Page 1
3GPP TSG-RAN WG1 NR	R1-1703698
Athens, Greece, 13th– 17thFeb 2017
[bookmark: Source]Agenda item:	8.1.4.1
Source: 	Mediatek Inc.
Title: 	QC-LDPC performance and complexity comparisons
[bookmark: DocumentFor]Document for:	Discussion/Decision
Introduction
In R1-AH-NR meeting, there was a conclusion relating to the evaluation of performance.
Conclusion:
· Evaluations at BLER of a single code block = 1e-2 (for performance comparison between codes) and 1e-4 (for the purpose of comparing the error floor performance of the codes)

In R1-AH-NR meeting, there was another conclusion relating to the evaluation of implementation complexity.
Conclusion:
· At least the following criteria are considered for LDPC design comparison in addition to BLER performance
· Implementation complexity
· Latency
· Discuss details in the email discussion.
· Companies are encouraged to provide at least the following for the base matrix for the considered code rates:
· Zmax
· Total number of edges
· Maximum row weight
· Maximum column weight
· FFS if/how to define and compare numbers of (quasi) layers

In this contribution, we do comparison on both performance and implementation complexity for several QC-LDPC codes proposed in [3], [4], [5], [6] and [10]. The results show that the QC-LDPC code proposed by Mediatek in [10] is the most compact design which results in the best area efficiency and has performance equally as good, sometimes better, among the proposed QC-LDPC candidates.

Performance Comparisons
It was noted by NTT DoCoMo in [1] that there is very little to separate different LDPC proposals based on performance alone and that some other criteria should be considered to separate competing designs. In this section, we try to show that the QC-LDPC code proposed by Mediatek in [10], although compact in design, has performance equally as good, sometimes better, than any other proposed QC-LDPC code.
Required SNR at BLER=1e-2 Performance Comparisons
In the following figures, we try to compare the required SNR at BLER=1e-2 among different proposals of a QC-LDPC code. As can be seen in the figures below, the proposed quasi-row orthogonal (qRO) compact QC-LDPC code can achieve highly competitive performance at BLER=1e-2.
The bold line marked ‘o’ is for the proposed qRO QC-LDPC code in [10] by Mediatek using a 50-iter-Flooding-SP decoder.
The thin line marked ‘x’ is for the proposed QC-LDPC code in [15] also using a 50-iter-Flooding-SP decoder.
The dash line marked ‘+’ is for the proposed QC-LDPC code in [14] using a 50-iter-Layered-SP decoder.
[image:]
Figure 1: Required SNR at BLER=1e-2 for various CBS at CR=0.89, 0.83, 0.75 and 0.67

[image:]
Figure 2: Required SNR at BLER=1e-2 for various CBS at CR=0.5, 0.4 and 0.33
Required SNR at BLER=1e-3 Performance Comparisons
In the following figures, we try to compare the required SNR at BLER=1e-3 among different proposals of a QC-LDPC code. As can be seen in the figures below, the proposed compact qRO QC-LDPC code can achieve highly competitive performance at BLER=1e-3.
The bold line marked ‘o’ is for the proposed qRO QC-LDPC code in [10] by Mediatek using a 50-iter-Flooding-SP decoder.
The thin line marked ‘x’ is for the proposed QC-LDPC code in [15] also using a 50-iter-Flooding-SP decoder.
The dash line marked ‘+’ is for the proposed QC-LDPC code in [14] using a 50-iter-Layered-SP decoder.

[image:]
Figure 3: Required SNR at BLER=1e-3 for various CBS at CR=0.89, 0.83, 0.75 and 0.67
[image:]
Figure 4: Required SNR at BLER=1e-3 for various CBS at CR=0.5, 0.4 and 0.33
Required SNR at BLER=1e-4 Performance Comparisons
In the following figures, we try to compare the required SNR at BLER=1e-4 among different proposals of a QC-LDPC code. As can be seen in the figures below, the proposed compact qRO QC-LDPC code can achieve highly competitive performance at BLER=1e-4.
The bold line marked ‘o’ is for the proposed qRO QC-LDPC code in [10] by Mediatek using a 50-iter-Flooding-SP decoder.
The thin line marked ‘x’ is for the proposed QC-LDPC code in [15] also using a 50-iter-Flooding-SP decoder.
The dash line marked ‘+’ is for the proposed QC-LDPC code in [14] using a 50-iter-Layered-SP decoder.

