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[bookmark: _GoBack]In Rel-15, a work item (WI) for enhancement of NB-IoT is agreed. The objective is to further enhance the performance of NB-IoT by further reducing latency and power consumption, improving measurement accuracy, enhancing NPRACH reliability and range, and reducing system acquisition time etc. [1]. By reducing system acquisition time, latency and energy efficiency of NB-IoT can be further improved. The system acquisition procedure in NB-IoT includes acquiring MIB-NB and SIB1-NB.
Regarding MIB-NB acquisition time reduction, the way-forward below was agreed in RAN1#90.
· For enhancement of MIB-NB acquisition time, the following candidates are considered:
· Option 1: Using the unused 3-OFDM symbols in subframe#0 on the anchor carrier in standalone and guard-band operation modes
· Option 2: Introducing additional subframe(s) for NPBCH transmission, FFS if there is a possible restriction to non-anchor carriers
· Option 3: Enhanced MIB-NB decoding techniques, e.g. combining the NPBCH across several MIB-NB TTIs. 
Regarding SIB1-NB acquisition time reduction, the agreements listed below were agreed in RAN1#90bis.
· SIB1-NB can be additionally transmitted in subframe(s) other than Rel.13 existing SIB1-NB transmission subframes on the anchor-carrier.
· Additional SIB1-NBs are transmitted on subframe #3
· The periodicity of additional SIB1-NB transmissions is 20 ms and in the same radio frame as legacy transmission
· There is no signalling of the number of additional SIB1-NB transmissions
· The TBS, coding, and modulation of additional SIB1-NB repetitions are the same as the existing ones for Rel.13 SIB1-NB
· Additional SIB1-NB transmission can be configured by eNB, and the presence of additional SIB1-NB can be indicated by one of unused bits in MIB-NB

In RAN1#91, additional agreements as below were reached.
· SIB1-NB transmissions in non-anchor carrier are not further considered in Rel-15 for NB-IoT FDD.
· When additional SIB1-NBs are transmitted, the subframe(s) carrying additional SIB1-NB(s) can be declared as invalid downlink subframe by downlinkBitmap
· Rel.15 UEs interpret invalid downlink subframes whose indices are corresponding to additional SIB1-NBs transmissions but not carrying additional SIB1-NB as valid downlink subframes only when the UE attempts to decode DCI format N0/N1 scrambled by C-RNTI in UE-specific search space or receive NPDSCH scheduled by DCI format N1 scrambled by C-RNTI in UE-specific search space.

The remaining open issues are
· For the repetition number 4 and 8, the total number of subframes for additional SIB1-NB transmission will be downselected between the following alternatives
· (Alt.1) no additional SIB1-NB transmission
· (Alt.2) half as many as that of the legacy SIB1-NB transmissions
· (Alt.3) the same as that of the legacy SIB1-NB transmissions
· For the repetition number 16, the total number of subframes for additional SIB1-NB transmission will be downselected between the following alternatives
· (Alt.1) the same as that of the legacy SIB1-NB transmissions
· (Alt.2) depends on code rate (e.g., TBS, #CRS/NRS ports, operation mode) of SIB1-NB
· When the code rate of SIB1-NB is equal to or larger than X, additional SIB1-NB subframes are transmitted on every other subframe #3
· Otherwise, additional SIB1-NB subframes are transmitted on every 4th subframe #3
· If the total number of subframes for additional SIB1-NB transmission is less than that of the legacy SIB1-NB transmissions, the starting radio frame index of additional SIB1-NB transmission depends on Cell ID and the number of SIB1-NB repetition scheduled by MIB-NB
· Note that this is not relevan to the case of 4 and 8 repetitions and this does not imply any selection among Alt. 1, 2, 3 in the above agreement
· The sequence of coded bits-to-subframe allocation of additional SIB1-NB transmission will be downselected between the following alternatives
· (Alt.1) The additional SIB1-NB uses the same coded bits-to-subframes mapping as the legacy SIB1-NB
· (Alt.2) reuse coded bits generated for existing SIB1-NB transmission while coded bits-to-subframe allocation is circularly shifted as much as 8 radio frames compared to the existing SIB1-NB transmission
· (Alt.3) the coded bits that are mapped to subframe #3 used for additional SIB1-NB transmissions are generated by continuing reading from the virtual circular buffer 
· Scrambling sequence will be generated and applied to subframes for additional SIB1-NB following one of the alternatives below
· (Alt.1) The additional SIB1-NB reuses the bit-level scrambling mechanism of legacy SIB1-NB, and uses the same symbol-level scrambling mechanism as NPBCH by replacing the initialization equation with  [image: ]
· (Alt.2) The scrambling sequence generator for additional SIB1-NB transmission is initialized with  [image: ]
· (Alt.3) The scrambling sequence used for the new SIB1-NB subframe is generated based on advancing the Gold sequence generators used for generating the scrambling sequence for SIB1-NB in subframe #4 in the same frame by 2560 shifts
· (Alt.4) Keep the same scrambling sequence as the legacy one if the additional SIB1-NB does not use the same coded bits-to-subframes mapping as the legacy SIB1-NB 

In this contribution, we discuss these remaining open issues.
MIB-NB acquisition
Option 1: Using the unused 3-OFDM symbols in subframe#0 on the anchor carrier in standalone and guard-band operation modes
In Rel-13/14, the resource mapping in an NPBCH subframe is illustrated in Figure 1. As shown, the first 3 OFDM symbols are not used. In the standalone and guard-band operation modes, there is no potential conflict with LTE control region. Thus, these three OFDM symbols may be used for mapping the NPBCH symbols.
[image: ]     [image: ]
Figure 1: Resource mapping in an NPBCH subframe according to Rel-13/14.

