPDCCH. When setting in (1), a uniform distribution of PDCCH candidates over the CORESET is obtained, and when excluding rounding effects by setting an integer multiple of M times L, the very same set of PDCCH candidates is obtained as with LTE EPDCCH hashing function.

38.213 Text proposal
	

For a search space set s, the CCEs corresponding to PDCCH candidate of the search space for a serving cell corresponding to carrier indicator field value are given by

,
where
 for , and

, , , and , else;

for any common search space,;

for a UE-specific search space,, , , , and ;

;

 is the carrier indicator field value if the UE is configured with a carrier indicator field for the serving cell on which PDCCH is monitored; otherwise, including for any common search space, ;

 is the number of CCEs, numbered from 0 to , in control resource set ;

, where is the number of PDCCH candidates the UE is configured to monitor for aggregation level for a serving cell corresponding to ;

;

for any common search space, ;

for a UE-specific search space, is the maximum of for all corresponding DCI formats over all configured values for a CCE aggregation level in search space set s in control resource set ;

the RNTI value used for is defined in [5, TS 38.212] and in [6, TS 38.214].

Conclusions
In this contribution, we have discussed an impact of BD and channel estimation limits on performance of NR networks. Based on the discussion, we made the following observations and proposals:
Observation #1: In practical NR deployments, UE’s USS may be restricted to approximately 16CCEs in certain slots because of collision of multiple search space sets.
Observation #2: Among the investigated hashing functions, “EPDCCH hashing” performs the worst and “EPDCCH hashing randomized in subband” performs the best in terms of blocking probability.
Observation #3: With 16CCE channel estimation allowance, “EPDCCH hashing CASE3” performs the same as “EPDCCH hashing randomized in subband CASE1” in terms of blocking probability.
Observation #4: With 48CCE channel estimation limit and currently supported hashing function, the performance of many practical NR deployments will be significantly impacted:
· Adoption of nested EPDCCH hashing function is beneficial, but does not fully solve the problem. Moreover, blocking probability for nested search-space is 10x worse than for non-nested search-space.
· Support of overbooking with dynamic dropping/nesting would limit the problem to few slots where monitoring occasions of multiple search space sets collide.
· Adoption of EPDCCH hashing randomized in subbands from Section 4 together with nesting can solve the problem.

Observation #5: When a gNB serves multiple services with different PDCCH monitoring periodicity, infrequent monitoring peaks may occur. The gNB should be allowed to over-book BDs during these infrequent peaks, to avoid BD restrictions in other monitoring occasions.
Proposal #1: NR supports search-space-set configurations that may result in over-booking BDs and CCEs in a slot.
· FFS: How to perform PDCCH candidate dropping in slots where CCE and BD limit are exceeded.

Proposal #2: BD dropping in a serving cell is based on the predefined rules and it should not introduce additional RRC signaling.

Proposal #3: BD dropping in a serving cell is applied only for UE-specific search space sets.

Proposal #4: BD dropping in a serving cell is based on predefined BD priority number .

Proposal #5: When there is a need for BD dropping in a slot, PDCCH candidates to be dropped are defined according to the smallest within all the involved UE-specific search space sets subject to BD dropping. If multiple PDCCH candidates have the same priority, dropping order is defined according to the predefined priorities:
· PDCCH candidate with the lowest AL L is dropped first.
· PDCCH candidate with the lowest search space set priority is dropped first. Search space set priority is derived implicitly from the search space set IDs.

Proposal #6: If CCE reduction scheme is defined according to Opt1, strive for a common solution for BD reduction and CCE reduction.
Proposal #7: In the proposed CCE reduction scheme, UE drops one PDCCH candidate after another according to the BD priority number, until the CCE cap is reached.

Proposal #8: Consider a rule where predefined CCEs such as CCEs belonging to TYPE0 and TYPE0A are never dropped.

Proposal #9: In the cases when the need for CCE reduction exists at the same time with the need for BD reduction, a UE drops the NR PDCCH candidates according to priority number until both limits are fulfilled for the slot.