[image:]
Figure 5: Required SNR at BLER=1e-4 for various CBS at CR=0.89, 0.83, 0.75 and 0.67
[image:]
Figure 6: Required SNR at BLER=1e-4 for various CBS at CR=0.5, 0.4 and 0.33
Observation 1: The compact qRO QC-LDPC code proposed by Mediatek has extremely competitive and in most cases best in class requisite SNR for BLER performance targets of 1e-2, 1e-3 and 1e-4.
BLER vs. SNR Performance Comparisons
In the following figures, we plot the BLER vs. SNR curves among different proposals of a QC-LDPC code for the agreed code block size (CBS)/code rate (CR) simulation set.
The CBS setting is 8000, 6000, 4000, 2000, 1000, 400 and 100.
The CR setting is 0.89, 0.83, 0.75, 0.67, 0.5, 0.4 and 0.33.
The bold line marked ‘o’ is for the proposed qRO QC-LDPC code in [10] by Mediatek using a 50-iter-Flooding-SP decoder.
The thin line marked ‘x’ is for the proposed QC-LDPC code in [15] also using a 50-iter-Flooding-SP decoder.
[image:]
Figure 7: BLER vs. SNR for CBS=8000 at CR of 0.89, 0.83, 0.75, 0.67, 0.5, 0.4 and 0.33
[image:]
Figure 8: BLER vs. SNR for CBS=6000 at CR of 0.89, 0.83, 0.75, 0.67, 0.5, 0.4 and 0.33
[image:]
Figure 9: BLER vs. SNR for CBS=4000 at CR of 0.89, 0.83, 0.75, 0.67, 0.5, 0.4 and 0.33
[image:]
Figure 10: BLER vs. SNR for CBS=2000 at CR of 0.89, 0.83, 0.75, 0.67, 0.5, 0.4 and 0.33
[image:]
Figure 11: BLER vs. SNR for CBS=1000 at CR of 0.89, 0.83, 0.75, 0.67, 0.5, 0.4 and 0.33
[image:]
Figure 12: BLER vs. SNR for CBS=400 at CR of 0.89, 0.83, 0.75, 0.67, 0.5, 0.4 and 0.33
[image:]
Figure 13: BLER vs. SNR for CBS=100 at CR of 0.89, 0.83, 0.75, 0.67, 0.5, 0.4 and 0.33
Observation 2: For the agreed CBS/CR simulation set the compact qRO QC-LDPC code proposed by Mediatek has extremely competitive and in most cases best in class BLER performance with no error floor observed above 1e-4.
Code Rate Granularity Check
In order to further confirm the extremely competitive performance of the proposed qRO QC-LDPC code proposed in [10] by Mediatek, we show simulation results for CR from 0.33 to 0.89 at 0.01 resolution for the larger CBS of 4000, 6000 and 8000, which are more sensitive to error floor.
[image:]
Figure 14: BLER vs. SNR for CBS=8000 at CR from 0.33 to 0.89 at 0.01 resolution

[image:]
Figure 15: BLER vs. SNR for CBS=6000 at CR from 0.33 to 0.89 at 0.01 resolution

[bookmark: _GoBack][image:]
Figure 16: BLER vs. SNR for CBS=4000 at CR from 0.33 to 0.89 at 0.01 resolution
Observation 3: For the larger CBS of 4000, 6000 and 8000, the compact qRO QC-LDPC code proposed by Mediatek has extremely good CR granularity with no error floor observed above 1e-4.
CBS Granularity Check
In order to confirm uniform performance, we show simulation results of requisite SNR at achieve BLER=1e-2, 1e-3and 1e4- for all CBS at LTE granularity for a CR set of 0.33, 0.4, 0.5, 0.67, 0.75, 0.83 and 0.89.