To reduce implementation efforts, we propose 3 of the OFDM symbols carrying NPBCH in an NPBCH subframe are repeated in the first 3 OFDM symbols of the NPBCH subframe. First, OFDM symbols #4, #7, #8, and #11 can be ruled out as these symbols include unused resource elements. One option is to repeat OFDM symbols #3, #9, and #10 in OFDM symbols #0, #1, and #2, respectively. These OFDM symbols are the only ones in an NPBCH subframe carrying 12 NPBCH data symbols. This option is illustrated in Figure 2.


Figure 2: Repeat OFDM symbols #3, #9, and #10 in OFDM symbols #0, #1, and #2, respectively.

Another approach is repeat some of the OFDM symbols carrying NRS. For example, OFDM symbols #5 and #6 may be repeated as illustrated in Figure 3. This approach increases the number of NRS symbols and will improve the quality of channel estimate.


Figure 3: Repeat OFDM symbols #3, #5, and #6 in OFDM symbols #0, #1, and #2, respectively.

An advantage of repeating the OFDM symbols is to allow the UE to perform residual frequency offset estimation using these repeated symbols. Additionally, the UE can also combine the repeated symbols before demodulation. Similarly, the NRS symbols can be combined before channel estimation.
The scrambling mask on the additional data symbols can be repeated as that applied to the original data symbols that are repeated. Alternatively, scrambling mask for the additional symbols can be generated by extending the length of the current scrambling mask. Since the UE by the time of NPBCH decoding already achieves subframe synchronization, the scrambling mask can be removed upon receiving the NPBCH subframe. After removing the scrambling mask, the UE can take advantage of the repeated symbols for residual frequency offset or channel estimation, and for demodulation.

 Option 2: Introducing additional subframe(s) for NPBCH transmission
In this option, it is to introduce additional subframe(s) for NPBCH transmissions. First, it is important to recognize that for in-band deployment, the total overhead on a Rel-13 NB-IoT anchor carrier can be very high, as illustrated in the example in Table 1. As seen, the percentage of resource elements available for NPDCCH/NPDSCH symbols, excluding those carrying SIB1-NB, may be as small as 42% in the worst-case scenario (in-band, 3 OFDM symbols for LTE PDCCH, and 4 CRS ports). Using more NPBCH subframes will further reduce the percentage of resource elements available for NPDCCH/NPDSCH.

Table 1: Overheads and percentage of resource elements available to NPDSCH/NPDCCH on a Rel-13 anchor carrier. (in-band, 3 OFDM symbols for LTE PDCCH, and 4 CRS ports)
	overhead due to LTE
	31.0%

	overhead due to NPBCH
	6.0%

	overhead due to NPSS
	6.9%

	overhead due to NSSS
	3.5%

	overhead due to NRS
	8.1%

	SIB1-NB
	3.0%

	total overhead
	58.3%

	percentage of resource elements available to NPDSCH/NPDCCH
	41.7%



Observation 1: On a Rel-13 NB-IoT anchor carrier, the percentage of resource elements available for NPDCCH/NPDSCH symbols, excluding those carrying SIB1-NB, is only 42% in the worst-case scenario (in-band, 3 OFDM symbols for LTE PDCCH, and 4 CRS ports). Using more NPBCH repetitions will further reduce the percentage of resource elements available for NPDCCH/NPDSCH.
In addition, even if additional NPBCH subframes are introduced, there is no way to signal this information to the UE. Therefore, when the Rel-15 NB-IoT UE enters a cell, it needs to do multiple hypotheses to find out whether and how the additional NPBCH repetitions are configured. This increase the UE complexity, and may not reduce the NPBCH decoding time as expected. 
Thus, we propose that using more NPBCH subframes on the anchor carrier not considered.
Proposal 1: Do not introduce more NPBCH subframes on the anchor carrier.
If additional MIB-NB repetitions are transmitted on a non-anchor carrier, firstly the UE needs to find out where is the non-anchor carrier. Since the non-anchor carrier information is not in MIB, the UE cannot take advantage of this when initially enters the cell. Moreover, since the SI ValueTag is also in MIB, the UE needs to check MIB to verify whether the SI is changed. Therefore, the UE cannot be certain the non-anchor carrier is still configured, as the change of the non-anchor carrier is reflected in the SI ValueTag. In the rare care, the UE needs to acquire MIB again within a SI modification period, where the UE can assume the SI does not change. But even in such case, the UE needs to switch frequency between anchor and non-anchor carrier for NPBCH reception. Cross-subframe channel estimation has been shown to be very beneficial for MIB-NB acquisition [2]. However, frequency retuning may introduce limitation on cross-subframe channel estimation. Thus, in our view, the benefit of transmitting additional MIB-NB repetitions on a non-anchor carrier is very limited.
Observation 2: Frequency retuning may introduce limitation on cross-subframe channel estimation and significantly reduce the effectiveness of cross-subframe channel estimation.
Proposal 2: Do not introduce additional subframes on a non-anchor carrier for NPBCH.

