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Introduction
In RAN#102 meeting, one new WID on AI/ML for NR Air interface is approved [1]. In this work item, the normative support for a common AI/ML framework for air interfaces and enable the use cases recommended in the previous study. In addition, further research will be conducted to address some of the problems found in the previous study phase for CSI compression.
	Study objectives with corresponding checkpoints in RAN#105 (Sept ’24):
· CSI feedback enhancement [RAN1]: 
· For CSI compression (two-sided model), further study ways to:
· Improve trade-off between performance and complexity/overhead
· e.g., considering extending the spatial/frequency compression to spatial/temporal/frequency compression, cell/site specific models, CSI compression plus prediction (compared to Rel-18 non-AI/ML based approach), etc.
· Alleviate/resolve issues related to inter-vendor training collaboration.
while addressing other aspects requiring further study/conclusion as captured in the conclusions section of the TR 38.843. 
· [bookmark: _Hlk152950038]For CSI prediction (one-sided model), further study performance gain over Rel-18 non-AI/ML based approach and associated complexity, while addressing other aspects requiring further study/conclusion as captured in the conclusions section of the TR 38.843 (e.g., cell/site specific model could be considered to improve performance gain). 


In this section, we would focus on the further study for CSI compression.
Discussion
Spatial-Temporal-Frequency compression 
In R18, AI-based CSI Spatial-Frequency(S-F) compress had been studied, including performance gain over non-AI/ML benchmark for UPT gain and SGCS gain, generalization evaluation, training collaboration types comparison. However, from RAN1 perspective, there is no consensus on the recommendation of CSI compression. According to the WID [1]， the trade-off between performance and complexity/overhead should be further studied, such as extending the spatial/frequency compression to spatial/temporal/frequency compression, and cell/site specific models or CSI compression plus prediction.
In this contribution, the AI-based CSI Spatial-Temporal-Frequency (S-T-F) compression is adopted. As in Figure1, the historical CSI from previous slots can be used to compress the CSI of the current slot at encoder side. The historical CSI from previous slots is the temporal information, which can extend the S-F compression to S-T-F compression. 
[image: ]
Figure 1. CSI S-T-F compression
Evaluations for CSI S-T-F compression

AI model for CSI S-T-F compression 
It has been agreed that for the evaluation of the AI based CSI compression sub use cases, a two-sided model is considered, including an encoder part and a decoder part. So in the simulation of CSI S-T-F compression, a ConvLSTM connecting a Transformer backbone as the encoder is used, as shown in figure 2. The ConvLSTM backbone is used to extract temporal correlation features from the CSI of previous slot. The Transformer backbone mainly includes the multi-head attention layer which is used to compress the CSI of current slot. At decoder, the backbone is Transformer connecting ConvLSTM. The Transformer backbone mainly includes the multi-head attention layer which is used to recovery the CSI of current slot. The ConvLSTM backbone is used to generate the final CSI of current slot considering the recovered  historical CSI as the input. 



Figure 2. AI model for CSI S-T-F compression

Evaluation results for CSI S-T-F compression
In this section, the data set generation, training parameter and evaluation results are provided. For the data generation, a Dense Urban (Macro only) scenario operating on 2GHz FDD spectrum is considered, where 1140 UEs (57 cells, and 20 users per cell) are generated. The number of frequency domain sub-bands is 12. The detailed evaluation assumptions can refer to the Appendix 1. From the collected 570000 samples, 90% are used as training set and 10% as validation set. The input of AI model is eigenvector of the channel matrix. The observation window of previous slots is 4/5ms.
SGCS is used as the intermediate KPI. Based on the trained AI model, the evaluation results on SGCS is provided in table 1 to compare AI-based S-T-F with AI-based S-F, and the Rel-16 eType II codebook is used as the baseline for performance evaluation. 
Table 1. SGCS performance gain comparison for S-T-F, S-F with R16 eType II codebook
	Schemes
Feedback bits
	R16 eType II codebook
	Spatial-Frequency(S-F)
	Spatial-Temporal-Frequency(S-T-F)