[image: cid:image005.png@01D286C9.C763F150]
Figure 17: LTE CBS granularity check at BLER=0.01

[image: cid:image006.png@01D286C9.C763F150]
Figure 18: LTE CBS granularity check at BLER=0.001
[image: cid:image007.png@01D286C9.C763F150]
Figure 19: LTE CBS granularity check at BLER=0.0001
Observation 4: The compact qRO QC-LDPC code proposed by Mediatek has extremely good CBS granularity at BLER=1e-2, 1e-3 and 1e-4.
Observation 5: The compact qRO QC-LDPC code proposed by Mediatek has extremely good performance that is competitive, and in most instances best in class, amongst all the relevant performance metrics proposed.
Implementation Complexity
Block-parallel decoder
A block-parallel decoder of a QC-LDPC code uses large lifting factors to achieve a high degree of parallelism. In [2], we illustrated how parallelism affects the implementation complexity. Put simply, a decoder with a maximum lifting factor of Z when compared with another decoder with maximum lifting factor of Z/2 that are to achieve the same throughput as the decoder with lifting factor Z will result in the decoder with lifting factor Z/2 having to be duplicated, as shown in Figure 19, which will in turn result in approximately the same logic area footprint between the two decoders but with double the memory area footprint for the decoder with lifting factor Z/2.
In [2], we proposed to use the metric

as a simplified metric of implementation complexity for a block-parallel decoder, where is number of information variable node (VN) blocks, is the total number of VN blocks (including information and parity VN blocks) and is the number of edge blocks for a specific CR. This metric should scale well with area efficiency of any finally implemented block parallel decoder. Note too that

when the number of punctured VN blocks is much smaller than, which is true for most of the proposed QC-LDPC codes. Therefore when two QC-LDPC codes support the same lowest CR, one can forgo the metric above and directly compare the number of edge blocks as a measure of their relative implementation complexity.

[bookmark: _Ref473708440]Figure 20: Illustration on the advantage of larger parallelism
The comparison among different QC-LDPC codes is listed in Table 1. As observed from the table, the QC-LDPC code proposed by Mediatek in [10] has the smallest number of edge blocks and therefore should scale to have the best area efficiency.
[bookmark: _Ref473709734]Table 1: Number of edge blocks, e’
	 # of edge blocks e’
	[10]
wi qRO
	[3]
	[4]
High Family
	[5]
Base graph 1
	[6]
BC1

	CR=1/3
	222
	440
	436
	509
	525

	CR=1/2
	146
	284
	286
	335
	348

	CR=2/3
	101
	197
	193
	221
	233

	CR=8/9
	56
	113
	110
	121
	113

For completeness we also include here the comparison with our proposed metric, , in Table 2. We scale all the values by 1000 to make it easier for one to make a comparison.
[bookmark: _Ref474101043]Table 2: Area efficiency, m
	1000 x m
	[10]
wi qRO
	[3]
	[4]
High Family
	[5]
Base graph 1
	[6]
BC1

	CR=1/3
	1.44
	0.74
	0.75
	0.68
	0.66

	CR=1/2
	2.19
	1.15
	1.14
	1.04
	1.00

	CR=2/3
	3.17
	1.66
	1.69
	1.57
	1.49

	CR=8/9
	5.71
	2.89
	2.96
	2.87
	3.08

Observation 6: A single-block-parallel decoder targeting the compact QC-LDPC code proposed by Mediatek will have very competitive area efficiency.
Multi-block parallel decoder
A decoder may be designed with several hardware engines to process several edge blocks within one clock cycle. We term this decoder architecture a multi-block parallel decoder. However, this architecture does not exactly scale with the parallelism gain that it instantiates because of memory contention problems causing additional cycles as well as the additional cycles required for the final stage of Q comparison. It is entirely possible to add some additional logic overhead to reduce the extra cycle overhead; however, it is not possible to completely eliminate this cycle overhead. Likewise this logic overhead reduces area efficiency in a similar way.
First, we assume that there is no overhead of additional cycles for a multi-block parallel decoder. This is definitely an incorrect assumption but it can still help set up the initial comparison. With this assumption, we can directly compare the normalized number of edge blocks as a measure of their relative implementation complexity. In Table 3, all number of edge blocks are normalized to a lifting factor of 512. As you can see, even based on the incorrect assumption of zero overhead, the qRO QC-LDPC code proposed by Mediatek in [10] still has better area efficiency than that of [3], [4], [5] and [6]. Only the QC-LDPC code proposed in [3] can be competitive with that of [10].
[bookmark: _Ref473748824]Table 3: Number of normalized edge blocks
	 # of normalized edge blocks
	[10]
wi qRO
	[3]
	[4]
High Family
	[5]
Base graph 1
	[6]
BC1

