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1. Introduction 
In RAN#94e, the Rel-18 SID for Artificial Intelligence (AI)/Machine Learning (ML) for NR air interface was approved [1], the objective of this study item is to study the 3GPP framework for AI/ML for air-interface corresponding to each target use case regarding aspects such as performance, complexity, and potential specification impact. In this SID, one specific use case for AI/ML is CSI feedback enhancement.
	Use cases to focus on: 
· Initial set of use cases includes: 
· CSI feedback enhancement, e.g., overhead reduction, improved accuracy, prediction [RAN1]
· Beam management, e.g., beam prediction in time, and/or spatial domain for overhead and latency reduction, beam selection accuracy improvement [RAN1]
· Positioning accuracy enhancements for different scenarios including, e.g., those with heavy NLOS conditions [RAN1] 
· Finalize representative sub use cases for each use case for characterization and baseline performance evaluations by RAN#98
· The AI/ML approaches for the selected sub use cases need to be diverse enough to support various requirements on the gNB-UE collaboration levels


In this contribution, we present our views on the evaluation methodology and KPI for AI/ML based CSI feedback enhancement and some initial evaluation results are also provided here.
2. [bookmark: _Hlk102038525]Evaluation methodology and preliminary results
[bookmark: _Hlk102052330]AI based CSI feedback enhancement is aimed at CSI reporting overhead reduction and accuracy improvement. In this section, we show our specific evaluation methodology, KPI and preliminary results for the sub use case of spatial-frequency domain CSI compression using two-sided AI model. 
[bookmark: _Hlk102033954]As shown in Fig.1, for the use case of AI based CSI enhancement, UE obtain the joint eigenvectors form the channel matrix H, and then compress the eigenvectors to a bitstream via encoder and quantization. After receiving the compressed bitstream, gNB will recover the feedback bits to the eigenvectors through dequantization and decoder. 



Fig.1 AI based CSI feedback framework

2.1 KPI for the use case of CSI compression

2.1.1 Metrics for Performance Evaluation of AI-based CSI Feedback
[bookmark: _Hlk102041343][bookmark: _Hlk102041382]For the evaluation of AI based CSI enhancement, we use the square of generalized cosine similarity (SGCS) as the criterion to evaluate the difference between recovered channel and the original channel.
The SGCS is defined as:




wherein, the  is the original eigenvector of the n-th suband, the  is the recovered eigenvector of the n-th suband (n=1, …, N).
Besides, in RAN1#109-e and RAN1#110 meeting [2] [3], for rank > 1 cases, the potential KPIs for evaluation metric were discussed:
	Agreement
For the evaluation of the AI/ML based CSI feedback enhancement, as a starting point, take the intermediate KPIs of GCS/SGCS and/or NMSE as part of the ‘Evaluation Metric’ to evaluate the accuracy of the AI/ML output CSI
· For GCS/SGCS, 
· FFS: how to calculate GCS/SGCS for rank>1
· FFS: whether GCS or SGCS is adopted
· FFS other metrics, e.g., equivalent MSE, received SNR, or numerical spectral efficiency gap.

Agreement
For the evaluation of the AI/ML based CSI feedback enhancement, if the GCS/SGCS is adopted as the intermediate KPI as part of the ‘Evaluation Metric’, between GCS and SGCS, SGCS is adopted

Agreement
For the evaluation of the AI/ML based CSI feedback enhancement, if the GCS/SGCS is adopted as the intermediate KPI as part of the ‘Evaluation Metric’ for rank>1 cases, companies to report the GCS/SGCS calculation/extension methods, including:
     Method 1: Average over all layers
o    Note:  is the eigenvector of the target CSI at resource unit i and K is the rank. is the  output vector of the output CSI of resource unit i.  is the total number of resource units.  denotes the average operation over multiple samples.

