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Introduction
In this contribution, we present system-level simulation results on the benefits of AI/ML-based CSI feedback relative to a Rel-16 Type II baseline. We also discuss aspects related to evaluation methodology. We present our observations on the different types of offline training, multiple vendor scenarios, generalization aspects, and vector quantization.
Evaluation Methodology
While many aspects of the evaluation methodology have been agreed in RAN1#109-e and RAN1#110 for CSI compression using a two-sided model, a few aspects remain. In this section, we discuss our views on these aspects.
Intermediate KPI for rank > 1
In this section, we discuss the intermediate KPI for the case of rank > 1. The intermediate KPI is a metric that measures the AI/ML model accuracy in terms of how well the output CSI matches with the target CSI during inference. 
Consider the case where the target CSI consists of the eigenvectors of the channel. For a given rank K, the eventual performance (for example throughput) depends only on the set of K eigenvectors, not on their order. Any intermediate KPI that is based on per-layer accuracy (such as GCS/SGCS) could have the issue that a layer reordering/mismatch can result in a low KPI value while the eventual performance may still be good.
If the ML model processes multiple eigenvectors together or uses the raw channel as the input, then there is a possibility that the output CSI may be reordered. AI/ML models that operates on one eigenvector at a time may not have a reordering issue. 
Suppose  denotes the channel matrix on resource unit i,  denotes the rank,  denotes the total number of resource units,  denotes the matrix whose columns contain the target CSI, i.e., the eigenvectors corresponding to this channel, and  denotes the output CSI, i.e., the reconstructed version of the eigenvectors. 
Consider the following metrics:
· Chordal distance: This is defined as: 
Chordal Distance =   
Here ||.||F represents the Frobenius norm. When rank is 1, the chordal distance formula reduces to . Therefore, chordal distance may be viewed as a generalization of the SGCS-like metric to higher rank.

· Numerical spectral efficiency gap: This is defined as:
Numerical SE Gap =  
Here, SE(.) denotes the numerical spectral efficiency function which may be defined as follows:

where  denotes the SNR. 

· Numerical spectral efficiency ratio: This is defined as:
Numerical SE Ratio =  
Here, SE(.) denotes the numerical spectral efficiency function which may be defined as follows:

where  denotes the SNR. Numerical SE ratio has the benefit that it is normalized.

Note that while this choice of the SE(.) function corresponds to optimal receiver-side processing, other choices may be considered to account for simpler receiver-side processing such as a linear receiver. 
The above metrics only depend on the set of vectors in the target and output CSI, and not on their ordering. Specifically, if the columns of  and  are not in corresponding order, the above metrics are not affected. 
[bookmark: _Toc115270961][bookmark: _Toc115271060][bookmark: _Toc115271088][bookmark: _Toc115429990][bookmark: _Toc115430010][bookmark: _Toc115430036][bookmark: _Toc115430160][bookmark: _Toc115430242] Chordal distance and metrics based on numerical spectral efficiency are not affected by a mismatch in the order of the eigenvectors between the target CSI and output CSI.
In addition, numerical SE gap is expected to be a good indicator of the spectral efficiency achievable in the end-to-end system-level evaluation. Based on this discussion, we propose the following:
[bookmark: _Toc115271181][bookmark: _Toc115430003][bookmark: _Toc115430174][bookmark: _Toc115430256][bookmark: _Toc115430906]Adopt at least one of the numerical spectral efficiency ratio, numerical spectral efficiency gap, and the chordal distance as an intermediate KPI for rank >= 1.

CSI feedback overhead computation
The evaluation methodology table agreed in RAN1#109-e includes the following item about CSI feedback overhead:
“Maximum overhead (payload size for CSI feedback)for each rank at one feedback instance is the baseline metric for CSI feedback overhead, and companies can provide other metrics.”
The resources required to transmit the CSI feedback payload may depend on the rank indicated by the UE and the CSI feedback scheme and parameters. The actual CSI feedback overhead may be determined by the resource allocation done by the gNB for UCI transmission from the UE. Considering this, there can be two options to calculate the CSI feedback payload size in the evaluation:
· Option 1: Calculate the payload size assuming the maximum possible rank. This corresponds to a gNB that may allocate resources assuming the worst-case scenario of the maximum possible rank.
· Option 2: Calculate the payload size assuming the rank indicated by the UE. This corresponds to a gNB that accurately estimates the rank indicator and allocates resources accordingly.
Option 1 may be a simpler approach but may result in an over-estimation of the resource overhead for CSI feedback if the reported rank indicator is typically lower than the maximum possible rank. Option 2 better captures the overhead required, taking into account the typical channel rank experienced by UEs. For the evaluation of CSI feedback schemes in terms of the tradeoff between performance and feedback overhead, option 2 may be preferable.
[bookmark: _Toc115271182][bookmark: _Toc115430004][bookmark: _Toc115430175][bookmark: _Toc115430257][bookmark: _Toc115430907]For the evaluation of the AI/ML based CSI compression sub use case, the CSI feedback overhead should be computed based on the rank indicated by the UE.
Traffic model
In the context of system-level evaluation, full-buffer traffic model provides useful insights on the system capacity when the load level is high. In a real system, the traffic patterns are difficult to predict and can fluctuate over time. There may be periods of time when the traffic load is very high. The system performance under full-buffer traffic model can be viewed as a way to understand how the system would react in such conditions. Based on this discussion, we propose to include the full-buffer traffic model case as one option for evaluation.
[bookmark: _Toc115271183][bookmark: _Toc115430005][bookmark: _Toc115430176][bookmark: _Toc115430258][bookmark: _Toc115430908]Full-buffer traffic model should also be considered as one option for the evaluation of AI/ML-based CSI feedback enhancement.