	CR=1/3
	222
	220.0
	232.5
	254.5
	262.5

	CR=1/2
	146
	142.0
	152.5
	167.5
	174.0

	CR=2/3
	101
	98.5
	102.9
	110.5
	116.5

	CR=8/9
	56
	56.5
	58.7
	60.5
	56.5

Secondly, we try to analyze the overhead of additional cycles assuming that additional logic area overhead is added for the final stage of Q comparison and then draft the decoding schedule for CN18~CN23 for the LDPC code proposed in [3]. We assume that even VNs are allocated in one memory and odd VNs are allocated in the other memory. This means that at any instance only one address can be read out among even VNs and likewise with the odd VNs. The decoding schedule is shown in Figure 20 which takes a total of 19 cycles to complete. The total edge count of CN18~CN23 is 29.

[image:]
[bookmark: _Ref473832119]Figure 21
The double-block parallel decoder reduces the cycle from 29 to 18, so the additional cycle overhead is
.
With the overhead of additional cycles and the overhead of additional logic area, the area efficiency of a double-block parallel decoder can indeed be improved because the throughput may initially grow faster than the area. However, as the number of parallel blocks is further increased, the additional cycles will significantly increase and scheduling will become significantly harder with higher routing area. At some point, the area efficiency will actually start to decrease.
For a fair comparison of a multi-block-parallel decoder to achieve the same inherent parallelism as a single-block-parallel decoder, one needs to account for this cycle and area overhead. We make the conservative assumption of a 21% cycle overhead to achieve multi-block processing, which is generous considering the example above just presented and further we assume a 10% area overhead to achieve the increased parallelism in silicon due to the additional check node processing, routing and also less layout friendly memory shapes. We arrive at an adjusted formula to account for these overheads.

We then re-tabulate the same normalized edge numbers shown in Table 3, but scaled according to these overhead assumptions to arrive at Table 4.
[bookmark: _Ref474102533]Table 4: Number of normalized edge blocks, scaled for cycle and area overheads
	 Scaled # of normalized edge blocks
	[10]
wi qRO
	[3]
	[4]
High Family
	[5]
Base graph 1
	[6]
BC1

	CR=1/3
	224.2
	295.8
	312.6
	342.2
	352.9

	CR=1/2
	147.5
	190.9
	205.1
	225.2
	233.9

	CR=2/3
	102.0
	132.4
	138.4
	148.6
	156.6

	CR=8/9
	56.6
	76.0
	78.9
	81.3
	76.0

For a non-compact LDPC code, multi-block parallel decoder is indeed an architecture to induce higher throughput and thus improve the area efficiency as compared to a compact LDPC code with higher inherent parallelism. Note that the improvement of area efficiency using multi-block parallel decoder can equally be applied to a compact LDPC code to achieve even higher parallelism than is already inherent due to its compact structure. Based on the same number of parallel blocks, the area efficiency of a decoder for a compact LDPC code will always be better than that of a decoder for a non-compact LDPC code.
Observation 7: A decoder targeting a non-compact QC-LDPC code can increase its parallelism via multi-block parallel decoding, but the overhead in both additional cycle count and additional logic will always make a compact QC-LDPC code more attractive to target.
Observation 8: When compared with the equivalent level of parallelism, the area efficiency of a decoder targeting a compact QC-LDPC code will always be better than that of a decoder targeting a non-compact QC-LDPC code.
Row parallel decoder
A row-parallel architecture is proven to provide extremely high throughput of tens of Gb/s in [11], [12] and [13]. All variable nodes corresponding to one segment of a check node (CN) block are processed in parallel and the size of the segment is proportional to the parallelism of the decoder. Some considerations on QC-LDPC code structure are discussed in [2] to efficiently support a row-parallel QC-LDPC decoder. Here, we compare the implementation complexity among different proposed QC-LDPC codes.
Quasi-Row Orthogonality
A well performing QC-LDPC code usually has very different check node degrees, i.e., the row weights of the base matrix are quite different. In the row-parallel decoder, the hardware engine is required to support the CN block processing with the maximum CN degree. Therefore, some hardware modules are forced into idle mode when the decoder processes CN blocks with lower check node degrees. This results in poor hardware utilization. To increase the hardware utilization, it is preferred to decode several CN blocks that are orthogonal to each other in one parallel group. The number of groups of rows in the base matrix we refer to as the layer number. The throughput of a row-parallel decoder highly depends on the number of layers in the base matrix.
Unfortunately, most good QC-LDPC codes have some puncturing VN blocks among the information VN blocks. It common that the column weights of the punctured VN blocks are enlarged such that the decoder can speed up the convergence in decoding (LLR) messages for the punctured VN blocks. This characteristic is not good for a strictly row orthogonal design in reducing the layer number. In our experience, aggressively reducing the layer number degrades the performance. Therefore, we propose to design the base matrix in which rows are orthogonal to each other within the same group excluding the puncturing VN blocks. This relaxed version of row orthogonal base matrix is referred as a quasi-row orthogonal (qRO) base matrix.
There is one criterion on the qRO base matrix which is that no cycle is allowed within puncturing columns in the same row group. This is because a cycle within puncturing columns would result in memory access problems. The memory access arises because different shift values correspond to different memory addresses. In Figure 21, the two columns marked by red are the puncturing columns. When two CN blocks connect to the same two puncturing VN blocks and the shift values are designed independently, two accesses are required to the same VN block, which in turn will reduce the throughput.
[image:]
[bookmark: _Ref471130583]Figure 22: Restriction on a qRO base matrix

