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I INTRODUCTION 
In our earlier contributions [1] and [2], we presented a Rate-11 Quasi-Orthogonal Space 
Frequency Block code with constellation rotation (QO-SFBC-CR) for 4 transmit antennas 
that achieves a full diversity order2 of 4 with a maximum likelihood (ML) receiver. From 
a performance perspective, it is desirable for the open loop transmit diversity (TxD) 
scheme to achieve maximal diversity gain and maximal coding gain.  However, from a 
complexity perspective, it is not attractive that a maximum likelihood receiver has to be 
implemented to realize the full diversity and coding gain. 

In this contribution, we present a slight variation to the QO-SFBC-CR code we presented 
in [1] such that maximal diversity and coding gain is achieved with a reduced complexity 
receiver. In our analysis, we compare the performance of our proposed QO-SFBC-CR 
code with SFBC-FSTD for both an MMSE receiver and a reduced complexity ML 
receiver that supports matrix partitioning and exploits spherical decoding techniques. 

II CODE CONSTRUCTION FOR 4 TRANSMIT ANTENNAS 

II.a Design Criteria 
Let the transmitted 4x4 space-frequency code matrix be: 

 

(1,1) (1,2) (1,3) (1,4)
(2,1) (2,2) (2,3) (2,4)
(3,1) (3, 2) (3,3) (3, 4)
(4,1) (4,2) (4,3) (4,4)

x x x x
x x x x
x x x x
x x x x

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

X  (1) 

where ( , )x i j is the symbol transmitted from antenna j  on frequency index i . Let the code 
matrix detected at the receiver be defined as: 

 

ˆ ˆ ˆ ˆ(1,1) (1,2) (1,3) (1,4)
ˆ ˆ ˆ ˆ(2,1) (2,2) (2,3) (2,4)ˆ
ˆ ˆ ˆ ˆ(3,1) (3, 2) (3,3) (3, 4)
ˆ ˆ ˆ ˆ(4,1) (4,2) (4,3) (4,4)

x x x x
x x x x
x x x x
x x x x

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

X  (2) 

                                                 
1 Rate = 1 corresponds to 1 symbol transmitted per channel use. Note, with NTX transmit antennas, the 
maximum rate that can be achieved is NTX symbols transmitted per channel use. 
2 Diversity order is defined as the inverse slope of BER (or FER) versus SNR. The steeper the slope, the 
faster the error rate decreases with increasing SNR. 
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We define the codeword difference matrix as ˆB = X - X . The codeword distance matrix is 
defined as H= ⋅A B B . To minimize the pairwise error probability, i.e. the probability that 
X  was sent but X̂  was detected, several criteria have been proposed in literature [3],[4]: 

• Rank criterion – maximize the minimum rank of B across all pairs of distinct 
codewords. Larger rank of B implies higher diversity gain. 

• Determinant criteria – impacts the coding gain. Two metrics have been suggested: 
o Maximize the minimum determinant of A across all pairs of distinct 

codewords. 
o Minimize the average of 1/det(A) across all pairs of distinct codewords. 

• Trace criteria – impacts the coding gain. Objective is to maximize the minimum 
trace of A across all distinct codewords. 

II.b Code Orthogonality 
Consider the 2x2 Space-Frequency Alamouti Code [5], whose rate = 1: 

 1 2

2 1

s s
s s∗ ∗

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

S  (3) 

Since the column vectors of the Alamouti code matrix are orthogonal, S is a full rank 
matrix with rank 2. Now consider the transmission of the space-frequency Alamouti code 
through a flat fading channel to a single antenna receiver: 

 ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

1 1 1 1 1 1 2 1 2 1 1

2 2 1 2 2 2 2 2 1 2 2

r f h f s f h f s f n

r f h f s f h f s f n∗ ∗

= ⋅ + ⋅ +

= − ⋅ + ⋅ +
 (4) 

We can rewrite (4) as: 

 ( )
( )

( ) ( )
( ) ( )

1 1 1 1 2 1 1 1

2 2 2 2 1 2 2 2

r f h f h f s n
r f h f h f s n∗ ∗ ∗

⎡ ⎤ ⎡ ⎤ ⎛ ⎞ ⎛ ⎞
= ⋅ +⎢ ⎥ ⎢ ⎥ ⎜ ⎟ ⎜ ⎟− ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

 (5) 