The role for ideal channel estimation
The question of whether to consider ideal channel estimation in the evaluation methodology was discussed in RAN1#110. There are two aspects to this question – whether to use ideal channel estimation for generating training datasets, and whether to determine the target CSI based on ideal channel estimate to compute intermediate KPIs. We discuss each of these aspects next. 
Dataset generation
The channel estimation quality of a UE may depend on the channel and interference conditions experienced by that UE, which in turn may depend on the traffic load, scheduling choices, and in particular, the CSI feedback scheme itself. Using ideal channel to generate the training dataset will simplify the simulation effort by separating the dataset generation and model training from the system level evaluation procedure. For studies focused on generalization performance, it may be of interest to construct datasets under different conditions and datasets based on realistic channel estimation may be considered in that context.
[bookmark: _Toc115271184][bookmark: _Toc115430006][bookmark: _Toc115430177][bookmark: _Toc115430259][bookmark: _Toc115430909]For the evaluation of AI/ML-based CSI feedback enhancement, use ideal channel to construct datasets for training as a starting point. 

Target CSI for intermediate KPI computation
The intermediate KPIs for a given CSI feedback scheme are meant to indicate the accuracy of the CSI conveyed by using that scheme. To measure the accuracy of the CSI for a given channel realization, the output CSI reconstructed by the gNB should be compared with the CSI corresponding to the true channel realization. Therefore, the ideal channel should be used to determine the target CSI to compute the intermediate KPI. Using the ideal channel to compute the target CSI also allows to capture any potential gain resulting from the ML model learning to output the CSI of the ideal channel based on the realistic channel.
[bookmark: _Toc115271185][bookmark: _Toc115430007][bookmark: _Toc115430178][bookmark: _Toc115430260][bookmark: _Toc115430910]For the evaluation of AI/ML-based CSI feedback enhancement, when computing intermediate KPIs, use the ideal channel to determine the target CSI.

System-level simulation results
Table 1 shows the simulation assumptions used in the evaluation. 

[bookmark: _Ref115170734][bookmark: _Ref115170739]Table 1: System Simulation Assumptions
	Parameter
	Value

	Carrier Frequency
	4 GHz

	Scenario
	Dense Urban

	Bandwidth
	20 MHz

	Sub-carrier Spacing, Sub-band size
	30 KHz, 4 RBs/Sub-band (13 SB/Bandwidth)

	Antenna setup and port layouts at gNB
	32 ports: (8,8,2,1,1,2,8)
(dH,dV) = (0.5, 0.8)λ

	Antenna setup and port layouts at UE
	4RX: (1,2,2,1,1,1,2)
(dH,dV) = (0.5, 0.5)λ 

	Channel Estimation
	Ideal for CSI-RS, 
Realistic for demod

	Interference Estimation
	Realistic

	eType2 parameter combinations
	PC 1 through 8



Full-buffer traffic model
In this section, we show Full Buffer Results with MU-MIMO. Since per-user served rank in this case would be small, we imposed a rank restriction of 2 for CSI feedback. We compare mean and cell-edge throughputs for ML CSF and eType2 against the number of bits required for PMI feedback on the UL, assuming the grant provided by the gNB allows each UE to request up to a max rank of 2. 
Figure 1 below shows the mean UE throughputs for eType2 (for various parameter combinations) and ML CSF (for various encoder outputs’ latent dimensions). 
[image: ]
[bookmark: _Ref115171201]Figure 1: Mean UE Throughput Vs UL Overhead for PMI feedback. We assume that the gNB configures the UL grant such that each UE can report CSI for up to a maximum rank of 2.
As Figure 1 shows, ML CSF can provide similar throughput performance (average UE throughput of 15.7 Mbps) at roughly 40% lower UL PMI overhead. ML CSF can provide roughly 15 Mbps of throughput at 53% lower UL PMI overhead. At similar UL overhead of 134 bits, ML CSF can provide 9% additional throughput. Figure 2 shows similar plot for cell-edge UEs. ML CSF provides 30% reduction in overhead at a cell-edge UE throughput of around 2.5 Mbps. At a fixed overhead of around 134 bits, it provides 9% additional cell-edge UE throughput. 
[image: ]
[bookmark: _Ref115379289]Figure 2: Cell-edge UE Throughput Vs UL Overhead for PMI feedback.
Figure 3 and Figure 4 below show the intermediate KPI (SGCS) performance gains of ML CSF schemes over eType2 for Layer 1 and Layer 2, respectively. 
[image: ]
[bookmark: _Ref115379309]Figure 3: Intermediate KPI (SGCS) plot for Layer 1: ML CSF and eType2
[image: ]
[bookmark: _Ref115379312]Figure 4: Intermediate KPI (SGCS) plot for Layer 2: ML CSF and eType2
[bookmark: _Toc115430161][bookmark: _Toc115430243] ML CSF provides UL PMI overhead gains of 53% over eType2, at an average throughput of 15 Mbps, and 40% at 15.7 Mbps. At a given UL PMI overhead of around 134 bits, ML CSF provides 9% average throughput gain. At the cell-edge, the gain in overhead is roughly 30% for a throughput of 2.5 Mbps. At an overhead of around 134 bits, ML CSF provides a cell-edge throughput gain of 9%.