Option 3: Enhanced MIB-NB decoding techniques
In [3], advanced MIB decoding techniques were considered. In this section, we discuss an advanced MIB-NB decoding technique similar to the one proposed in [3]. It allows the UE to jointly decode NPBCH received signals over multiple 640-ms NPBCH TTIs.
The encoding process of MIB-NB is illustrated in Figure 4. MIB-NB is 34-bit long, and the first 6 bits consist of the 4 MSBs of SFN and 2 LSBs of H-SFN. The CRC encoder adds 16 CRC bits, which are later applied with a mask that is dependent of the number of antenna ports used to transmit NPBCH. After CRC encoding and masking, the 50-bit sequence is encoded with TBCC to produce a codeword of 150 bits, which is extended to a 1600-bit NPBCH codeword based on the LTE rate matching algorithm. On the receiver side, the UE can first undo rate matching, and thus the core problem is using a TBCC decoder to process the 150 bit soft values and produce a decoded bit sequence.
An important code property to exploit is that both the CRC and TBCC codes are linear codes. Recall that if  and  are two information vectors over GF(2) and C is a linear code so that , then . Exploiting such a linear code property, joint decoding over multiple NPBCH TTIs can be easily done assuming that the MIB-NB information content that changes across TTIs is the 6 bits SFN and H-SFN information. We illustrate how this works below.
Assume the 6 bits SFN and H-SFN information in the first TTI is , and therefore in the subsequent TTI it is (1,0,0,0,0,0). Here we use  and  to represent the 4 MSBs of SFN and 2 LSBs of H-SFN, respectively. The difference between the two MIB-NB information vectors (34 bits each) in two consecutive TTI’s is . Using the linear code properties, the difference in the TBCC codewords, denoted as   can be computed using the process illustrated in Figure 5. Note here that compared to Figure 4, CRC masking is not needed as it disappears after taking the difference between two codewords.  can be thought of as an additional scrambling mask applied to the codeword in the 2nd TTI, relative to the codeword in the first TTI. Thus, to use the two received codewords for joint decoding, the receiver can descramble the second received codeword using  and soft combine with the first codeword. Note that such a technique can be extended to using more than two TTI’s for joint decoding at the expense of increase soft buffer requirements.
For MIB-NB, the six frame counter bits  have 64 combinations, but only result in six different  vectors, and therefore six different  vectors. This is illustrated in Table 2. In Table 2, we highlight the first time a new  vector appears in blue. As seen, many frame counter values share the same  vector.
The six different  vectors requires that the received codewords over two TTIs are combined in 6 different ways. Thus, the decoder memory is increased from 150 bit soft values to 900 bit soft values when combining across two TTIs. Note that this is still much less than a buffer size of 2112 soft bit values that Cat-N1 UE is required to support. The decoder complexity however is the same as a regular TBCC decoder in that the number of trellis state remains as 64 and each state has two outbound branches and two inbound branches. The only twist is that the branch metric calculation needs to base on an appropriately chosen version of combined received codeword. For a particular state, the process of determining which version of combined received codeword to use is however deterministic and does not involve additional hypotheses.



Figure 4: MIB-NB encoding process.



Figure 5: Compute the difference in TBCC codeword based on the difference in MIB-NB information vectors.


Table 2: Relationship between frame counter value and . Although there are 64 possible frame counter values, there are only 6 possible  vectors.
	 in first TTI
	 in second TTI
	 (length 34 vector)

	(0,0,0,0,0,0)
	(1,0,0,0,0,0)
	(1, 0, …, 0)

	(1,0,0,0,0,0)
	(0,1,0,0,0,0)
	(1, 1, 0, …, 0)

	(0,1,0,0,0,0)
	(1,1,0,0,0,0)
	(1, 0, …, 0)

	(1,1,0,0,0,0)
	(0,0,1,0,0,0)
	(1,1,1, 0, …, 0)

	(0,0,1,0,0,0)
	(1,0,1,0,0,0)
	(1, 0, 0, …, 0)

	(1,0,1,0,0,0)
	(0,1,1,0,0,0)
	(1, 1, 0, …, 0)

	(0,1,1,0,0,0)
	(1,1,1,0,0,0)
	(1, 0, …, 0)

	(1,1,1,0,0,0)
	(0,0,0,1,0,0)
	(1, 1, 1, 1, 0, …, 0)

	……..
	……..
	……..

	(1,1,1,1,0,0)
	(0,0,0,0,1,0)
	(1, 1, 1, 1, 1, 0, …, 0)

	……..
	……..
	……..

	(1,1,1,1,1,0)
	(0,0,0,0,0,1)
	(1, 1, 1, 1, 1, 1, 1, …, 0)



Observation 3: Exploiting the linear code properties of CRC and TBCC, joint decoding across multiple NPBCH TTI’s can be done by simply applying an appropriate descrambling mask to the bit soft values before combining the TBCC codewords across multiple TTIs.