If we assume that the channel is invariant from frequency 1f  to 2f , i.e. ( ) ( )1 1 1 2h f h f  and 
( ) ( )2 1 2 2h f h f , then we can simplify (5) as: 

 
( )
( )

1 1 1 2 1 1

2 2 2 1 2 2

r f h h s n
r f h h s n

r s n

∗ ∗ ∗

⎡ ⎤ ⎡ ⎤ ⎛ ⎞ ⎛ ⎞
= ⋅ +⎢ ⎥ ⎜ ⎟ ⎜ ⎟⎢ ⎥−⎣ ⎦ ⎝ ⎠ ⎝ ⎠⎣ ⎦
= ⋅ +H

 (6) 

Maximum diversity gain is achieved with a maximum likelihood receiver. Assuming 
AWGN, we get: 

 ( ) 2

2
arg max | arg minest ss

p r s s r s⇒ = − ⋅H  (7) 

Since H is a unitary matrix, γ=HH H I , where * *
1 1 2 2h h h hγ = + . If { } 2

2
HE nn σ= I , then 

{ } 2 2
2 2

H H HE nn σ γσ= =H H H H I I . Hence, H nH  is also white noise. Therefore, we can recast 
(7) as: 

 2 2

2 2 2
arg min arg minH H

est s s
s r s r sγ γ= − = −H I H  (8) 

From (8), we can readily see that the maximum likelihood estimate is given by: 
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 ,
1 H

ML ests r
γ

= H  (9) 

The formulation in (9) corresponds to a linear zero-forcing receiver. Therefore, we can 
state two important attributes of an orthogonal space-frequency block code: 

• Since the code matrix is of full rank, the code will achieve full diversity with an 
ML receiver 

• Since the channel transfer matrix is orthogonal, the linear zero-forcing receiver is 
equivalent to the maximum likelihood receiver. 

II.c Construction of Quasi-Orthogonal Codes with full diversity 
and reduced decoding complexity 

It is shown in [6] that for 2n > , no complex orthogonal (i.e. unitary) code exists. Hence, 
our first task is to construct a 4x4 code matrix with full rank, despite the fact that the code 
matrix will not be orthogonal. We start by constructing a quasi-orthogonal code matrix, 
based on the 2x2 orthogonal Alamouti sub-matrix, as proposed in [7]: 

 

1 2 3 4

2 1 4 3

3 4 1 2

4 3 2 1

s s s s
s s s s
s s s s
s s s s

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

⎡ ⎤
⎢ ⎥− −⎢ ⎥=
⎢ ⎥− −
⎢ ⎥

− −⎣ ⎦

S  (10) 

The code matrix in (10) is called quasi-orthogonal because 2 out of the 6 pairs of columns 
are not orthogonal. The 4 column pairs that are orthogonal to each other are: 

• (1,2), (1,3), (2,3), and (3,4) 

The remaining 2 columns of the code matrix in (10) are not orthogonal: 

• (1,4) and (2,4) 

In [1], we showed that by introducing constellation rotation for some of the symbols in 
(10), we can achieve full diversity3 (i.e. diversity order = 4) with a maximum likelihood 
receiver. Now, we state that by rotating each symbol in the code matrix (10) by a certain 
amount, we can partition the order-4 ML receiver into two order-2 ML receivers. The 
code matrix that permits partitioning is given by: 

 

31 2 4

32 1 4

3 4 1 2

34 2 1

1 2 3 4

2 1 4 3

3 4 1 2

4 3 2 1

jj j j

jj j j

j j j j

jj j j

c e c e c e c e
c e c e c e c e
c e c e c e c e
c e c e c e c e

θθ θ θ

θθ θ θ

θ θ θ θ

θθ θ θ

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

⎡ ⎤
⎢ ⎥− −⎢ ⎥= ⎢ ⎥− −
⎢ ⎥

− −⎢ ⎥⎣ ⎦

S  (11) 

where, ij
i is c e θ= , { },16 ,64ic QPSK QAM QAM∈ , iθ  is the rotation applied to constellation 

symbol ic , and {1,2,3,4}i = . The corresponding channel matrix for the code matrix in (11) 
is given by: 

                                                 
3 Note that full diversity with constellation rotation is only achieved with square constellations. 
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1 2 3 4