Comparison of offline training scenarios
In RAN1#110, the following was agreed regarding AI/ML model training:
	Agreement
In CSI compression using two-sided model use case, the following AI/ML model training collaborations will be further studied:
· [bookmark: _Hlk115410301]Type 1: Joint training of the two-sided model at a single side/entity, e.g., UE-sided or Network-sided.
· Type 2: Joint training of the two-sided model at network side and UE side, repectively.
· Type 3: Separate training at network side and UE side, where the UE-side CSI generation part and the network-side CSI reconstruction part are trained by UE side and network side, respectively.
· Note: Joint training means the generation model and reconstruction model should be trained in the same loop for forward propagation and backward propagation. Joint training could be done both at single node or across multiple nodes (e.g., through gradient exchange between nodes).
· Note: Separate training includes sequential training starting with UE side training, or sequential training starting with NW side training [, or parallel training] at UE and NW
Other collaboration types are not excluded.



In this section, we compare the performance of models trained under these different types of offline training. 
· Type 1 training: 
· Joint training of the two-sided model at a single side/entity (at the same time in a single training session)
[image: ]
Figure 5: Type 1 offline training

· Type 2 training: 
· Joint training of the two-sided model at network side and UE side, respectively (at the same time in a single training session)
[image: Teams
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Figure 6: Type 2 offline training

· Type 3 training: 
· Separate training at network side and UE side, where the UE-side CSI generation part and the network-side CSI reconstruction part are trained by UE side and network side, respectively (in different training sessions, with collaboration outside the training process to ensure compatibility of the two-sided models)
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Description automatically generated]
Figure 7: Type 3 offline sequential training starting with UE side training


[image: ]
Figure 8: Type 3 offline sequential training starting with NW side training
Single UE-side model, single NW-side model
We first consider the case of training the UE-side and NW-side model of a two-sided model involving one UE vendor and one NW vendor. 
Type 2 training
Since Type 1 training is managed by a single entity, the UE-side model structure and NW-side model structure can be chosen in a matched way – for example – both models can be chosen to have a transformer structure. With Type 2 training, if the two model structures are the same, the performance is expected to be essentially the same as Type 1 training. 
However, with Type 2 training, the UE-side and NW-side model structures may not be disclosed but instead kept proprietary. This raises the question of whether it is feasible to achieve good end-to-end ML model performance of the two-sided model if the two structures are not matched – for example – if one side uses a convolutional neural network (CNN) while the other side selects a transformer-based architecture. We present results comparing these scenarios. 
[image: Chart, timeline

Description automatically generated]Figure 9: Type 2 offline training is feasible

	
The result shows that the distributed offline training scenario results in an SGCS value of 0.825 even though the UE-side and NW-side model structures were mismatched (transformer and CNN). The Type 1 training which uses matched structure (CNN) for both UE-side and NW-side model achieves an SGCS of 0.829.
[bookmark: _Toc115429991][bookmark: _Toc115430011][bookmark: _Toc115430037][bookmark: _Toc115430162][bookmark: _Toc115430244] Type 2 offline training of the UE-side model and NW-side model is feasible even if the ML model structure of the UE-side and NW-side models are not matched.

Type 3 (separate) training 
Next, we present results on separate offline training of single-UE encoder and single gNB-decoder. In these results, we assume that both encoder and decoder are transformer NNs. The objective is to compress precoder vector ‘Vtarget’ to latent representation ‘z’ which is used to generate the reconstructed precoder vector ‘Vout’.
We have two flavors of separate training 
· Sequential training starting with UE-side training:  In this approach, UE-encoder model is trained first and it is used to generate a training dataset (e.g., (z,Vtarget)). The gNB-decoder is trained based on this dataset using supervised learning. For example, gNB-decoder is trained by minimizing the cosine similarity between ‘Vtarget’ and output of gNB-decoder.
· Sequential training starting with NW-side training:  In this approach, the UE-side vendor provides a training dataset to the gNB-side training entity comprising the target CSI Vtarget. The gNB-decoder model is then trained and it is used to generate a training dataset (e.g., (z,Vtarget)). The UE-encoder is trained based on this dataset using supervised learning. For example, UE-encoder is trained to match ‘z’ and the output of UE-encoder.