In our view, using more sophisticated NPBCH receivers is the most attractive solution as it improves MIB-NB reception performance without requiring additional NPBCH transmissions and thus does not give rise to any additional signaling overheads. The operation and complexity aspects of a joint MIB-NB decoder are summarized as below.
· Soft buffer memory is increased from 150 soft bit values to 900, corresponding to 6 sets of soft values obtained by combining the received signals over two TTI according to six different  vectors.
· Number of trellis state is kept at 64 states, as illustrated in Figure 6.
· The TBCC decoder starts with loading the 6 frame counting bits in the memory, i.e. the starting state hypothesis at stage 0 is tied to the hypotheses of 6 frame counting bits, as illustrated in Figure 6.
· The decoder tracks the starting state hypothesis for each survived path. For example, as shown in Figure 6, there are two paths merged at state (000000) of Stage 1 and the path marked by “X” is the one pruned. Thus the survival path at state (000000) of Stage 1 carries the starting state hypothesis of (100000).
· The calculation of the branch metrics is based on one of the 6 sets of soft values. According to the example in Figure 6, the survival path at state (000000) of Stage 1 carries the starting state hypothesis of (100000), and therefore the calculation of the two branch metrics emerging from this state will be based on the soft values that ae obtained by combining the received signals over the two consecutive TTI with  vector corresponding to  = (110… 000), see Table 2.
· All the other operations are identical to those in a nominal TBCC decoder.

Observation 4: There is no significant increase in decoding complexity for jointly decoding MIB-NB over consecutive TTIs as the number of states per TBCC decoding stage is kept at 64.



Figure 6: TBCC decoder trellis with 64 states.

The performance of jointly decoding MIB-NB over two consecutive TTI’s is shown in Figure 6. Compared to the conventional TBCC decoder, which decodes the two TTI separately, the joint decoder gains by approximately 1 dB.
[image: ]
Figure 7: MIB-NB reception performance with 1280 ms acquisition time. (in-band and guard-band modes, TU 1 Hz, and cross-subframe channel estimation with 20-ms interpolation window.)

Another method that can be used for MIB-NB re-acquisition is to assume part of the previously acquired MIB-NB remains valid. MIB-NB includes the information as follows.
1. Operation mode (standalone, in-band, guard-band).
2. In case of in-band and guard-band, the frequency raster offset (±2.5, ±7.5 kHz).
3. Four MSBs of the SFN.
4. Two LSBs of the H-SFN.
5. Information about System Information Block 1 (SIB1-NB) scheduling.
6. System information value tag.
7. Access barring information.
The UE can assume information #1, #2, #5, and #6 remains unchanged since it acquired MIB-NB last time. In some cases, assuming system information value tag remains unchanged might be a risky assumption. Thus, it might be more feasible if the UE only assumes information #1, #2, and #5 remains unchanged. We evaluate both options of trellis pruning.
· Setting A: trellis pruning based on assumption that information #1, #2, #5, and #6 remains unchanged.
· Setting B: trellis pruning based on assumption that information #1, #2, and #5 remains unchanged.
In the TBCC decoder, the known information bits can force the Viterbi decoder to take certain specific trellis paths as the survival paths, which helps prune the potentially erroneous paths, thereby improving the decoder performance. The decoded MIB-NB will undergo CRC checking and if the CRC checking indicates error free, the assumption about the unchanged bits is also confirmed.
The two advanced NPBCH decoding approaches described in this section can be combined, and its performance is shown in Figure 8. Building on top of the gain achieved by the joint decoder, if the assumed unchanged information within MIB-NB is used to prune the trellis during TBCC decoding, additional gains are achieved. Overall, both advanced decoder techniques jointly achieve close to 2 dB improvement. In Figure 8, we see that MIB-NB detection performance with or without knowing system information value tag does not differ by much. This is because knowing #1, #2, and #5 already allows the decoder the prune the trellis quite substantially and achieve good separation between a correct path and an erroneous one. Pruning the trellis further with known system information value tag only have very modest effect on performance.

 [image: ]
Figure 8: MIB-NB reception performance with 1280 ms acquisition time. (in-band and guard-band modes, TU 1 Hz, and cross-subframe channel estimation with 20-ms interpolation window.)

Observation 5: MIB-NB reception can be improved by approximately 2 dB using advanced decoding techniques without significantly increasing the decoder complexity.
SIB1-NB Acquisition
Regarding SIB1-NB, the remaining issues are listed below.
· For the repetition number 4 and 8, the total number of subframes for additional SIB1-NB transmission.
· For the repetition number 16, the total number of subframes for additional SIB1-NB transmission.
· The sequence of coded bits-to-subframe allocation of additional SIB1-NB transmission.
· How the scrambling sequence is generated and applied to subframes for additional SIB1-NB transmissions.