Based on the qRO defined above, we try to identify the layer partition of some proposed LDPC codes. One example of the layer partition is shown in the appendix. In [2], we propose to use the metric
.
as a simplified metric of implementation complexity for a row-parallel decoder, where is number of information VN blocks, is the layer number and is the maximal group row weight. This metric can reflect the Check Node Unit (CNU) and shifter network area efficiency. In Table 5, we compare the metric among different proposed QC-LDPC codes and found that QC-LDPC codes proposed in [10] and [3] have better area efficiency compared with that proposed in [4], [5] and [6]. In the following chapter, we will try to compare the implementation complexity between [10] and [3] from other points of view.
[bookmark: _Ref474003648]Table 5: Metric of row parallel decoder
	
	[10]
wi qRO
	[3]
	[4]
	[5]
	[6]

	
	
	
	High Family
	Base graph 1
	BC1

	i
	16
	32
	30
	32
	32

	l
	14
	16
	29
	45
	44

	n
	22
	37
	25
	29
	25

	
	0.052
	0.054
	0.041
	0.025
	0.029

Observation 9: The QC-LDPC codes with inherent (quasi)orthogonality proposed in [10] and [3] will derive row-parallel decoders with better CNU and shifter network area efficiency than those without inherent orthogonality.
Routing Complexity
As in the discussion in [9], when the number of LLR memory slices is larger than the input number of check node units (CNU), some multiplexers (MUX) are needed to route the LLR memory to the input of the CNUs. These MUXs are called the routing network. Intuitively, when the mismatch between number of memory slices and input number of CNU is larger, the routing network would be more complicated.
The routing complexity would depend on the exact design of the base matrix and is hard to quantify from simple parameters of the base matrix. The routing complexity of LDPC code [3] is analysed in [9]. Intuitively, the routing problem of an LDPC code with a compact base matrix would be much easier than the one with a non-compact base matrix.
In addition, the larger the row number the more complicated the routing network becomes because the routing needs to fulfill more connections between CN blocks and VN blocks. As you can see, the proposed LDPC code in [10] has only 34 rows to be routed while the LDPC code in [3] has 66 rows to be routed. (Considering only CR down to 1/3)
Moreover, when an LDPC codebook is composed of several base matrices, the routing complexity would become even more complicated because the routing network needs to overlay the routing of all these matrices. The number of base matrices proposed by different companies is listed in Table 6.
Observation 10: The QC-LDPC code proposed in [10] by Mediatek is more compact and has less check node to be routed and thus is expected to have better routing area efficiency.
[bookmark: _Ref474009275]Table 6: Number of protomatrix
	
	[2]
	[3]
	[4]
	[5]
	[6]

	# of Protomatrix
	1
	1
	3
	2
	2

Memory Area Efficiency
The memory area efficiency is also a consideration. The basic idea is that when the memory size is the same, a smaller memory slice count would result in better area efficiency. So if comparing area efficiency of LLR memory between [10] and [3], we can expect that the memory slice count of [10] is less and thus should have better area efficiency. Here we try to quantify the area based on synthesis result of 28HPM process node such that we can have a sense of how a compact base matrix can affect the memory efficiency. Based on the assumption of CBS=6144 and CR=1/3, we use the parameters in Table 7 to predict the area of the LLR memory. The parallelism of these two decoders is selected based on an equal throughput assumption and its ratio is roughly the same as the ratio of.
[bookmark: _Ref471646644]Table 7
	Reference LDPC code
	[1]
	[4]