References
[1] [bookmark: _Ref494639617]RAN1 Chairman’s Note, 3GPP TSG RAN WG1 Meeting #91, 3GPP
[2] R1-1800550, “On reducing the PDCCH channel estimation and BD complexity in NR”, Nokia, Nokia Shanghai Bell

Appendix A – Simulation assumptions

The PDCCH blocking probability depicted in Figure 3 was assessed by means of exhaustive search for different hashing functions. The number of users allocated within the CORESET is predefined (either 2, 3, …, or up to 8 users) and the RNTIs are selected randomly. For either of the selected users, an aggregation level is selected randomly for a period of 10 subframes. (The term subframe may here refer to a subframe in LTE or a slot in NR.) It is assumed that a single DCI is transmitted per user per subframe either with the selected aggregation level or with a higher aggregation level, and the occurrence of blocking is checked separately for all the subframe indices k = 0, 1, …, 9. Blocking occurs for the selected users within a subframe if after exhaustive search over all allocation options at least two PDCCH candidates have at least partial overlap. The results provide a lower bound of the PDCCH blocking probability, assuming a smart strategy to allocate the PDCCH candidates by gNB. In a practical network implementation, the PDCCH blocking probability may be higher, depending on the candidate allocation algorithms implemented by gNB. The presented results do not take into account the possibility that a user transmits multiple DCIs within a subframe. The results presented in this document include the possibility to fall back to a higher aggregation level in the case of blocking. The presented results on PDCCH blocking probability extend the previous results provided in [2].

The following settings are used in Figure 3:
· CORESET size of 64 CCEs,
· Aggregation levels (1, 2, 4, 8) with probabilities of occurrence given by (0.4, 0.3, 0.2, 0.1),
· The number of candidates for aggregation levels (1, 2, 4, 8) are given by (6, 6, 2, 2),
· Hashing functions of LTE PDCCH (blue lines), LTE EPDCCH (red lines), as well as randomized allocation in M subbands according to equation (1) (green lines).

Case 1: Nested search space with 16CCE allowance (dotted lines in Figure 3):
· In a first step, the candidates of the highest aggregation level 8 are assigned.
· In a second step, the remaining candidates are assigned within the CCEs allocated for AL8.

Case 2: Non-nested search space with candidate dropping with 16CCE allowance (dashed lines in Figure 3):
· The candidates of the highest aggregation level 8 are assigned first.
· A further candidate is assigned if the CCE count does not exceed the cap of 16 CCEs, otherwise the candidate is dropped.

Case 3: Non-nested search space with no CCE restrictions (solid lines in Figure 3):
· All configured candidates are assigned, neither nesting nor candidate dropping is applied.

image1.emf
BWP#1 273RBs

BWP#0 48RBs

Microsoft_Visio_2003-2010_Drawing.vsd
BWP#1 273RBs

BWP#0 48RBs

image2.emf
AL4 AL4 AL4 AL4

AL8 AL8

AL16

Microsoft_Visio_2003-2010_Drawing1.vsd
AL4

AL4

AL4

AL4

AL8

AL8

AL16

image3.emf
3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

10

-6

10

-5

10

-4

10

-3

10

-2

10

-1

10

0

Number of users

Blocking probability

Nr CCEs=64, Case1(dotted)/Case 2(dashed)/Case3(solid)

LTE PDCCH

LTE ePDCCH

Randomized in M subbands

image4.wmf
)

(

L

s

M

oleObject1.bin

image5.wmf
ë

û

i

L

N

b

M

L

N

m

Y

L

k

p

L

full

p

k

p

k

p

+

ï

þ

ï

ý

ü

ï

î

ï

í

ì

÷

÷

ø

ö

ç

ç

è

æ

+

ú

ú

û

ú

ê

ê

ë

ê

×

×

+

/

mod

,

,

ECCE

)

(

,

,

,

ECCE

,

oleObject2.bin

image6.wmf
)

(

,

L

full

p

M

L

×

oleObject3.bin

image7.wmf
)

(

,

L

full

p

M

L

×

oleObject4.bin

image8.wmf
)

(

,

L

full

p

M

L

×

oleObject5.bin

image9.wmf
)

(

,

L

full

p

M

L

×

oleObject6.bin

image10.wmf
(

)

i

M

L

N

m

M

L

N

m

b

Z

L

M

L

N

m

L

L

full

p

L

full

p

m

k

L

full

p

+

ï

þ

ï

ý

ü

ï

î

ï

í

ì

÷

÷

ø

ö

ç

ç

è

æ

ú

ú

û

ú

ê

ê

ë

ê

×

×

-

ú

ú

û

ú

ê

ê

ë

ê

×

×

+

+

+

ú

ú

û

ú

ê

ê

ë

ê

×

×

)

(

,

k

p,

ECCE,

)

(

,

k

p,

ECCE,

,

)