Number of additional SIB1-NB subframes
In Rel-13/14, each SIB1-NB codeword is transmitted in 8 SIB1-NB subframes over a 160-ms transmission interval using every other subframe #4. It can be configured for up to 16 repetitions in a transmission interval of 256 frames. In our view, in a network with mixed legacy and Rel-15 UEs it is not advisable to configure additional SIB1-NB transmissions if the repetition number for the legacy SIB1-NB transmission is 4 or 8, since in this case, the additional SIB1-NB transmissions only benefit Rel-15 UEs. In contrast, if the number of repetitions is increased to 8 or 16 on the legacy SIB1-NB subframes (i.e. subframe #4), all UEs will benefit from the additional repetition.
Observation 6: In a network with legacy UEs, it is preferred to configure SIB1-NB repetitions on subframe#4, rather than on subframe #3.
Next, we discuss whether it makes sense to configure SIB1-NB NB repetitions on subframe #3 when the number of repetitions on subframe #4 is 4 or 8 should a network have only Rel-15 UEs. Consider the below three options:
· A: 16 repetitions in subframe #4
· B: 8 repetitions in subframe #4 and 4 repetitions in subframe #3
· C: 8 repetitions in subframe #4 and 8 repetitions in subframe #3
These 3 options are illustrated in the figure below.

[image: ]
Figure 9: Illustration of three options that can be considered. Opt. A: 16 repetitions in subframe #4; Opt. B: 8 repetitions in subframe #4 and 4 repetitions in subframe #3; Opt C: 8 repetitions in subframe #4 and 8 repetitions in subframe #3
In a SFN synchronized network, Option A experiences interference from SIB1-NB transmissions from every other neighboring cell, but Option B experiences less interference from SIB1-NB transmissions from neighboring cells since one cell may transmit their SIB1-NB using the intervals not used by neighboring cells. However, Option A has 16 repetitions in total and Option B has 12, which translates to a 1.25 dB difference in energy and a 1.25 dB difference in processing gain over interference in general. Thus, it is unlikely that the benefit in reduction of SIB1-NB inter-cell interference will be able to overcome the deficit in both energy gain and processing gain over interference in general. However, comparing Option C and A, Option C may have an advantage as it has the same total number of repetitions, but reduced inter-cell SIB1-NB interference. However, Option C only benefits the UEs which happen to acquire MIB-NB right before a complete transmission of one SIB1-NB codeword starts. The benefits are even less if the UE needs to accumulate over several repetitions. Moreover, since a UE can finish acquiring MIB-NB at any time, the chance for the scenario where Option C is beneficial is very small. In our view, this drawback outweighs the potential advantage in dealing with inter-cell interference.
Similar argumentation can be made comparing the three options below.
· D: 8 repetitions in subframe #4
· E: 4 repetitions in subframe #4 and 2 repetitions in subframe #3
· F: 4 repetitions in subframe #4 and 4 repetitions in subframe #3
No benefit is foreseen from Option E, relative to D, but Option F may have an advantage in terms of addressing inter-cell SIB1-NB interference. However, Option F would suffer a worst case latency of 480 ms for waiting to start receiving SIB1-NB should the UE wake up right after a complete repetition of one SIB1-NB codeword. In contrast, if additional repetitions are configured in legacy subframe #4, the worst-case latency for starting receiving SIB1-NB would be 160 ms.
Observation 7: In a network with only Rel-15 UEs, configuring SIB1-NB repetitions on subframe #3, rather than on legacy subframe #4 results in a much longer wait time before a UE can start SIB1-NB acquisition.
Proposal 3: For the repetition number 4 and 8, the additional SIB1-NB transmissions in subframe #3 is not supported.
Next issue to discuss is when the legacy SIB1-NB transmission is configured for 16 repetitions, and if subframe#3 is additionally used for SIB1-NB transmissions, how many subframe #3 are used for SIB1-NB transmission? The remaining options that may be considered are listed below.
· (Alt.1) the same as that of the legacy SIB1-NB transmissions
· (Alt.2) depends on code rate (e.g., TBS, #CRS/NRS ports, operation mode) of SIB1-NB
· When the code rate of SIB1-NB is equal to or larger than X, additional SIB1-NB subframes are transmitted on every other subframe #3
· Otherwise, additional SIB1-NB subframes are transmitted on every 4th subframe #3
Note that Alternative 1 always gives rise to 16 SIB1-NB subframes per 160 ms interval, i.e. 10% SIB1-NB overheads on the anchor carrier, and Alternative 2 includes the option of using 24 SIB1-NB subframes per 320 ms interval, i.e. 7.5% SIB1-NB overheads. We illustrate the two repetition configurations in Fig. 10.

[image: ]
Figure 10: Illustration of two repetition options when the legacy SIB1-NB subframe #4 is configured with 16 repetitions.