     Method 2: Weighted average over all layers
o    Note: Companies to report the formula (e.g., whether normalization is applied for eigenvalues)
     Method 3: GCS/SGCS is separately calculated for each layer (e.g., for K layers, K GCS/SGCS values are derived respectively, and comparison is performed per layer)
       Other methods are not precluded
       FFS: Further down-selection among the above options or take one/a subset of the above methods as baseline(s).
 


In Method 1 and Method 2, the idea is generally to average the GCSs/SGCSs over all layers to one single GCS/SGCS. We think the similarity between output CSI and target CSI may not be shown clearly after these kinds of process, hence, Method 3 is our preference. The SGCS is separately calculated for each layer and the comparison is performed per layer.
Proposal 1: For rank > 1 cases, SGCS is separately calculated for each layer.

2.2 Data set for the use case of CSI compression
[bookmark: _Hlk111042257]Statistical channels used in link-level simulation or system level simulation can be used to construct the data set for the evaluation of AI based CSI feedback. In this contribution, the UMA channel and CDL-C-30 channel in TR 38.901 are both used to generate channel data. The eigenvectors of K subbands are used for model training, model validation and model testing.
The detail evaluation assumptions are shown in Table 1 and Table 2:
Table 1.  Simulation parameters for UMA channel
	Parameter
	Value

	Duplex, Waveform
	FDD (TDD is not precluded), OFDM

	Multiple access
	OFDMA

	Scenario
	Dense Urban (Macro only)
19 cells, 3 sectors for each cell

	Frequency Range
	2.1GHz

	Inter-BS distance
	200m

	Channel model
	According to TR 38.901

	Antenna setup and port layouts at gNB
	32 ports: (4,4,2,1,1,4,4), (dH,dV) = (0.5, 0.8)λ


	Antenna setup and port layouts at UE
	4RX: (1,2,2,1,1,1,2), (dH,dV) = (0.5, 0.5)λ


	BS Tx power
	41 dBm for 10MHz, 44dBm for 20MHz, 47dBm for 40MHz

	BS antenna height
	25m

	UE antenna height & gain
	Follow TR36.873

	UE receiver noise figure
	9dB

	Modulation
	Up to 256QAM

	Coding on PDSCH
	LDPC
Max code-block size=8448bit

	Numerology
	Slot/non-slot
	14 OFDM symbol slot

	
	SCS
	15kHz

	Simulation bandwidth
	20MHz

	Frame structure
	Slot Format 0 (all downlink) for all slots

	MIMO scheme
	SU-MIMO

	MIMO layers
	Rank 1

	UE distribution
	80% indoor (3km/h), 20% outdoor (30km/h)

	Channel estimation
	ideal channel estimation

	dataset
	150 drops, 1140UE/drop, 171k samples



Table 2.  Simulation parameters for CDL-C-30 channel
	Parameter
	Value

	Carrier Frequency
	3.5GHz

	Bandwidth
	10MHz

	Subcarrier spacing
	15KHz

	RB number
	48

	Subband number
	12

	BS antenna number
	32

	UE antenna number
	4

	Channel Model
	CDL-C

	UE speed
	3km/h

	Delay spread
	30ns

	Rank
	1

	UE number
	1000

	Slot number
	100



2.3 Preliminary results for the use case of CSI compression
The EVCsiNet model based on [4] and a Transformer based model are used in AI model training. Besides, scalar quantization is used in the evaluation. The AI models apply SGCS as its loss function. Preliminary results for the use case of CSI compression are shown in this section.