Figure 10 shows the SGCS metric for UE-first separate training, gNB-first separate training, and Type 1 (Centralized) training baseline. The results show that UE-first separate training achieves almost same performance as Type 1 training. Additionally, gNB-first approach leads to lower performance compared to UE-first approach, which can be attributed to the fact that UE-encoder is trained by minimizing the loss in latent space, and not by minimizing the end-to-end loss. 
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Description automatically generated]
[bookmark: _Ref115430354]Figure 10: Separate offline training (SGCS)

[bookmark: _Toc115429992][bookmark: _Toc115430012][bookmark: _Toc115430038][bookmark: _Toc115430163][bookmark: _Toc115430245] Type 3 offline training of the UE-side model and NW-side model is feasible and has a similar performance as compared to Type 1 training of the two-sided model.
Generalization to multiple vendor scenario
We next discuss the aspect of generalization to a scenario with multiple models corresponding to different vendors. Specifically, we consider the case where a gNB interacts with multiple UE-side models. One option could be to develop a different NW-side model corresponding to each UE-side model. However, this comes with the need to switch among the models. To address this, we consider the problem of training a common NW-side model that is compatible with multiple UE-side models.
Type 2 training
In Type 2 offline training approach, the common NW-side model and UE-side models will be trained at different entities at the same time. The training entity of the NW-side model will interact with the training entities of each of the UE-side models during the training session to exchange training related information. The setup is shown for the case of 3 UE-side models in Figure 11:
[image: Graphical user interface, application, Teams

Description automatically generated]
[bookmark: _Ref115430375]Figure 11: Type 2 offline training of a single NW-side model and multiple UE-side models
We evaluated the ML-model performance for the case where the UE-side model structures are chosen to be transformer-based for the first two models and CNN-based for the third model. The resulting SGCS performance for the three UE-side models when working with a common NW-side model (transformer-based) is shown below in comparison to the case where a separate NW-side model was trained corresponding to each of the UE-side models. Figure 12 shows that the performance of the models is not affected by using a common NW-side model.


[image: ]
[bookmark: _Ref115430397]Figure 12: Type 2 training: effect of common NW-side model for multiple UE-side models
[bookmark: _Toc115429993][bookmark: _Toc115430013][bookmark: _Toc115430039][bookmark: _Toc115430164][bookmark: _Toc115430246] It is feasible to use Type 2 offline training to train a common NW-side model together with separate UE-side models without any performance impact when compared to training a separate NW-side model for each UE-side model.

Type 3 training 
Next, we present results on the generalization of Type 3 training to multiple UE-side models. We consider the UE-first sequential training approach, where each UE-side model is trained first and the UE-side generates a training dataset which is shared with NW-side. A shared NW-side model is trained based on datasets collected from multiple UEs. 
There are different ways to design the shared NW-side model. In this simulation, we consider a shared NW-side model with UE specific customized layers. The UE specific customized layers are very simple and add little complexity to the original NW decoder.
In our simulation setup, we consider a shared transformer-based decoder at NW-side, a transformer-based encoder at UE1, and a CNN-based encoder at UE2. Each UE-side encoder is trained separately. Then, each UE-side generates a training dataset which is shared with NW-side, e.g., UE1 generates (z, Vtarget)UE1 and UE2 generates (z,Vtarget)UE2.  
Figure 13 shows the SGCS metric for separate training of two UE-encoders and a shared NW-decoder. We compare the separate training results with one-to-one centralized (Type 1) training of one UE encoder with NW decoder. Results show that separate training achieves comparable performance as one-to-one Type 1 training. 
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[bookmark: _Ref115430413]Figure 13: Type 3 (separate) training for common NW-side model and multiple UE-side models
[bookmark: _Toc115429994][bookmark: _Toc115430014][bookmark: _Toc115430040][bookmark: _Toc115430165][bookmark: _Toc115430247] Type 3 (separate) offline training of a shared NW-side decoder model for multiple UE-side encoder models is feasible and has a similar performance as compared to Type 1 training of a separate NW-side model for each UE-side model.