2 1 4 3

3 4 1 2

4 3 2 1

h h h h
h h h h
h h h h
h h h h

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

⎡ ⎤
⎢ ⎥− −⎢ ⎥=
⎢ ⎥− −
⎢ ⎥

− −⎣ ⎦

H  (12) 

where we’ve assumed that the channel is invariant from frequency 1f  to 4f . Now we can 
express the 4x1 vector at one receiver antenna as: 

 

1 2 3 41 1 1

2 1 4 32 2 2

3 4 1 23 3 3

4 3 2 14 4 4

h h h hr s n
h h h hr s n
h h h hr s n
h h h hr s n

∗ ∗ ∗ ∗∗

∗ ∗ ∗ ∗∗

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥= ⋅ +
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥

− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

 (13) 

Applying HH to the received signal, we get: 

 

1 1

4 4 4

2 2 2

3 3 3

H

r s n
r s n
r s n
r s n

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥= ⋅ +⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

1

1

2

H 0
H

0 H
 (14) 

where, 

 

1 1

2 2

3 3

4 4

H

r r
r r
r r
r r

∗

∗

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

H  (15) 

 

 
( )

( )

4
2

1 4 2 3
1

1 4
2

1 4 2 3
1

2

2

i
i

i
i

h h h h h

h h h h h

∗ ∗

=

∗ ∗

=

⎡ ⎤ℜ −⎢ ⎥
⎢ ⎥=
⎢ ⎥
ℜ −⎢ ⎥

⎣ ⎦

∑

∑
H  (16) 

and, 

 
( )

( )

4
2

2 3 1 4
1

2 4
2

2 3 1 4
1

2

2

i
i

i
i

h h h h h

h h h h h

∗ ∗

=

∗ ∗

=

⎡ ⎤
ℜ −⎢ ⎥

⎢ ⎥=
⎢ ⎥
ℜ −⎢ ⎥

⎣ ⎦

∑

∑
H  (17) 

Note that H1 and H2 are real symmetric matrices. 

Noise gets correlated: 

 { } 2H HE nn σ
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

1

2

H 0
H H

0 H
 (18) 

Now we can set up two order-2 ML decoders. One ML decoder will extract ( )1 4,s s , and 
the second ML decoder will extract ( )2 3,s s . First, we decorrelate the noise: 

 11 2
1

4

r
r

− ⎡ ⎤
= ⎢ ⎥

⎣ ⎦
1z H  (19) 
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and, 

 1 2 2
2

3

r
r

− ⎡ ⎤
= ⋅ ⎢ ⎥

⎣ ⎦
2z H  (20) 

Hence, as a result of partitioning (13), the two ML decoder metrics are given by: 

 ( )
2

11 2
,1 ,4 1 11, 4

4 2

, arg minest est s s

s
s s

s
⎛ ⎞

= − ⋅⎜ ⎟
⎝ ⎠

z H  (21) 

 ( )
2

21 2
,2 ,3 2 22, 3

3 2

, arg minest est s s

s
s s

s
⎛ ⎞

= − ⋅⎜ ⎟
⎝ ⎠

z H  (22) 

Compared to full-ML implementation, the complexity reduction with partitioned ML is 
substantial: 

• 8x for QPSK 

• 128x for 16-QAM 

• 2048x for 64-QAM 

The decoding complexity of each of the order-2 ML decoders can be further reduced 
without any loss in performance by exploiting spherical decoding techniques, as shown in 
[8]. Computation of the ML soft bit values is given by: 

 
( ) ( )

0 1

2 2
1 11 2 1 2

1 1 1 11, 4 1, 4
4 42 2

min min
b bi i

i s s s s

s s
L

s s
= =

⎛ ⎞ ⎛ ⎞
= − ⋅ − − ⋅⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
z H z H  (23) 

where, for example for 16-QAM, we would need to compute 4 soft bit values for each 
symbol is . Thus, the computation of the soft bit values is a two-step process: 

1. For all possible ( )1 4,s s pairs (256 for order-2 16-QAM), compute the Euclidean 
distances. 

2. Find the minimum distances corresponding to 0ib =  and 1ib = . 

In Figure 1, we show the complexity reduction achieved by using spherical decoding for 
calculating the Euclidean distance in (23) for 16-QAM in a 4x2 antenna configuration 
(i.e. 4 Tx antennas at NodeB and 2 Rx antennas at the UE). We observe that for SNRs of 
interest, the complexity reduction is ~ 4x. 