We study the performance of the following cases.
· TBS=680, 16 repetitions in subframe #4 and 16 repetitions in subframe #3
· TBS=680, 16 repetitions in subframe #4 and 8 repetitions in subframe #3
· TBS=440, 16 repetitions in subframe #4 and 16 repetitions in subframe #3
· TBS=440, 16 repetitions in subframe #4 and 8 repetitions in subframe #3
· TBS=328, 16 repetitions in subframe #4 and 16 repetitions in subframe #3
· TBS=328, 16 repetitions in subframe #4 and 8 repetitions in subframe #3
· TBS=208, 16 repetitions in subframe #4 and 16 repetitions in subframe #3
· TBS=208, 16 repetitions in subframe #4 and 8 repetitions in subframe #3
The performance of SIB1-NB acquisition in TU1 channel is shown in Figure 11. We see that when TBS is 440, 328, or 208 using 8 additional repetitions in subframe #3 already outperforms TBS 680 bits with 16 additional repetitions in subframe #3. Thus, among all these cases, coverage is limited by TBS 680 with 16 additional repetitions in subframe #3. One can always choose to use 16 additional repetitions in subframe #3 also for the smaller transport block sizes to improve the performance further. However, in our view, there is always a tradeoff between improving SIB1-NB acquisition and the anchor carrier overhead. We consider configuring 8 additional repetitions in subframe #3 for smaller TBS sizes achieves a good tradeoff between anchor carrier overhead and SIB1-NB performance.
Observation 8: When TBS is 440, 328, or 208 and when SIB1-NB is configured to have 16 repetitions in legacy subframe #4, using 8 additional repetitions in subframe #3 already outperforms TBS 680 bits with 16 repetitions in legacy subframe #4 and 16 additional repetitions in subframe #3.
 [image: ]
Figure 11: SIB1-NB performance of various transport block sizes and repetitions. (TU1 channel)

Proposal 4: For SIB1-NB TBS 680, support the combination of 16 repetitions in legacy subframe #4 and 16 repetitions in subframe #3, and for other smaller TBS sizes, support the combination of 16 repetitions in legacy subframe #4 and 8 repetitions in subframe #3.

Coded bits-to-subframe allocation of additional SIB1-NB transmission
The options are as follows.
· (Alt.1) The additional SIB1-NB uses the same coded bits-to-subframes mapping as the legacy SIB1-NB
· (Alt.2) reuse coded bits generated for existing SIB1-NB transmission while coded bits-to-subframe allocation is circularly shifted as much as 8 radio frames compared to the existing SIB1-NB transmission
· (Alt.3) the coded bits that are mapped to subframe #3 used for additional SIB1-NB transmissions are generated by continuing reading from the virtual circular buffer 

Alternative 3 is described in details below.
The TBCC coded bits are generated by reading from the virtual buffer. Let  be the length of the SIB1-NB codeword, Following the rate matching operation of subclause 5.1.4.2.2 in [4], the TBCC codeword for SIB1-NB  can be obtained. Here, we use subscript ‘4’ to denote that codeword  is mapped to every second subframes #4 during 16 frames. Assume  is the number of subframe #3 used for additional SIB1-NB transmissions in a 16 frame interval. The number of coded bits that can be fitted into these additional subframes is . Note that if every other subframe #3 is used for SIB1-NB, , and therefore . We proposal that the coded bits that are mapped to subframe #3 used for additional SIB1-NB transmissions are generated by continuing reading from the virtual circular buffer, , i.e., . The codeword  can be thought of as an extended SIB1-NB codeword expected by a Rel-15 UE. It consists of a first part, the original Rel-13 SIB1-NB codeword expected by a Rel-13/14 UE, and a second part, codeword extension mapped to additional Rel-15 SIB1-NB subframes. Mapping of these additional coded bits to resource elements in subframe #3 used for SIB1-NB transmission follows the exact same method of mapping SIB1-NB coded bits to subframe #4 used for SIB1-NB transmissions. An illustration is provided in Figure 12. For each SIB1-NB subframe, the coded bits can be obtained by using a proper starting index for reading out the virtual circular buffer.



Figure 12: Illustration of Alternative 3 - mapping the Rel-15 extended codeword to SIB1-NB subframes, where the extended codeword is obtained by continuing reading the circular buffer. (An example of using every other subframe #3 for additional SIB1-NB transmissions.)

Alternative 1 simply repeats the code bits in subframe #4 in subframe #3. One claimed advantage is that this solution allows the possibility of combining the same repeated symbols across subframes #3 and #4, if the scrambling scheme is chosen to enable this. However according to our analysis and simulation results, given the same code rate and channel estimation quality, there is no performance difference between symbol-level combining (i.e. combining took place before demodulation) and bit-level combining (i.e. combining took place after demodulation and the combining is based on bit soft values).
Let  be the estimated channel coefficient, 
			,						(1)
where  is the true channel coefficient and  is the estimation noise.
Let  and  be the received signals corresponding to two repeated symbols, , where  is a transmitted QPSK symbol, , , , and  is the AWGN component in .
In the case of symbol-level combining, the two received signals  and  are first combined; then the combined received signal is compensated for the channel effect before demodulation, giving decision statistics
,
			.
Bit soft values are obtained by taking the real and imaginary parts of 
,			(2)
						(3)
where , , , and .
With bit-level combining, we generate bit soft values based on each received symbol  first. This requires compensating for channel coefficient as the first step,
.
Then taking the real part,
.
Combining bit soft values, 
			=.	(4)
Similar operation can be applied to obtain the estimate for the quadrature phase bit,
			=	(5)
Note that equation (4) is identical to equation (2), and equation (5) is identical to equation (3).
Thus, using the same channel estimate, symbol-level combining and bit-level combining achieve the same performance.
Our simulation results comparing alternative 1 and 3 are shown in Fig. 13, based on TU1 channel, TBS 680 bits, and 2.56s acquisition time. The number of repetitions used for the legacy SIB1-NB transmissions is 16 and for subframe #4. We assume that the preceding subframe of a subframe#4 carrying SIB1-NB is also used for transmitting SIB1-NB. We further assume that there are 100 resource elements per subframe available for NPDSCH. The comparison is based on using the same channel estimator, which is configured as a cross-subframe channel estimator using all the available NRS within a 10-ms window. Note that how the coded bits for subframe #3 is generated does not add or remove options on channel estimation. For this discussion, it is thus important to ensure that the channel estimator is configured the same way for both alternatives. It can be seen that Alternative 3 (cyclic extension) outperforms Alternative 1 (codeword repetition and symbol-level combining). This is expected as the coding rates per repetition in this case are 0.44 and 0.22 for alternatives 1 and 3, respectively. The TBCC mother code has a code rate 1/3 and thus the code rate per repetition needs to be 1/3 or lower to achieve the highest possible coding gain. In this comparison, Alternative3 achieves the highest possible coding gain whereas Alternative 1 does not. Note that the code rate per repetition for Alternative 2 in this case is also 0.44, and thus we expect a similar difference in performance between Alternative 3 and Alternative 2.