Type 3 training with vector quantization
In this section, we present results on Type 3 (separate) training in a multi-vendor setup with vector quantization. We focus on offline sequential UE-first training where the UE-side training entity trains the UE-side model first and generates a training dataset which is shared with NW-side for training the NW-side model. The objective is to compress precoder vector ‘Vtarget’ to a quantized latent representation ‘zq’ which is used to generate the reconstructed precoder vector ‘Vout’.
UE-side model training
There are multiple approaches for training the UE-side model and generating the separate training dataset. In particular, we have  
· Approach 1: UE server trains the encoder without quantization and shares the dataset (z, Vtarget)
· Vector quantizer (VQ) is trained with the decoder at NW-side training entity
· Approach 2: UE server trains the encoder with quantization
· UE server shares the dataset (ze, Vtarget), where ze is the input to VQ
· VQ is trained with the decoder at NW-side training entity
· UE server shares the dataset (zq, Vtarget), where zq is the output of VQ
Table 2 illustrates the performance of Type 3 training for different approaches in training a CNN encoder and a CNN decoder with vector quantization. We observe that training UE encoder without quantization may lead to some performance loss when compared with encoder training with quantization. For approach 2, we observe that separate training based on (ze, Vtarget) or (zq, Vtarget) leads to almost same performance. 
[bookmark: _Ref115430477]Table 2: Comparison of different approaches for separate training with VQ for a single UE
	Enc
	Dec
	Separate training dataset
	NN Params
	SGCS

	
	
	
	z-dim
	Quant
	Linear
	dB

	CNN
	CNN
	(ze, Vtarget)
	64 
	VQ with total payload 128 bits
	0.7794
	-6.564

	
	
	(zq, Vtarget)
	
	
	0.7788
	-6.552

	
	
	(z, Vtarget)
	
	
	0.768
	-6.345



[bookmark: _Toc115429995][bookmark: _Toc115430015][bookmark: _Toc115430041][bookmark: _Toc115430166][bookmark: _Toc115430248] Training UE encoder without quantization and generating the separate training based on this encoder may lead to some performance degradation compared to encoder training with quantization.
 
Type 3 (separate) training results for multiple UE vendors
Next, we consider a shared NW-side model which is trained based on datasets collected from multiple UE vendors. There are different ways to design the shared NW decoder. In this simulation, we assume that UE encoder is trained with a VQ block and NW trains or stores UE-specific VQ codebooks. We consider a shared NW decoder and personalization is achieved via the UE-specifc VQ codebook. In particular, we consider a shared transformer-based decoder at NW-side, a transformer-based encoder at UE-vendor 1, and a CNN-based encoder at UE-vendor 2. Each UE-side encoder is trained separately. Then, each UE-side generates a training dataset which is shared with NW-side, e.g., UE-vendor 1 generates (ze, Vtarget)UE1 or (zq, Vtarget)UE1 and UE-vendor 2 generates (ze, Vtarget)UE2 or (zq, Vtarget)UE2.
Table 3 shows the performance of separate training with VQ for two UE-vendors and the corresponding joint training baseline of one UE-vendor encoder and NW decoder. Results show that separate training with a shared decoder achieves same performance as joint training baselines (i.e., Type 1 training). 
[bookmark: _Ref115430498]Table 3: Results on multi-vendor separate training with VQ
	UE-Enc
	gNB-Dec
	UE-vendor 
	NN Params
	Train type
	SGCS

	
	
	
	z-dim
	Quant
	
	Linear
	dB

	TF
	TF
	 
	64

	 VQ with total payload 128 bits
	Joint 1-to-1 baseline
	0.8062
	-7.126

	CNN
	TF
	
	
	
	
	0.7854
	-6.684

	TF
	TF common
	UE-vendor 1
	
	
	Separate 
(ze, Vtarget)
	0.8049
	-7.097

	CNN
	
	UE-vendor 2
	
	
	
	0.7881
	-6.739



[bookmark: _Toc115429996][bookmark: _Toc115430016][bookmark: _Toc115430042][bookmark: _Toc115430167][bookmark: _Toc115430249] Separate training with VQ for multiple vendors achieves almost the same performance as Type 1 training.

Generalization studies
The following agreements were made in RAN1#110 related to the aspect of generalization of the ML model [2]:
	Agreement
The following cases are considered for verifying the generalization performance of an AI/ML model over various scenarios/configurations as a starting point:
· Case 1: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model performs inference/test on a dataset from the same Scenario#A/Configuration#A
· Case 2: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model performs inference/test on a different dataset than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B
· Case 3: The AI/ML model is trained based on training dataset constructed by mixing datasets from multiple scenarios/configurations including Scenario#A/Configuration#A and a different dataset than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B, and then the AI/ML model performs inference/test on a dataset from a single Scenario/Configuration from the multiple scenarios/configurations, e.g.,  Scenario#A/Configuration#A, Scenario#B/Configuration#B, Scenario#A/Configuration#B.
· Note: Companies to report the ratio for dataset mixing
· Note: number of the multiple scenarios/configurations can be larger than two
· FFS the detailed set of scenarios/configurations
· FFS other cases for generalization verification, e.g.,
· Case 2A: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model is updated based on a fine-tuning dataset different than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B. After that, the AI/ML model is tested on a different dataset than Scenario#A/Configuration#A, e.g., subject to Scenario#B/Configuration#B, Scenario#A/Configuration#B.

