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1 Introduction
Channel diagonalisation and interference nulling are generally regarded as attractive precoding strategies for single-cell MU-MIMO and CoMP schemes for boosting system spectral efficiency and user experience. In fact, the primary goal for the eNBs in these MIMO modes it to minimise the interference generated by multiplexing spatial layers to different UEs and/or minimise the interference caused to some unintended users. This precoding strategy requires explicit knowledge of the UE’s channel eigen-vectors or a linear combination thereof to enable the eNBs to form the transmit beams along suitable spatial direction [2]-[5]. This explicit feedback can be viewed as complementary to the implicit feedback supporting SU-MIMO in LTE Rel-8. Implicit feedback, whereby the UE tests hypotheses on the spatial processing at both sides of the communication link and reports the preferred one, is very effective in maximising the beamforming gain when a single user is being targeted, but is very restrictive for interference nulling, because the UE can not predict accurately the interference experienced by other UEs.

In this contribution we describe a possible way of reducing the dimension of the channel eigenvectors before quantisation and maintaining the information on the sub-space spanned by these eigenvectors. This size reduction technique or other similar techniques allow substantial overhead reduction in explicit feedback as discussed in [1].

2 Explicit spatial feedback via sub-space signalling

In this section we describe one possible technique for representing the sub-space information associated with a set of channel eigenvectors with the minimum number of coefficients.

For the sake of describing the technique, we consider frequency-flat and time-invariant channel. Let us assume that a UE needs to report a set of 
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, representing the dominant channel directions between the serving eNB (or multiple eNBs in the case of CoMP measurement set) and the 
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receive antennas. These vectors could be derived, for example, as the strongest singular vectors from the SVD of the channel matrix, or as the strongest eigenvectors from the EVD of the channel correlation matrix.
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We then take the SVD of 
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where 
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denotes Hermitian transposition. The new reduced-size 
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 matrix to be quantised and fed back is given by
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where 
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We note that any kind of scalar or vector quantisation that is applicable to 
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, can equally be applied to 
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. However, the vector dimensionality is now reduced to the minimum number of coefficients needed to represent the sub-space spanned by the 
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 eigenvectors, which is 
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 coefficients per vector, as discussed in [1]. 

In the case 
[image: image24.wmf]1

p

=

, the reduction method boils down to using the last 
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 for its representation. Note that 
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 is unit-norm and we can assume, without loss of generality, that one element (e.g. the first) in each eigenvector is real-valued, by EVD or SVD construction.

Once a quantised version of 
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The basis vectors reconstructed by the eNB, 
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 are then given by the columns of the matrix, if 
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Let us consider the case
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The motivation for this zero-padding operation should be clear from the geometrical explanation given in the Appendix.

It is not hard to show that, if 
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 (see the Appendix).

We note that this size reduction technique requires very modest computation complexity, namely one SVD on a 
[image: image46.wmf]p

p

´

 matrix at the UE side and one compact SVD on a 
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matrix at the eNB.
3 Conclusion
Dimensionality reduction techniques, like sub-space representation, can be used to reduce the number of coefficients in the representation of a set of channel eigenvectors (or singular vectors) as pointed out in [1].

This contribution presents one possible way of reducing the dimensionality of a set of channel eigenvectors for explicit feedback, by representing their sub-space with the minimum number of coefficients. In particular, sub-space representation achieves the largest possible size reduction: when representing 
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eigenvectors, each length-
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coefficients. After this size reduction, scalar of vector quantisation can be applied to the reduced-size vectors.

Sub-space representation of the strongest channel eigenvectors is an efficient way of signalling explicit channel information to allow channel diagonalisation and interference nulling in MU-MIMO and CoMP schemes, and is therefore worth considering for future evaluation of LTE-A explicit feedback mechanisms.
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Appendix

We show that the column vectors in the matrix 
(5)

 reconstructed by the eNB are a linear combination of the channel eigenvectors  GOTOBUTTON ZEqnNum873485  \* MERGEFORMAT . Let us assume that 
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 the singular values are the cosines of the principal angles between the sub-space spanned by  GOTOBUTTON ZEqnNum342320  \* MERGEFORMAT and the 
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where the singular values are the sines of the principal angles identified above and 
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and comparing 
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 (with (7)

 and  GOTOBUTTON ZEqnNum431122  \* MERGEFORMAT , by assumption) it follows that 
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 is a diagonal matrix with complex exponentials on the diagonal, such that 
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 . Hence, we can re-write the top block of the reconstructed matrix (5)

 as



[image: image71.wmf]21/2†21/211††

11

()()

pspscp

--

==

-

=

-

VI

ΣVVPDIΣDPVVΣVYQ

,
 MACROBUTTON MTPlaceRef \* MERGEFORMAT (8)

and conclude that , if 
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