[image: ]
Figure 13: SIB1-NB performance with 2.56 s acquisition time. 16 repetitions used and every subframe #4 with SIB1-NB transmission is preceded with an additional SIB1-NB transmission in subframe #3. (TBS=680, 100 resource elements per subframe is assumed available for NPDSCH)

Observation 9: With 2.56 s SIB1-NB acquisition time, cyclic extension outperforms codeword repetition.
We further evaluate the performance of early SIB1-NB decoding after 80 ms acquisition time. The results are shown in Fig. 14. In this case, we observe very substantial different in performance between Alt.1 and Alt. 3. With 80-ms acquisition time, there are 4 subframes #4 used for SIB1-NB transmission. The code rate is 680/(100*2*4)=0.85. Thus Alt. 1 has very a limited coding gain. In contrast, Alt. 3 extends the code rate to 680/(100*2*8)=0.43. The difference between coding gains with code rates 0.85 and 0.43 is very significant.
Observation 10: With 80 ms SIB1-NB acquisition time, cyclic extension significantly outperforms codeword repetition.
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Figure 14: Early decoding performance of SIB1-NB after 80 ms acquisition time. (every subframe #4 with SIB1-NB transmission is preceded with an additional SIB1-NB transmission in subframe #3, TBS=680, 100 resource elements per subframe is assumed available for NPDSCH))

Proposal 5: The coded bits that are mapped to subframe #3 used for additional SIB1-NB transmissions are generated by continuing reading from the virtual circular buffer, i.e. Alt. 3.

Generation of scrambling mask
The last open issue is how the scrambling sequence is generated and applied to subframes for additional SIB1-NB transmissions. The 4 alternatives are listed below.
· (Alt.1) The additional SIB1-NB reuses the bit-level scrambling mechanism of legacy SIB1-NB, and uses the same symbol-level scrambling mechanism as NPBCH by replacing the initialization equation with  [image: ]
· (Alt.2) The scrambling sequence generator for additional SIB1-NB transmission is initialized with  [image: ]
· (Alt.3) The scrambling sequence used for the new SIB1-NB subframe is generated based on advancing the Gold sequence generators used for generating the scrambling sequence for SIB1-NB in subframe #4 in the same frame by 2560 shifts
· (Alt.4) Keep the same scrambling sequence as the legacy one if the additional SIB1-NB does not use the same coded bits-to-subframes mapping as the legacy SIB1-NB
There are two main considerations in determining which alternative to choose, (1) processing gain over SIB1-NB interference from neighboring cells when the subframes carrying SIB1-NB are aligned among neighboring cells, and (2) complexity.
It is straightforward to show that the first three alternatives achieve the first objective above. Regarding alternative 4, as long as the coded bit sequence in subframe #3 is not repeated in subframe #4, the processing gain over interference is achieved in the decoding process. We verify that this is the case for all the SIB1-NB transport block sizes and all the NB-IoT configurations. Table 3 shows the starting addresses for reading out the encoded bits from the virtual circular buffer in each SIB1-NB subframe, if proposal 5 in the previous subsection is adopted. Taking the first row with TBS 680 bits and 160 resource elements per subframe as an example, there are 320 coded bits mapped to each subframe and the circular buffer size is 680x3=2040 bits. Thus, starting from legacy subframe #4, the coded bits are read out from the circular buffer starting from index 0 for the first subframe #4, then the subsequent subframes #4 carrying SIB1-NB would have starting index 320, 640, 960, 1280, 1600, 1920, 200, i.e. an increment of 320 per subframe. Note that since the size of the circular buffer is 1980, thus a wrap-around occurs during the 7th code subblock, resulting in the starting index for the last code subblock to be to modulo(1920+320, 2040)=200. After mapping the coded bits to subframe #4, according to proposal 5 we continue reading out the encoded bits stored in circular buffer in order for mapping to subframe #3. Thus, the starting index for the first subframe #3 is 200+320=520 and the starting indexes for the remaining subframes #3 are determined in a similar fashion. In Table 3, we use the same color to represent subframes that share the same scrambling sequence according to Alt. 4. It is thus important to verify that coded bits-to-subframe mapping is different among the subframes sharing the same scrambling sequence. As seen that, no such a case is found.