2.3.1 AI model performance on CDL-C channel and UMA channel
The square of generalized cosine similarity (SGCS) between recovered eigenvectors and original eigenvectors under different number of feedback bits in UMA scenario and CDL-C channel are shown below. Besides, the SGCS for Type-I and enhanced Type-II codebook under approximate feedback bits are also given here for comparison.
Table 3. The SGCS of different CSI approaches in CDL-C channel
	Approach
	Feedback bits
	SGCS

	Type-I
	32
	0.626

	EVCsiNet
	32
	0.913

	Transformer
	32
	0.900

	e-Type-II, L=2
	49
	0.840

	EVCsiNet
	48
	0.941

	Transformer
	48
	0.942

	e-Type-II, L=4
	128
	0.941

	EVCsiNet
	120
	0.977

	Transformer
	120
	0.980



Table 4. The SGCS of different CSI approaches in UMA channel 
	Approach
	Feedback bits
	SGCS

	EVCsiNet
	32
	0.781

	Transformer
	32
	0.814

	EVCsiNet
	48
	0.810

	Transformer
	48
	0.843

	EVCsiNet
	120
	0.867

	Transformer
	120
	0.900



According the evaluation results above, it can be observed that:
· With the same or similar number of feedback bits, AI based approach could obtain 4%~40% performance gain over traditional codebook in the square of generalized cosine similarity; 
· With similar performance in the square of generalized cosine similarity, AI based approach could reduce 30%~60% feedback bits.
Observation 1: Compared with traditional codebook, AI/ML based CSI feedback schemes could improve the CSI accuracy with the same or similar number of feedback bits.
Observation 2: Compared with traditional codebook, AI/ML based CSI feedback schemes could reduce CSI feedback bits when achieving the same CSI or higher accuracy.

2.3.2 Separate Training 
In RAN1#110 meeting [3], for the AI/ML model training collaborations types, we have the following agreement:
	Agreement
In CSI compression using two-sided model use case, the following AI/ML model training collaborations will be further studied:
· Type 1: Joint training of the two-sided model at a single side/entity, e.g., UE-sided or Network-sided.
· Type 2: Joint training of the two-sided model at network side and UE side, repectively.
· Type 3: Separate training at network side and UE side, where the UE-side CSI generation part and the network-side CSI reconstruction part are trained by UE side and network side, respectively.
· Note: Joint training means the generation model and reconstruction model should be trained in the same loop for forward propagation and backward propagation. Joint training could be done both at single node or across multiple nodes (e.g., through gradient exchange between nodes).
· Note: Separate training includes sequential training starting with UE side training, or sequential training starting with NW side training [, or parallel training] at UE and NW
· Other collaboration types are not excluded. 



In this section, the initial results of separate training (Type 3) is provided for the use case of CSI compression in spatial and frequency domain. In our simulation, joint training is adopted as the baseline and for joint training, 154K samples are used for training and 17K samples are used for testing. And the number of payloads in these simulation results is 120 bits.
Table 5. The SGCS of joint training and separate training
	Model
	SGCS

	
	154K
	100K
	50K
	10K
	5K

	Case1: Joint Training
	0.916
	/
	/
	/
	/

	Case2: Separate Training: encoder1 + decoder
(Transformer + Transformer)
	0.914
	0.914
	0.911
	0.899
	0.889

	Case3: Separate Training: encoder2 + decoder
(EVCsiNet + Transformer)
	0.879
	0.874
	0.862
	0.840
	0.828

	Case4: Separate Training: encoder3 + decoder
(MLP-Mixer + Transformer)
	0.909
	0.907
	0.902
	0.858
	0.832