Agreement
For CSI enhancement evaluations, to verify the generalization performance of an AI/ML model over various scenarios, the set of scenarios are considered focusing on one or more of the following aspects as a starting point:
· Various deployment scenarios (e.g., UMa, UMi, InH)
· Various outdoor/indoor UE distributions for UMa/UMi (e.g., 10:0, 8:2, 5:5, 2:8, 0:10)
· Various carrier frequencies (e.g., 2GHz, 3.5GHz)
· Other aspects of scenarios are not precluded, e.g., various antenna spacing, various antenna virtualization (TxRU mapping), various ISDs, various UE speeds, etc.
· Companies to report the selected scenarios for generalization verification

Agreement
For CSI enhancement evaluations, to verify the generalization/scalability performance of an AI/ML model over various configurations (e.g., which may potentially lead to different dimensions of model input/output), the set of configurations are considered focusing on one or more of the following aspects as a starting point:
· Various bandwidths (e.g., 10MHz, 20MHz) and/or frequency granularities, (e.g., size of subband)
· Various sizes of CSI feedback payloads, FFS candidate payload number
· Various antenna port layouts, e.g., (N1/N2/P) and/or antenna port numbers (e.g., 32 ports, 16 ports)
· Other aspects of configurations are not precluded, e.g., various numerologies, various rank numbers/layers, etc.
· Companies to report the selected configurations for generalization verification
· Companies are encouraged to report the method to achieve generalization over various configurations to achieve scalability of the AI/ML input/output, including pre-processing, post-processing, etc.



In this section, we present results and discussion on the generalization performance of ML models for the CSI compression sub-use case.
Generalization to different scenarios
In this section, we present results on our study on the generalization performance of the two-sided AI/ML model for CSI compression across indoor and outdoor scenarios. Consider the following scenarios:
· Scenario A: Dense urban layout, indoor UEs
· Scenario B: Dense urban layout, outdoor UEs
We present results for the following 3 cases that are aligned with the agreement above:
· Case 1: 
· (A  A): The AI/ML model is trained based on a training dataset from Scenario A, and then the AI/ML model performs inference on a dataset from different UEs in the same Scenario A.
· (B  B): The AI/ML model is trained based on a training dataset from Scenario B, and then the AI/ML model performs inference on a dataset from different UEs in the same Scenario B.
· Case 2: 
· (A  B): The AI/ML model is trained based on a training dataset from Scenario A, and then the AI/ML model performs inference on a dataset from UEs in a different Scenario B.
· (B  A): The AI/ML model is trained based on a training dataset from Scenario B, and then the AI/ML model performs inference on a dataset from UEs in a different Scenario A.
· Case 3: The AI/ML model is trained based on a training dataset constructed by mixing the datasets from Scenarios A and B (mixing ratio: 80% indoor, 20% outdoor).
· (A-B mix  A): the AI/ML model performs inference on a dataset from UEs in scenario A.
· (A-B mix  B): the AI/ML model performs inference on a dataset from UEs in scenario B.

The following table presents the SGCS values for each case above for rank 1 (single layer):
Table 4: Generalization across indoor and outdoor scenarios
	Case
	Train  Test
A = Dense urban indoor
B = Dense urban outdoor
	SGCS

	1
	A  A
	0.771

	
	B  B
	0.897

	2
	A  B
	0.903

	
	B  A
	0.696

	3
	A-B mix  A
	0.780

	
	A-B mix  B
	0.912



Based on the results, the ML model that is trained on a mix of datasets from both scenarios is able to generalize well across both scenarios. During inference, in each of the two scenarios considered (indoor and outdoor), the performance of this model is comparable to the performance of a model that was trained only on the same scenario used for inference. 
[bookmark: _Toc115270962][bookmark: _Toc115271061][bookmark: _Toc115271089][bookmark: _Toc115429997][bookmark: _Toc115430017][bookmark: _Toc115430043][bookmark: _Toc115430168][bookmark: _Toc115430250] Training on a dataset constructed by mixing the datasets of multiple scenarios enables the same ML model to perform well during inference in each of the scenarios.
If a model is trained on a dataset from one scenario, it may not perform well during inference on a dataset from a different scenario. For example, from the result above, the model trained on the outdoor dataset gives an SGCS of 0.696 when used for inference on indoor dataset. In comparison, the model trained on the matched indoor scenario dataset gives a better SGCS of 0.771. The reason for the degradation in performance when the dataset is not from the same scenario may be attributed to the fact that the data samples in the indoor scenario may not be typical in terms of the data distribution of the outdoor training dataset. This points to the need to study mechanisms to identify such an occurrence. 
[bookmark: _Toc115271186][bookmark: _Toc115430008][bookmark: _Toc115430179][bookmark: _Toc115430261][bookmark: _Toc115430911]Study mechanisms to monitor the performance of the AI/ML model to detect whether the data observed during inference is outside the distribution of the dataset used to train the model.