Table 3: Starting addresses for reading out the encoded bits from the virtual circular buffer. (based on proposal 5 in the previous subsection)
[image: ]

Regarding complexity, Alternative 1 is the highest as two scrambling sequences need to be generated for subframe #3 carrying SIB1-NB. Alternatives 2, 3, and 4 have the same complexity. However, Alternative 2 requires storing two sets of m-sequence states for the Gold sequence generator. Alternatives 3 and 4 only requires storing one set of m-sequence states. An illustration is shown in Tables 4 - 6. Thus, there is a small advantage in Alternatives 3 and 4. Between Alternatives 3 and 4, Alternative 3 is the simplest in terms of loading and storing the m-sequence states. However as discussed in [6], Alternative 3 requires masking the m-sequence generator with a pre-determined vector designed for a particular shift. Although such a mechanism is required to support a shift of 1600 between the Gold-sequence, after initialization, and the scrambling sequence, it is not clear whether the implementations in all NB-IoT eNBs and UEs support the flexibility of configuring a different masking vector. Since Alt. 4 also achieves the same effect in randomizing interference and at the same time has lower complexity than Alt. 1 and Alt. 2, our proposal is to adopt Alt. 4.
[bookmark: _Hlk505186243]Proposal 6: Regarding how the scrambling sequence for subframe #3 carrying SIB1-NB is generated, agree alternative 4 and keep the same scrambling sequence as the legacy.

Table 4: Operation of m-sequence generators initialization and generator states storage according to Alternative 2.
[image: ]
Table 5: Operation of m-sequence generators initialization and generator states storage according to Alternative 3.
[image: ]
Table 6: Operation of m-sequence generators initialization and generator states storage according to Alternative 4.
[image: ]
Conclusions
In this contribution, we discuss the remaining issues regarding system information acquisition time reduction. Based on the discussions presented in this contribution, the below observations and proposals are made.
Observation 1: On a Rel-13 NB-IoT anchor carrier, the percentage of resource elements available for NPDCCH/NPDSCH symbols, excluding those carrying SIB1-NB, is only 42% in the worst-case scenario (in-band, 3 OFDM symbols for LTE PDCCH, and 4 CRS ports). Using more NPBCH repetitions will further reduce the percentage of resource elements available for NPDCCH/NPDSCH.
Observation 2: Frequency retuning may introduce limitation on cross-subframe channel estimation and significantly reduce the effectiveness of cross-subframe channel estimation.
Observation 3: Exploiting the linear code properties of CRC and TBCC, joint decoding across multiple NPBCH TTI’s can be done by simply applying an appropriate descrambling mask to the bit soft values before combining the TBCC codewords across multiple TTIs.
Observation 4: There is no significant increase in decoding complexity for jointly decoding MIB-NB over consecutive TTIs as the number of states per TBCC decoding stage is kept at 64.
Observation 5: MIB-NB reception can be improved by approximately 2 dB using advanced decoding techniques without significantly increasing the decoder complexity.
Observation 6: In a network with legacy UEs, it is preferred to configure SIB1-NB repetitions on subframe#4, rather than on subframe #3
Observation 7: In a network with only Rel-15 UEs, configuring SIB1-NB repetitions on subframe #3, rather than on legacy subframe #4 results in a much longer wait time before a UE can start SIB1-NB acquisition.
Observation 8: When TBS is 440, 328, or 208 and when SIB1-NB is configured to have 16 repetitions in legacy subframe #4, using 8 additional repetitions in subframe #3 already outperforms TBS 680 bits with 16 repetitions in legacy subframe #4 and 16 additional repetitions in subframe #3.
Observation 9: With 2.56 s SIB1-NB acquisition time, cyclic extension outperforms codeword repetition.
Observation 10: With 80 ms SIB1-NB acquisition time, cyclic extension significantly outperforms codeword repetition.

Proposal 1: Do not introduce more NPBCH subframes on the anchor carrier.
Proposal 2: Do not introduce additional subframes on a non-anchor carrier for NPBCH repetitions.
Proposal 3: For the repetition number 4 and 8, the additional SIB1-NB transmissions in subframe #3 is not supported.
Proposal 4: For SIB1-NB TBS 680, support the combination of 16 repetitions in legacy subframe #4 and 16 repetitions in subframe #3, and for other smaller TBS sizes, support the combination of 16 repetitions in legacy subframe #4 and 8 repetitions in subframe #3.
Proposal 5: The coded bits that are mapped to subframe #3 used for additional SIB1-NB transmissions are generated by continuing reading from the virtual circular buffer, Alt. 3.
Proposal 6: Regarding how the scrambling sequence for subframe #3 carrying SIB1-NB is generated, agree alternative 4 and keep the same scrambling sequence as the legacy.
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