In our simulation, for case 1, the encoder and decoder are joint trained and the AI algorithm is based on transformer. For case 2, 3 and 4, the decoder part at network side is the same as that of case 1, and the encoder parts at the UE side are trained based on Transformer, EVCsiNet and MLP-Mixer [5] respectively using different number of dataset samples, i.e., 154K, 100K, 50K, 10K, 5K. And the SGCS performances in these cases are also shown above.
According the evaluation results above, it can be observed that:
· [bookmark: _Hlk115286186]With large enough dataset samples at UE side, separate training could achieve similar SGCS as joint training;
· When the number of dataset samples at UE side decreases, the SGCS of separate training will also decrease;
· [bookmark: _Hlk115450851][bookmark: _Hlk115452235]When the generation part at UE side and the reconstruction part at network side have the same AI algorithms or model structures, to ensure separate training achieve similar SGCS as joint training, the requirement of number of dataset samples at UE side is much lower than the requirement when the AI algorithm or model structure is different between UE side and network side.
Observation 3: With large enough dataset samples at UE side, separate training could achieve similar SGCS as joint training.
Observation 4: When the number of dataset samples at UE side decreases, the SGCS of separate training will also decrease.
[bookmark: _GoBack]Observation 5: When the generation part at UE side and the reconstruction part at network side have the same AI algorithms or model structures, to ensure separate training achieve similar SGCS as joint training, the requirement of number of dataset samples at UE side is much lower than the requirement when the AI algorithm or model structure is different between UE side and network side.

2.3.3 AI model complexity and memory storage
In RAN1#109-e meeting and RAN1#110 meeting [2] [3], for the model complexity and memory storage evaluation/ comparison, we have the following agreements:
	Agreement 
For the evaluation of the AI/ML based CSI feedback enhancement, Floating point operations (FLOPs) is adopted as part of the ‘Evaluation Metric’, and reported by companies.

Agreement 
For the evaluation of the AI/ML based CSI feedback enhancement, AI/ML memory storage in terms of AI/ML model size and number of AI/ML parameters is adopted as part of the ‘Evaluation Metric’, and reported by companies who may select either or both.
· FFS: the format of the AI/ML parameters
Agreement
For the evaluation of the AI/ML based CSI compression sub use cases, the capability/complexity related KPIs, including FLOPs as well as AI/ML model size and/or number of AI/ML parameters, are to be reported separately for the CSI generation part and the CSI reconstruction part.



[bookmark: _Hlk111055259]The complexity of the AI model based on Transformer is listed in Table 6 from the perspective of float point operations (FLOPs) and trainable parameters:
Table 6. FLOPS and trainable parameters of AI model based on Transformer
	Number of Feedback bits
	Transformer

	
	
Trainable Parameters ()
	
FLOPs ()

	
	Generation part
	Reconstruction part
	Generation part
	Reconstruction part

	32 bits
	10.707
	10.708
	21.414
	21.416

	48bits
	10.713
	10.713
	21.426
	21.426

	120 bits
	10.736
	10.736
	21.472
	21.472



2.3.4 Generalization
In RAN1#110 meeting [3], for the verification of generalization, we have the following agreement:
	Agreement
The following cases are considered for verifying the generalization performance of an AI/ML model over various scenarios/configurations as a starting point:
· Case 1: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model performs inference/test on a dataset from the same Scenario#A/Configuration#A
· Case 2: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model performs inference/test on a different dataset than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B
· Case 3: The AI/ML model is trained based on training dataset constructed by mixing datasets from multiple scenarios/configurations including Scenario#A/Configuration#A and a different dataset than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B, and then the AI/ML model performs inference/test on a dataset from a single Scenario/Configuration from the multiple scenarios/configurations, e.g.,  Scenario#A/Configuration#A, Scenario#B/Configuration#B, Scenario#A/Configuration#B.
· Note: Companies to report the ratio for dataset mixing
· Note: number of the multiple scenarios/configurations can be larger than two
· FFS the detailed set of scenarios/configurations
· FFS other cases for generalization verification, e.g.,
· Case 2A: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model is updated based on a fine-tuning dataset different than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B. After that, the AI/ML model is tested on a different dataset than Scenario#A/Configuration#A, e.g., subject to Scenario#B/Configuration#B, Scenario#A/Configuration#B.