	72 bits
	0.735
	0.787 (7.1%)
	0.856 (16.5%)

	132 bits
	0.801
	0.838 (4.6%)
	0.890 (11.1%)

	248 bits
	0.841
	0.885 (5.2%)
	0.915 (8.8%)



From the evaluation results in table 1, AI based CSI S-F compression can achieve about 4.6%~7% SGCS gain than Rel-16 eType II codebook for the same feedback bits, and AI based CSI S-T-F compression can achieve about 8.8%~16.5% SGCS gain than Rel-16 eType II codebook. Therefore, it can be concluded that the AI based CSI S-T-F compression can achieve better SGCS than CSI S-F compression and Rel-16 eType II codebook. 
Observation 1: Both AI based CSI S-T-F compression and AI based CSI S-F compression can achieve better SGCS performance than that of Rel-16 eType II codebook.
· AI based CSI S-T-F compression can achieve over double SGCS gain than AI based CSI S-F compression.
· With the increased of the number of CSI feedback bit, the relative SGCS gain will be decreased for both AI based CSI S-T-F compression and AI based CSI S-F compression.

Conclusion 
In this contribution, we provide our opinions on standard impacts of CSI compression.
Observation 1: Both AI based CSI S-T-F compression and AI based CSI S-F compression can achieve better SGCS performance than that of Rel-16 eType II codebook.
· AI based CSI S-T-F compression can achieve over double SGCS gain than AI based CSI S-F compression.
· With the increased of the number of CSI feedback bit, the relative SGCS gain will be decreased for both AI based CSI S-T-F compression and AI based CSI S-F compression.
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Appendix 1: Evaluation assumption for AI/ML based CSI feedback enhancement
Table 2. SLS assumptions for AI/ML based CSI feedback enhancement 
	Parameter
	Value

	Duplex, Waveform 
	FDD (TDD is not precluded), OFDM 

	Multiple access 
	OFDMA 

	Scenario
	Dense Urban (Macro only) is a baseline. 

	Frequency Range
	2GHz.

	Inter-BS distance
	200m 

	Channel model
	According to the TR 38.901 

	Antenna setup and port layouts at gNB
	32 ports: (8,8,2,1,1,2,8), (dH,dV) = (0.5, 0.8)λ 

	Antenna setup and port layouts at UE
	2RX: (1,1,2,1,1,1,1), (dH,dV) = (0.5, 0.5)λ for (rank 1,2) 


	BS Tx power 
	41 dBm for 10MHz, 44dBm for 20MHz, 47dBm for 40MHz

	BS antenna height 
	25m 

	UE antenna height & gain
	Follow TR36.873 

	UE receiver noise figure
	9dB

	Modulation 
	Up to 256QAM 

	Coding on PDSCH 
	LDPC
Max code-block size=8448bit 

	Numerology
	Slot/non-slot 
	14 OFDM symbol slot

	
	SCS 
	15kHz 

	Number of RBs
	52 for 15 kHz SCS

	Simulation bandwidth 
	10 MHz

	Frame structure 
	Slot Format 0 (all downlink) for all slots

	MIMO scheme
	MU-MIMO

	CSI feedback 
	Feedback assumption at least for baseline scheme
· CSI feedback periodicity (full CSI feedback) :  5 ms, 
· Scheduling delay (from CSI feedback to time to apply in scheduling) :  4 ms

	UE distribution
	- 80% indoor (3km/h), 20% outdoor (30km/h) 

	UE receiver
	MMSE-IRC as the baseline receiver

	Feedback assumption
	Realistic

	Channel estimation
	Ideal channel estimation

	Evaluation Metric
	SGCS

	Baseline for performance evaluation
	Rel-16 eType II Codebook is the baseline.
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