(

,

k

p,

ECCE,

'

)

1

'

(

mod

'

oleObject7.bin

image11.wmf
(

)

)

(

,

0

,

mod

'

L

full

p

k

M

m

Z

m

+

=

oleObject8.bin

image12.wmf
)

(

,

L

full

p

M

oleObject9.bin

image13.wmf
L

N

M

k

p

CCE

L

full

p

/

,

,

)

(

,

>

oleObject10.bin

image14.wmf
(

)

i

M

L

N

m

M

L

N

m

b

Z

L

M

L

N

m

L

L

full

p

L

full

p

m

k

L

full

p

+

ï

þ

ï

ý

ü

ï

î

ï

í

ì

÷

÷

ø

ö

ç

ç

è

æ

ï

þ

ï

ý

ü

ï

î

ï

í

ì

ú

ú

û

ú

ê

ê

ë

ê

×

×

-

ú

ú

û

ú

ê

ê

ë

ê

×

×

+

+

+

ú

ú

û

ú

ê

ê

ë

ê

×

×

)

(

,

k

p,

ECCE,

)

(

,

k

p,

ECCE,

,

)

(

,

k

p,

ECCE,

'

)

1

'

(

,

1

max

mod

'

oleObject11.bin

oleObject12.bin

oleObject13.bin

image15.emf
CCE index

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

x x x x x x x x AL8

x x x x AL4

x x x x x x AL2

x x x AL1

CCE index cont'd

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

x x x x x x x x AL8

x x x x AL4

x x x x x x AL2

x x x AL1

Legend

subband subband

PDCCH candidate PDCCH candidate x Example allocation

image16.wmf
CI

n

m

oleObject14.bin

image17.wmf
CI

n

oleObject15.bin

image18.wmf
i

M

L

N

m

M

L

N

m

n

Z

L

M

L

N

m

L

L

s

n

L

s

n

CI

n

m

k

p

L

s

n

CI

CI

CI

p

CI

+

ï

þ

ï

ý

ü

ï

î

ï

í

ì

÷

÷

ø

ö

ç

ç

è

æ

ï

þ

ï

ý

ü

ï

î

ï

í

ì

ú

û

ú

ê

ë

ê

×

×

-

ú

û

ú

ê

ë

ê

×

×

+

÷

ø

ö

ç

è

æ

+

+

ú

û

ú

ê

ë

ê

×

×

)

(

max

,

p

CCE,

)

(

max

,

p

CCE,

,

,

)

(

max

,

p

CCE,

'

)

1

'

(

,

1

max

mod

'

oleObject16.bin

image19.wmf
65537

=

D

oleObject17.bin

image20.wmf
0

,

=

p

k

p

Y

oleObject18.bin

image21.wmf
(

)

D

Y

A

Y

p

p

k

p

p

k

p

mod

1

,

,

-

×

=

oleObject19.bin

image22.wmf
0

RNTI

1

,

¹

=

-

n

Y

p

oleObject20.bin

image23.wmf
39827

0

=

A

oleObject21.bin

image24.wmf
39829

1

=

A

oleObject22.bin

image25.wmf
39839

2

=

A

oleObject23.bin

image26.wmf
65537

=

D

oleObject24.bin

image27.wmf
1

,

,

0

-

=

L

i

L

oleObject25.bin

oleObject26.bin

image28.wmf
0

=

CI

n

oleObject27.bin

image29.wmf
p

N

,

CCE

oleObject28.bin

image30.wmf
1

,

CCE

-

p

N

oleObject29.bin

image31.wmf
p

oleObject30.bin

image32.wmf
1

...,

,

0

)

(

,

-

=

L

n

s

n

CI

CI

M

m

oleObject31.bin

image33.wmf
)

(

,

L

n

s

CI

M

oleObject32.bin

image34.wmf
L

oleObject33.bin

oleObject34.bin

image35.wmf
(

)

)

(

max

,

0

,

,

mod

'

L

s

n

k

p

n

M

m

Z

m

CI

p

CI

+

=

oleObject35.bin

image36.wmf
)

(

0

,

)

(

max

,

L

s

L

s

M

M

=

oleObject36.bin

image37.wmf
)

(

max

,

L

s

M

oleObject37.bin

image38.wmf
)

(

,

L

n

s

CI

M

oleObject38.bin

oleObject39.bin

image39.wmf
L

oleObject40.bin

oleObject41.bin

image40.wmf
RNTI

n

oleObject42.bin