Generalization to variable configurations
In this section, we present results on generalization ability of AI models to support variable payload, subband and antenna configurations. In NR, the number of subbands can be ranging from 1 to 19, and the subbands can be contiguous or non-contiguous. Also, in Type I, Type II and eType II codebooks, there are 13 antenna configurations with respect to number of antenna (CSI-RS) ports and the layout (N1 array in first dimension, N2 array in second dimension). In legacy PMI reporting, these variable configurations are supported by generating respective spatial compression matrix and frequency compression matrix (or by reporting PMI subband-by-subband in Type I/II codebook). In AI-based CSI feedback, the most straightforward way is to train specific AI model using dataset generated based on the specific configuration. In this sense, a huge amount of model needs to be trained and stored in server or device, and frequent switching among models maybe required per configuration and/or triggering. Thus, it is meaningful to study generalization ability of AI models to support variable configurations.
Training with mixed dataset
To achieve a good generalization ability, in the training phase, we mixed the dataset generated under variable configurations and fed them into the AI model, so that AI model would see sufficient variations in the training.
Exercise 1: Variable subband configurations with same payload
In this example, we consider a transformer-based AI model, and 2 training options. 
· NN0: The first option is only training the AI model using data sample with full subband configuration. This NN is considered as a baseline. 
· NN1: The second option is training the AI model using random subband patterns in addition to the full subband case. Arbitrary patterns are considered, e.g., randomly select N3 subbands from total 12 subbands where N3 ranging between 3 and 11. 
As shown in Figure 14, 3 cases are considered in testing, full-subband configuration (SB 0-11), second half of the total subband (SB 6-11), and random patterns. One can see that NN1 achieves robust performance across all testing cases. For the full subband configuration testing, NN2 even outperforms the specifically trained NN0. This implies that training mixed datasets could benefit each other.
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[bookmark: _Ref115430531]Figure 14: Results of Exercise 1
Exercise 2: Variable subband configurations with variable payload
In this example, we also consider a transformer-based AI model, and 4 training options. 
· NN0: The first option is only training the AI model using data sample with full subband configuration. This NN is considered as a baseline. 
· NN1: The second option is trained with the same data set as NN0. The difference is that two payload configurations are considered (i.e., encoder output dimension = 32 and 64) and are trained at the same time.
· NN2: The third option is training using contiguous patterns. The number of subbands are randomly generated between 3 and 12. In this case, if Nsb > 6, we consider encoder output dimension = 64, while 32 is considerd if Nsb <=6.
· NN3: The fourth option is similar to the third option except that arbitrary subband pattern is considered in the training. Still two payload configurations are applied per number of subbands.
Results of 5 testing cases are presented in Figure 15, i.e., full-subband configuration, contiguous subband configurations with Nsb > 6 and Nsb <= 6, arbitrary patterns with Nsb > 6 and Nsb <= 6. For full-subband case, one can see that NN1 (dimension=64) outperforms the baseline NN0 (dimension=64) because of the concurrent training of two payloads (dimension=64 and dimension = 32). The performance can be further improved by introducing contiguous patterns (NN2) and random patterns (NN3).
Besides, training using arbitrary pattern (NN3) yields good results for all cases. Training with contiguous pattern (NN2) yields good results for all contiguous case. Moreover, smaller subband configuration (Nsb <= 6) yields similar performance as the larger subband configuration (Nsb > 6) saving half payload.
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[bookmark: _Ref115430552]Figure 15: Testing results of Exercise 2
[bookmark: _Toc115270963][bookmark: _Toc115271062][bookmark: _Toc115271090][bookmark: _Toc115429998][bookmark: _Toc115430018][bookmark: _Toc115430044][bookmark: _Toc115430169][bookmark: _Toc115430251] Training with mixed variable subband configurations achieve robust performance across all possible subband configurations including arbitrary number of subbands and arbitrary subband patterns.
[bookmark: _Toc115270964][bookmark: _Toc115271063][bookmark: _Toc115271091][bookmark: _Toc115429999][bookmark: _Toc115430019][bookmark: _Toc115430045][bookmark: _Toc115430170][bookmark: _Toc115430252] Training with mixed variable subband configurations outperforms specific training with specific subband configuration.
[bookmark: _Toc115270965][bookmark: _Toc115271064][bookmark: _Toc115271092][bookmark: _Toc115430000][bookmark: _Toc115430020][bookmark: _Toc115430046][bookmark: _Toc115430171][bookmark: _Toc115430253] Smaller number of subbands can achieve comparable results to the larger number of subbands with half of reporting payload.
Exercise 3: Variable gNB antenna configurations
In this example, we consider a transformer-based AI model, and 2 training options. 
· NN0: The first option is training specialized AI model using data sample with 2x8, 4x4 and 2x4 antenna configuration specifically. This set of NNs are considered as a baseline. 
· NN1: The second option is training a common AI model using mixed data set of 2x8, 4x4 and 2x4 antenna configurations. 
Results of 2 testing case are presented in Figure 16.  Similar observation can be drawn as Exercise 1 that training with mixed datasets benefit each other and outperforms the specific training case (NN0).
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[bookmark: _Ref115430592]Figure 16: Testing results of Exercise 3
[bookmark: _Toc115270966][bookmark: _Toc115271065][bookmark: _Toc115271093][bookmark: _Toc115430001][bookmark: _Toc115430021][bookmark: _Toc115430047][bookmark: _Toc115430172][bookmark: _Toc115430254]Training with mixed antenna configuration achieves robust performance across all antenna configurations in the training. 
[bookmark: _Toc115270967][bookmark: _Toc115271066][bookmark: _Toc115271094][bookmark: _Toc115430002][bookmark: _Toc115430022][bookmark: _Toc115430048][bookmark: _Toc115430173][bookmark: _Toc115430255]Training with mixed antenna configuration outperforms specific training with specific antenna configuration.
[bookmark: _Toc115271187][bookmark: _Toc115430009][bookmark: _Toc115430180][bookmark: _Toc115430262][bookmark: _Toc115430912]For the evaluation of generalization of AI model to variable configurations, consider the following in data set generation:
· For subband generalization, generate N>=1 random patterns (either contiguous or non-contiguous) for each data sample in the training set. The full subband pattern can be used in addition.
· For antenna configuration generalization, mix data sample generated based on M antenna configuration with equal proportion.
· Same configuration in the testing set and training set