	LLR bit width
	8
	8

	Lifting Factor
	384
	192

	# of layers
	13
	16

	# of non-raptor VN
	19
	38

	# of Memory Slices
	19
	38

Considering the number of memory slices, the diagonal extended VN blocks (VN38~VN97) of [3] can all share memory slices with the non-diagonal extended VN blocks (VN0~VN37) and the proposed QC-LDPC code in [10] can therefore use the memory very efficiently.
With the parameters of Table 7, we present a prediction of the memory area in Table 8.
Although the LLR memory requirement is roughly the same, the LLR memory area of a compact base matrix like the one presented in [10] by Mediatek can be 17.5 % smaller than that of [3] even though its memory size is slightly larger.
[bookmark: _Ref471647599]Table 8: LLR Memory area prediction based on 28HPM
	Protomatrix
	LLR Memory size
	# of memory slices
	depth
	width
	area(um^2) @ 28HPM

	[10]
	50*8*384=153600
	19
	153600/19/48=169
	48
	110029

	[3]
	98*8*192=150528
	38
	150528/38/32=124
	32
	129238

Observation 11: The QC-LDPC code proposed in [10] by Mediatek is more compact and thus should derive better memory area efficiency.

Latency
In R1-AH-NR meeting, it was also suggested to look at latency as a candidate metric for comparison between different QC-LDPC proposals. In Table 9 we present the comparative latencies of different QC-LDPC proposals under the assumption of a code block of size Kmax = 8192 at a code rate of 1/3. We assume a 25% cycle count overhead in achieving multi-block parallel decoding.
[bookmark: _Ref474103822]Table 9: Decoder latency [cycles/iteration] Kmax = 8192 at 1/3 rate
	Cycle Per Iteration
@ CR=1/3
	[2]
	[3]
	[4]
High Family
	[5]
Base graph 1
	[6]
BC1

	Single Block
 parallel
	259
	487
	485
	565
	579

	Double Block
 parallel
(Assume 25% cycle overhead)
	161.875
	304.375
	303.125
	353.125
	361.875

Observation 11: A decoder targeting the QC-LDPC code proposed in [10] by Mediatek should have best in class latency when compared as either a single- or a double-block-parallel decoder.
Other complexity measures
Here we list the other parameters of the various proposed QC-LDPC base matrices that were suggested for consideration in the previous agreement from the R1-AH-NR meeting.
Table 10: Maximal Row Weight
	
	[2]
	[3]
	[4]
	[5]
	[6]

	
	
	
	High Family
	Base graph 1
	BC1

	Maximal Row
Weight
	19
	19
	22
	29
	25

Table 11: Maximal Column Weight
	
	[2]
	[3]
	[4]
	[5]
	[6]

	
	
	
	High Family
	Base graph 1
	BC1

	Maximal Column Weight for CR>=1/3
	27
	15
	39
	50
	63

Table 12: Maximal Lifting Factor
	
	[2]
	[3]
	[4]
	[5]
	[6]

	
	