Agreement
For CSI enhancement evaluations, to verify the generalization performance of an AI/ML model over various scenarios, the set of scenarios are considered focusing on one or more of the following aspects as a starting point:
· Various deployment scenarios (e.g., UMa, UMi, InH)
· Various outdoor/indoor UE distributions for UMa/UMi (e.g., 10:0, 8:2, 5:5, 2:8, 0:10)
· Various carrier frequencies (e.g., 2GHz, 3.5GHz)
· Other aspects of scenarios are not precluded, e.g., various antenna spacing, various antenna virtualization (TxRU mapping), various ISDs, various UE speeds, etc.
· Companies to report the selected scenarios for generalization verification

Agreement
For CSI enhancement evaluations, to verify the generalization/scalability performance of an AI/ML model over various configurations (e.g., which may potentially lead to different dimensions of model input/output), the set of configurations are considered focusing on one or more of the following aspects as a starting point:
· Various bandwidths (e.g., 10MHz, 20MHz) and/or frequency granularities, (e.g., size of subband)
· Various sizes of CSI feedback payloads, FFS candidate payload number
· Various antenna port layouts, e.g., (N1/N2/P) and/or antenna port numbers (e.g., 32 ports, 16 ports)
· Other aspects of configurations are not precluded, e.g., various numerologies, various rank numbers/layers, etc.
· Companies to report the selected configurations for generalization verification
· Companies are encouraged to report the method to achieve generalization over various configurations to achieve scalability of the AI/ML input/output, including pre-processing, post-processing, etc.



[bookmark: _Hlk111044287]The generalization capability is to verify whether a model trained under a certain assumption can be applied well under different assumptions. The different assumptions may be different scenarios (e.g, Uma, Umi, InH), or different configurations (e.g., different bandwidth, different number of antenna ports). Different scenarios will not affect the size of the input/output data for training and testing/inference, while the dimension of input/output data in different configurations may be different.
In real communication system, UE might experience different scenarios and configurations due to UE’s mobility and gNB’s scheduling. Therefore, it is important to improve the AI/ML model generalization capability to adapt to different configurations/ scenarios.
Usually, training the configurations/ scenarios specific AI model for each scenario can be considered as a method to achieve the upper bound performance of AI based approach. However, the UE complexity of handling and storing multiple AI models is also very challenging. Therefore, it is important to improve the AI/ML model generalization capability to adapt to different configurations/ scenarios.
There might be two approaches to solve this problem. One method is to utilize a mixed dataset from different typical scenarios to train one model and apply this model to perform inference in different configurations/ scenarios. The other way is to use transfer learning method. For example, a baseline auto-encoder model can be well trained with abundant samples under a certain configuration/ scenario. To apply the baseline auto-encoder to new configurations/ scenarios, the baseline auto-encoder can be fine-tuned with a small number of data samples under the new configurations/ scenarios. 
Proposal 2: The generalization capability of AI model across different configurations/ scenarios could be evaluated.
Proposal 3: The solution to improve the generalization capability of AI model across different configurations/ scenarios could be further studied.

2.3.4.1 Generalization over different scenarios
CSI is highly correlated to the varying physical radio environment (e.g. the distribution of multipath, SINR, intra- or inter-cell movement of UEs), which can be quite diversified for different scenarios, e.g., Uma/UMi/ Indoor, LOS/ NLOS and etc. As a consequence, the model of auto-encoder based CSI feedback trained in one scenario may suffer performance degradation in another scenario. 
In this section, for generalization across different scenario, we construct a synthetic dataset with samples from CDL-C-30 and CDL-C-300. A mixed dataset of 50K samples from CDL-C-30 and 50K samples from CDL-C-300 is generated as the training dataset. We additionally adopt the AI model trained with the samples only from CDL-C-30 for performance comparison. Both two models are used to perform inference over samples from CDL-C-30. The SGCS using Transformer based model is shown below:
Table 7. SGCS of AI model trained with mixed dataset using Transformer
	Feedback bits
	SGCS

	
	CDL-C-30 dataset
	Mix dataset

	32
	0.919
	0.882

	48
	0.948
	0.923

	120
	0.977
	0.965



Observation 6: The AI model trained with mixed dataset across various scenarios might have some performance loss comparing with dedicated model.