In Figure 2, we show the complexity reduction achieved by using spherical decoding for 
determining the minimum distances in (23) for 16-QAM in a 4x2 antenna configuration. 
We again observe that for SNRs of interest, the complexity reduction is ~ 4x. 

We can now state that using spherical decoding techniques for a partitioned ML decoder, 
we are able to achieve substantial reductions in complexity, which makes the 
implementation of such decoders viable. In the case of 16-QAM, the complexity 
reduction is ~ 512x relative to a full-ML decoder. 
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Figure 1: Complexity reduction using spherical Decoding for Euclidean distance calculation for 4x2 

16-QAM  
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Figure 2: Complexity reduction using spherical decoding for comparison calculation for 4x2 16-

QAM 

II.d Optimization of Code parameters 
For the QO-SFBC-CR code presented in (11), our next task is to determine the optimal 
rotation angles iθ  to achieve full diversity order and maximize coding gain. By virtue of 
constellation rotation, we showed in [1] that with a maximum likelihood receiver, the 
codeword difference matrix B is well-behaved, and we are able to realize full diversity 
performance. Hence, we now focus on maximizing the coding gain, for which we use the 
max min det(A) and the min average(1/det(A)) criteria (as discussed in II.a). We should 
note that since the minimum of trace(A) is invariant to rotation angles, we do not 
consider it in our optimization process. 

We start with an examination of the determinant of A: 
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 ( ) ( )2 2 2 2
1 4 2 3 1 4 2 3det( ) ⎡ ⎤= Δ + Δ + Δ − Δ × Δ − Δ + Δ + Δ

⎣ ⎦
A  (24) 

where ˆ
i i iS SΔ = − . We note that det(A) will be minimum when 1 4Δ = Δ  and 2 3Δ = Δ . Hence, 

we only need to consider the relative angle between Δ1 and Δ4, and the relative angle 
between Δ2 and Δ3. Therefore, without loss of generality, we set 1 2 0θ θ= = . To further 
simply the design, we set 3 4θ θ= . We computed det(A) and the average of 1/det(A) as a 
function of rotation angles from 0 to π/4. The results for QPSK are shown in Figure 3 and 
Figure 4. The results for 16-QAM are shown in Figure 5 and Figure 6. 

min det

0

2

4

6

8

10

12

14

16

18

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

rotation angle

min det

 
Figure 3: QPSK 

avg(1/det)

0.001
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0.1

1
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

rotation angle

avg(1/det)

 
Figure 4: QPSK 
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min det
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min det

 
Figure 5: 16-QAM 
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Figure 6: 16-QAM 

Based on these results, we see that for QPSK, any rotation angle between 0.5236 radians 
(π/6) and 0.7854 radians (π/4) is optimal. For 16-QAM, the optimal interval is split into 
two segments: 0.44 0.56θ< <  and 0.71 0.7854θ< < . For both constellations, we observe that 
π/4 is an optimal rotation angle. From an implementation point of view, π/4 is a good 
choice. Hence, we recommend the following rotation angles for the QO-SFBC-CR code 
in (11) for both QPSK and 16-QAM constellations: 

 
1 2

3 4

0

4

θ θ
πθ θ

= =

= =
 (25) 
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III PERFORMANCE RESULTS 
In this section, we present performance results for QO-SFBC-CR and SFBC-FSTD. The 
code for QO-SFBC-CR is given in (11), and the corresponding CR (constellation 
rotation) parameters are given in (25). The code for SFBC-FSTD is given by: 

 

1 2

2 1

3 4

4 3

0 0
0 0

0 0
0 0

SFBC FSTD

s s
s s

s s
s s

∗ ∗

−

∗ ∗

⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥
⎢ ⎥

−⎣ ⎦

S  (26) 

We compare results with two receiver types: MMSE and MLD-RC. MLD-RC4 is the 
partitioned ML receiver (given in (21) and (22)) with spherical decoding [8]. We should 
mention that the MLD-RC receiver for SFBC-FSTD is simply the linear Alamouti 
receiver, as discussed in II.b. The MMSE receiver is given by: 

 ( ) 12
,

H H
MMSE est ns rσ

−
= H H + I H  (27) 

 
We first present results for an uncoded 4x1 system. The motivation for studying uncoded 
4x1 is that the actual artifacts of the space-frequency code and the impact of different 
receiver architectures can be better studied and analyzed. Results for QPSK are shown in 
Figure 7. We make several observations from Figure 7: 

• The diversity gain of the QO-SFBC-CR code, as measured by the slope of the 
FER-SNR curve, with an MLD receiver is 3.3. The theoretically maximum 
diversity gain with 4 antennas is 4. The loss in diversity from the theoretical 
maximum can be attributed to antenna correlation [9], which is present in the 
SCM-C channel model. 