	
	High Family
	Base graph 1
	BC1

	Zmax with CBS<= 8192
	512
	256
	320
	256
	256

Other than maximum row weight, we don’t see much benefit in considering these as candidate metrics for LDPC code selection as they do not predict anything useful about the complexity of an architecture to decode such a code.
Observation 12: A decoder targeting the QC-LDPC code proposed in [10] by Mediatek will have best in class implementation complexities of area efficiency, memory area efficiency, latency and level of parallelism.
Observation 13: The QC-LDPC code proposed in [10] by Mediatek has been shown to have competitive and in most cases best in class performance as well as best in class implementation complexities for a decoder targeting this proposed code, regardless of which performance or complexity metric is chosen.
Proposal 1: The QC-LDPC code proposed in [10] by Mediatek should be the basis from which the QC-LDPC code for NR is established.
Conclusion
The following summarizes the observations and proposals in this contribution.
Observation 1: The compact qRO QC-LDPC code proposed by Mediatek has extremely competitive and in most cases best in class requisite SNR for BLER performance targets of 1e-2, 1e-3 and 1e-4.
Observation 2: For the agreed CBS/CR simulation set the compact qRO QC-LDPC code proposed by Mediatek has extremely competitive and in most cases best in class BLER performance with no error floor down to 1e-4.
Observation 3: For the larger CBS of 4000, 6000 and 8000, the compact qRO QC-LDPC code proposed by Mediatek has extremely good CR granularity with no error floor observed above 1e-4.
Observation 4: The compact qRO QC-LDPC code proposed by Mediatek has extremely good CBS granularity at BLER=1e-2, 1e-3 and 1e-4.
Observation 5: The compact qRO QC-LDPC code proposed by Mediatek has extremely good performance that is competitive, and in most instances best in class, amongst all the relevant performance metrics proposed.
Observation 6: A single-block-parallel decoder targeting the compact QC-LDPC code proposed by Mediatek will have very competitive area efficiency.
Observation 7: A decoder targeting a non-compact QC-LDPC code can increase its parallelism via multi-block parallel decoding, but the overhead in both additional cycle count and additional logic will always make a compact QC-LDPC code more attractive to target.
Observation 8: When compared with the equivalent level of parallelism, the area efficiency of a decoder targeting a compact QC-LDPC code will always be better than that of a decoder targeting a non-compact QC-LDPC code.
Observation9: The QC-LDPC codes with inherent (quasi)orthogonality proposed in [10] and [3] will derive row-parallel decoders with better CNU and shifter network area efficiency than those without inherent orthogonality.
Observation 10: The QC-LDPC code proposed in [10] by Mediatek is more compact and has less check node to be routed and thus is expected to have better routing area efficiency.
Observation 11: The QC-LDPC code proposed in [10] by Mediatek is more compact and thus should derive better memory area efficiency.
Observation 11: A decoder targeting the QC-LDPC code proposed in [10] by Mediatek should have best in class latency when compared as either a single- or a double-block-parallel decoder.
Observation 12: A decoder targeting the QC-LDPC code proposed in [10] by Mediatek will have best in class implementation complexities of area efficiency, memory area efficiency, latency and level of parallelism.

Observation 13: The QC-LDPC code proposed in [10] by Mediatek has been shown to have competitive and in most cases best in class performance as well as best in class implementation complexities for a decoder targeting this proposed code, regardless of which performance or complexity metric is chosen.
Proposal 1: The QC-LDPC code proposed in [10] by Mediatek should be the basis from which the QC-LDPC code for NR is established.
References
[1] [bookmark: _Ref430766234]R1-1700866, Evaluation of LDPC codes for eMBB data channels
[2] [bookmark: _Ref473991392]R1-1701211, High Efficient LDPC Code Features, Mediatek
[3] [bookmark: _Ref474006888]R1-167889, Design of Flexible LDPC Codes, Samsung
[4] [bookmark: _Ref474006897]R1-1700830, LDPC rate compatible design, Qualcomm
[5] [bookmark: _Ref474006904]R1-1700108, LDPC Code Design, Ericsson
[6] [bookmark: _Ref474006914]R1-1700518, LDPC Codes Design for eMBB data channel, LG Electronics
[7] R1-1612652, Samsung_LDPC_Results_SPA, Samsung, Summary of Channel Coding Simulation Data Sharing.
[8] R1-1612652, Results_eMBB, Qualcomm, Summary of Channel Coding Simulation Data Sharing.
[9] [bookmark: _Ref474008840]R1-1611111, Consideration on Flexibility of LDPC codes for NR, ZTE, ZTE Microelectronics.
[10] [bookmark: _Ref474009132]R1-1702733, Compact QC-LDPC design, Mediatek
[11] [bookmark: _Ref473988680]S.-W. Yen, S.-Y. Hung, C.-H. Chen, H.-C. Chang, S.-J. Jou, and C.-Y. Lee, “A 5.79-Gb/s energy-efficient multirate LDPC codec chip for IEEE 802.15.3c applications,” IEEE J. Solid-State Circuits, Sep. 2012
[12] [bookmark: _Ref473988682]Z. Zhang, V. Anantharam, M. J. Wainwright, and B. Nikolić, “An ef- ficient 10GBASE-T wthernet LDPC decoder design with low error floors,” IEEE J. Solid-State Circuits, Apr. 2010
[13] [bookmark: _Ref473988683]A. Cevrero, Y. Leblebici, P. Ienne, and A. Burg, “A 5.35 mm 10GBASE-T Ethernet LDPC decoder chip in 90 nm CMOS,” in Proc. 2010 IEEE Asian Solid-State Circuits Conf., Beijing, China, Nov. 2010
[14] [bookmark: _Ref474189020]R1-1612652, Samsung_LDPCResults_SPA, Samsung, Summary of Channel Coding Simulation Data Sharing.
[15] [bookmark: _Ref474189011]R1-1612652, Results_eMBB, Qualcomm, Summary of Channel Coding Simulation Data Sharing.
[bookmark: _Ref474007955]Appendix
The layer partition of LDPC codes in [4] based on quasi-row orthogonality assuming lowest CR of 1/3.

