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1. Introduction
At the RAN WG1#58bis meeting in Miyazaki, the design principle for a 4-antenna UL SU-MIMO rank 3 codebook was discussed. There are three main proposals regarding the codebook design principles: Cubic-Metric Preserving (CMP) [1]-[6], Cubic-Metric Friendly (CMF) [6]-[8], and a hybrid of CMP and CMF (hereafter simply referred to as hybrid) [9]-[10]. However, no progressive agreement was reached at the meeting. This contribution presents our views on the UL SU-MIMO codebook design for 4-antenna rank 3 in LTE-Advanced.
2. Views on UL SU-MIMO Codebook Design in LTE-Advanced
Higher priority has been given to maintaining a low CM property in designing the UL radio interface since Rel. 8 LTE. This is because a lower power consuming RF chain, i.e., RF transmitter circuitry, can be simply implemented. Although there is some flexibility in LTE-Advanced, e.g., use of clustered DFT-Spread OFDM and simultaneous transmission of the PUSCH and PUCCH, we strongly consider that increasing the CM should be limited to only when a significant benefit can be obtained in return, e.g., a significant performance gain, improved flexibility in resource assignment, and/or simpler implementation. 
The only benefit from employing the CMF codebook compared to that for the CMP codebook is to achieve a higher precoding gain at the sacrifice of increasing the CM. Therefore, we consider that the CMP codebook design principle should be the same as that for the 4-antenna rank 1, rank 2, and rank 4 codebook unless a significant performance gain is obtained by using CMF. Therefore, from the next section, we compare the CMP and CMF codebooks based on the throughput performance in the system-level simulations.
3. Simulation Evaluations
3.1 Simulation Configurations
Table 1(a) gives the major parameters in the link-level simulation. One transmission time interval (TTI) contains 14 SC-FDMA symbols, each of which comprises a 66.7 sec effective symbol and a 4.69 sec cyclic prefix. We assume the QPSK, 16QAM, and 64QAM modulation schemes, and turbo coding with the coding rate, R, of 1/8 to 5/6. Four-branch cross-polarized antenna diversity reception is employed at the transmitter and receiver. The antenna separation between cross-polarized antennas is set to 4and 0.5at the eNB and UE, respectively. We assume ideal received symbol timing detection. Actual channel estimation is conducted based on the coherent averaging of the demodulation reference signal (DM-RS) within a subframe. A frequency domain equalizer based on the MMSE is used.

Table 1(b) gives the major parameters in the system-level simulation. The total system bandwidth is 10 MHz (the occupied bandwidth is 9 MHz, which corresponds to 50 RBs). A 3-cell 19-hexagonal cell-site layout model is assumed with a sector antenna beam pattern with a 70-degree beam width. We set the inter-site distance (ISD) to 500 m and 1732 m to evaluate the performance for non-power limited and power limited scenarios, respectively. The number of UEs per cell is 10 on average and the locations of the UEs are randomly assigned with a uniform distribution within the cell. The propagation model and multipath model conform to the SCM Urban Macrocell model [11]. The penetration loss of 20 dB is considered. The maximum UE transmission power is 23 dBm with the antenna gain of 0 dBi. Meanwhile, the antenna gain at the eNB is 14 dBi. The antenna gain imbalance (AGI) among four UE antennas is not considered here. 
We assume a full buffer traffic model. Except for 2 RBs for the overhead of the PUCCH, 48 RBs are assigned in each TTI. The control delay of the frequency domain channel-dependent scheduling and adaptive modulation and coding (AMC) is set to 6 msec and the ideal channel measurement is assumed. Non-contiguous resource allocation is not assumed in the evaluation. The SRS transmission interval is set to 20 msec. We apply chase combining as hybrid automatic repeat request (HARQ) with packet combining and the round trip delay (RTD) for retransmission is assumed to be eight TTIs. 
Table 1 –Simulation parameters
(a) Link-level parameters
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(b) System-level parameters
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3.2 Simulation Results
We evaluate the system throughput performance, i.e., cell and 5% CDF (Cumulative Distribution Function) throughput, when using the CMP, CMF, and hybrid codebooks. We select the codebooks shown in [5], [8], and [9], for rank 3 CMP, CMF, and hybrid, respectively. 

First, we evaluate the system-level performance when the transmission rank is fixed at 3 and the maximum UE transmission power is 23 dBm for all codebooks. We note that this condition is not realistic in actual systems, but it is useful to see the achievable gain of CMF compared to CMP. Figure 1 shows the CDF in the user throughput for the ISD of 500 m and 1732 m. Table 2 shows the cell throughput and 5% CDF user throughput for the respective codebooks. We see that the throughput gain by CMF (hybrid) compared to that for CMP in terms of the achievable cell throughput is only approximately 0.9% (0.6%) and 0.7% (0.3%) when the ISD is 500 m and 1732 m, respectively. 
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Figure 1 – CDF of user throughput with CMP, CMF, and hybrid codebooks (rank 3 fixed)
Table 2 – Cell throughput and 5% CDF user throughput (rank 3 fixed)
(a) ISD = 500 m                                     (b) ISD = 1732 m
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Next, we evaluate the performance under more realistic conditions when rank adaptation is employed and the maximum transmission power is limited to less than 23 dBm corresponding to the increase in the CM. Figure 2 shows the CDF of the user throughput for the respective codebooks, and Table 3 shows the cell throughput and 5% CDF user throughput using the respective codebooks. From the Table 3, we find that the cell throughput when employing CMF (hybrid) compared to that for CMP is further reduced compared to the values in Table 2 and the gain from CMF (hybrid) is approximately 0.5% (0.5%) and 0.3% (0.3%) when the ISD is 500 m and 1732 m, respectively. 
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Figure 2 – CDF of user throughput with CMP, CMF, and hybrid codebooks 

(With rank adaptation)

Table 3 – Cell throughput and 5% CDF user throughput (With rank adaptation)
(a) ISD = 500 m                                     (b) ISD = 1732 m
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4. Conclusion

This contribution presented our views on the UL SU-MIMO codebook design and compared the CMP, CMF and hybrid codebooks based on a system-level simulation. From the simulation results, the performance gain when using CMF is marginal (0.7~0.9% in case of rank 3 fix, and 0.3~0.5% with rank adaptation) compared to CMP. Therefore, the CMP design principle should be adopted for the 4Tx rank 3 codebook in LTE-Advanced UL SU-MIMO.
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