Conclusions
In this document, we have discussed various evaluation results for the CSI feedback enhancement use case that show the benefits of a machine learning based approach for CSI feedback. We made the following observations:
Observation 1:	Chordal distance and metrics based on numerical spectral efficiency are not affected by a mismatch in the order of the eigenvectors between the target CSI and output CSI.
Observation 2:	ML CSF provides UL PMI overhead gains of 53% over eType2, at an average throughput of 15 Mbps, and 40% at 15.7 Mbps. At a given UL PMI overhead of around 134 bits, ML CSF provides 9% average throughput gain. At the cell-edge, the gain in overhead is roughly 30% for a throughput of 2.5 Mbps. At an overhead of around 134 bits, ML CSF provides a cell-edge throughput gain of 9%.
Observation 3:	Type 2 offline training of the UE-side model and NW-side model is feasible even if the ML model structure of the UE-side and NW-side models are not matched.
Observation 4:	Type 3 offline training of the UE-side model and NW-side model is feasible and has a similar performance as compared to Type 1 training of the two-sided model.
Observation 5:	It is feasible to use Type 2 offline training to train a common NW-side model together with separate UE-side models without any performance impact when compared to training a separate NW-side model for each UE-side model.
Observation 6:	Type 3 (separate) offline training of a shared NW-side decoder model for multiple UE-side encoder models is feasible and has a similar performance as compared to Type 1 training of a separate NW-side model for each UE-side model.
Observation 7:	Training UE encoder without quantization and generating the separate training based on this encoder may lead to some performance degradation compared to encoder training with quantization.
Observation 8:	Separate training with VQ for multiple vendors achieves almost the same performance as Type 1 training.
Observation 9:	Training on a dataset constructed by mixing the datasets of multiple scenarios enables the same ML model to perform well during inference in each of the scenarios.
Observation 10:	Training with mixed variable subband configurations achieve robust performance across all possible subband configurations including arbitrary number of subbands and arbitrary subband patterns.
Observation 11:	Training with mixed variable subband configurations outperforms specific training with specific subband configuration.
Observation 12:	Smaller number of subbands can achieve comparable results to the larger number of subbands with half of reporting payload.
Observation 13:	Training with mixed antenna configuration achieves robust performance across all antenna configurations in the training.
Observation 14:	Training with mixed antenna configuration outperforms specific training with specific antenna configuration.

We have the following proposals:
Proposal 1:	Adopt at least one of the numerical spectral efficiency ratio, numerical spectral efficiency gap, and the chordal distance as an intermediate KPI for rank >= 1.
Proposal 2:	For the evaluation of the AI/ML based CSI compression sub use case, the CSI feedback overhead should be computed based on the rank indicated by the UE.
Proposal 3:	Full-buffer traffic model should also be considered as one option for the evaluation of AI/ML-based CSI feedback enhancement.
Proposal 4:	For the evaluation of AI/ML-based CSI feedback enhancement, use ideal channel to construct datasets for training as a starting point.
Proposal 5:	For the evaluation of AI/ML-based CSI feedback enhancement, when computing intermediate KPIs, use the ideal channel to determine the target CSI.
Proposal 6:	Study mechanisms to monitor the performance of the AI/ML model to detect whether the data observed during inference is outside the distribution of the dataset used to train the model.
Proposal 7:	For the evaluation of generalization of AI model to variable configurations, consider the following in data set generation:
·  For subband generalization, generate N>=1 random patterns (either contiguous or non-contiguous) for each data sample in the training set. The full subband pattern can be used in addition.
· For antenna configuration generalization, mix data sample generated based on M antenna configuration with equal proportion.
· Same configuration in the testing set and training set
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