[image:]
Figure 23: Layer Partition of LDPC code in [4]

1/25
image1.png
Required SNR @ 0.01

QPSK with CR=0.89,0.83,0.75,0.67

067
075
083
089

1000 2000 3000 4000
cBS

7000 8000

image2.png
QPSK with CI

5,04,0.33

Required SNR @ 0.01

033

[1000

CBS

7000

image3.png
Required SNR @ 0.001

QPSK with CR=0.89,0.83,0.75,0.67
10
T

cBS

image4.png
Required SNR @ 0.001

QPSK with CR=0.5, 0.4, 0.33

1000 2000 3000 4000 5000

6000 7000 8000
cBS

image5.png
Required SNR @ 0.0001

QPSK with CR=0.89,0.83,0.75,0.67
10
T

cBS

image6.png
Required SNR @ 0.0001

QPSK with CR=0.5, 0.4, 0.33

1000

cBS

7000

image7.png
102

10

image8.png
107"
102

image9.png

image10.png

image11.png
10°
107
w02
107
104

image12.png

image13.png
10

10

image14.png
100 <t 4 < < <ty S < S S . ~

SNR (dB)

image15.png
o - . - . - mod ord=4 cbs=6000
= sttt RN Sttt TN i b}

102
103
1 I 1 I 1 1

SNR (dB)

image16.png
100

BLER
3

mod ord=4 cbs=4000

N

NTR

SNR (dB)

image17.png
Required SNR (dB)

Required SNR at BLER = 10°%, QPSK, flooding with iter = 50

—+—CR=0.33

—+—CR=0.75|]
—+—CR=0.83
—+—CR = 0.89

- A P
[P T i i +
1000 2000 3000 4000 5000 6000 7000 8000 9000

CBS

image18.png
Required SNR (dB)

1

1000

L
2000

3000

!
4000

CBS

5000

6000

7000

i
8000

9000

image19.png
Required SNR (dB)

14 T

Required SNR at BLER = 107, QPSK, flooding with iter = 50
—+CR=033
I —+—CR=0.4

—+CR=05

—+—CR = 0.67
—+—CR=0.75|7
-+ CR=0.83
—+—CR=0.89

L i T
1000 2000 3000 4000 5000 6000 7000 8000 9000
CBS

image20.emf
Memory Logic

Decoder with

Lifting Factor=zand T-put = T

Memory

Decoder with

Lifting Factor=z/2and T-put = T/2

Logic

Memory

Decoder with

Lifting Factor=z/2and T-put = T/2

Logic

T-put

oleObject1.bin
Memory

Logic

Decoder with
Lifting Factor=z and T-put = T

Memory

Decoder with
Lifting Factor=z/2 and T-put = T/2

Memory

Logic

Decoder with
Lifting Factor=z/2 and T-put = T/2

Logic

T-put

image21.png
0O 1 2 3 4 5 6 7 8 910 11 12 13 14 15 16 17 18

F F F F
1[(9)27(0)6[2]|8[24)28 10| 22|32
20| 26 17031(7 13|19

CN18 CN19 CN20 CN21 CN22 CN23

image22.png
==
g
=

|5

oflo
of®
— B
ofl®
oflo
ol
oo
(] | o)
] | o)
] o
] |
] o}
= | o)
-l | o)

;
(o
(o)
(o)
(o
(o)
(o)
(o)
(o]
(o)
(o)

o
o
@
o
(o)
o
(o)
o
(o)
(o)
o
(o)
(o)
(o)

o
.
(o)
o
—
o
o
o
o
(o)

image23.png