• There is a small loss in performance for the QO-SFBC-CR code with the 
partitioned MLD receiver (MLD-RC). This is due to the lack of channel 
invariance across 4 frequency tones, an assumption made by the partitioned ML 
receiver. Note that spherical decoding does not results in any loss of performance. 

• There is loss of both diversity gain and coding gain for the QO-SFBC-CR code 
with an MMSE receiver. The diversity gain drops sharply from 3.3 to 2.0. 

• The diversity gain of SFBC-FSTD is 1.62, irrespective of the receiver type, i.e. 
performance of SFBC-FSTD is similar with both MLD and MMSE receivers. 

• Hence, we can state that SFBC-FSTD offers the smallest diversity gain. And with 
an MLD-RC receiver, the diversity gain offered by QO-SFBC-CR is 2x that of 
SFBC-FSTD. 

• Finally, SFBC-FSTD offers a much lower coding gain compared to QO-SFBC-
CR, irrespective of the receiver type. 

                                                 
4 MLD-RC stands for Maximum Likelihood Decoding with Reduced Complexity 
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Figure 7: Uncoded 4x1 QPSK FER results for QO-SFBC-CR and SFBC-FSTD 
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Figure 8: Performance comparison between SFBC-FSTD and QO-SFBC-CR for QPSK 
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In Figure 8, we present FER results for QPSK constellation with a 4x2 antenna 
configuration, scheduling across 1RB with 30km/hr of Doppler in an SCM-C channel 
with coding rate = 4/5. We make several observations: 

• Best performance is obtained for QO-SFBC-CR with an MLD-RC receiver. 
• For an MMSE receiver, performance of QO-SFBC-CR is better than SFBC-

FSTD. 

In Figure 9, we present FER results for 16-QAM constellation with a 4x2 antenna 
configuration, scheduling across 1RB with 30km/hr of Doppler in an SCM-C channel 
with coding rate = 4/5. We make the following observations: 

• Best performance is obtained for QO-SFBC-CR with an MLD-RC receiver. 
• With an MMSE receiver, the performance gap between QO-SFBC-CR and 

SFBC-FSTD reduces. 

1 RB, SCM-C, 30 km/h, 4 by 2
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QPSFBC_CR (4/5, 16QAM, MLD_RC) SFBC_FSTD (4/5, 16QAM, MLD_RC)

 
Figure 9: Performance comparison between SFBC-FSTD and QO-SFBC-CR for 16-QAM 

Hence, we can state that with an MLD-RC receiver, QO-SFBC-CR performs better than 
SFBC-FSTD, irrespective of constellation. With an MMSE receiver, QO-SFBC-CR 
performs better than SFBC-FSTD for QPSK constellations. And, for 16-QAM with an 
MMSE receiver, the performance of both codes is similar. Therefore, QO-SFBC-CR is a 
more attractive code than SFBC-FSTD when both performance and complexity 
considerations are taken into account. 

IV CONCLUSION 
In this contribution, we’ve provided details on code construction of high performance 
QO-SFBC-CR codes. These codes are an extension of the 2-antenna SFBC, and they 
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exploit constellation rotation (CR) to maximize diversity gain and coding gain. We’ve 
also provided details on how to implement a substantially complexity reduced ML 
decoder (MLD-RC) for QO-SFBC-CR codes. We achieve complexity reduction from two 
aspects: (1) the proposed QO-SFBC-CR code can be partitioned, and (2) we can leverage 
well known spherical decoding techniques to further reduce complexity. 

We presented performance results comparing QO-SFBC-CR with SFBC-FSTD. With an 
MLD-RC receiver, we show that QO-SFBC-CR offers superior performance compared to 
SFBC-FSTD, regardless of constellation size. For QPSK with an MMSE receiver, we 
show that QO-SFBC-CR performs better than SFBC-FSTD. For 16-QAM with an 
MMSE receiver, the performance of the two codes is comparable. 

Therefore, our recommendation is to adopt the QO-SFBC-CR code as a technique for 
open loop transmit diversity with 4 transmit antennas. 
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