2.3.4.2 Generalization over different configurations
Considering verifying the generalization capability over different configurations, in this section, we evaluate the generalization of applying AI model to different number of subbands and different number of feedback bits. And the dataset for training and testing is generated based on the assumption in Table 2.
For generalization across different number of subbands, we train AI model with the samples composed of the eigenvectors of 12 subbands and apply this AI model to test the samples composed of the eigenvectors of 8 subbands.
To achieve better generalization performance, we will pre-process the samples composed of the eigenvectors of 8 subbands before inputting these samples into generation part, i.e., we will perform padding zero at the end of each sample to make sure the dimensions of input data for inference are the same as those of input data of training phase (12 subbands).
Table 8. The SGCS for different numbers of subbands using Transformer
	Method
	SGCS

	
	32 bits
	48 bits
	120 bits

	Baseline: Both training and inference samples with 12 subbands
	0.919
	0.948
	0.977

	Generalization: 
Training samples with 12 subbands; Inference samples with 8 subbands
	0.891
	0.885
	0.928


According the evaluation result, when applying the model trained by the data set composed of 12 subbands to compression for 8 subbands, the SGCS performance will be degraded.
Observation 7: The AI model trained under one number of subbands might have some performance loss when performing interference on CSI compression of a different number of subbands.

In NR systems, different number of feedback bits can be configured for CSI reporting. For generalization across different number of feedback bits, we train a common encoder which can be applied to different numbers of feedback bits to avoid the management of many models at the UE side.
For each number of feedback bits, one common encoder and the specific decoder are used. To achieve better generalization performance, we adopt post-processing on the output of generation part. The dimensions of the output of generation part is designed based on the maximum feedback bits, and before outputting from the generation part, some extra bits will be dropped, so that the output of generation part can adjust different numbers of feedback bits to facilitate the corresponding specific reconstruction part. Also, the loss function need optimization to facilitate different combinations of feedback bits.
We choose 3 different number of feedback bits for performance evaluation and the performance of the dedicated model for each number of feedback bits is given as baseline.
Baseline: dedicated models of which the number of feedback bits are 32, 48 and 120 bits.
Case 1: one joint encoder and 2 separate decoders of which the number of feedback bits are 32 and 48 bits.
Case 2: one joint encoder and 3 separate decoders of which the number of feedback bits are 32, 48 and 120 bits.

The SGCS performance for each case is shown below:
Table 9. The SGCS for different number of feedback bits using Transformer
	
	SGCS

	
	32 bits
	48 bits
	120 bits

	Baseline
	0.874
	0.882
	0.916

	Case 1: 32+48
	0.874
	0.880
	\

	Case 2: 32+48+120
	0.872
	0.884
	0.906



According the evaluation result, the unified model of one common encoder and multiple specific decoders has similar performance on SGCS as dedicated model under various number of feedback bits.
[bookmark: _Hlk111215365]Observation 8:  The unified AI model of one common encoder and multiple specific decoders performs well across different number of feedback bits.

3. Conclusion
In this contribution, we share our views on the evaluation methodology and KPI for AI based CSI compression and the preliminary evaluation results are also provided. The observations and proposals are summarized below:
Observation 1: Compared with traditional codebook, AI/ML based CSI feedback schemes could improve the CSI accuracy with the same or similar number of feedback bits.
Observation 2: Compared with traditional codebook, AI/ML based CSI feedback schemes could reduce CSI feedback bits when achieving the same CSI or higher accuracy.
Observation 3: With large enough dataset samples at UE side, separate training could achieve similar SGCS as joint training.
Observation 4: When the number of dataset samples at UE side decreases, the SGCS of separate training will also decrease.
Observation 5: When the generation part at UE side and the reconstruction part at network side have the same AI algorithms or model structures, to ensure separate training achieve similar SGCS as joint training, the requirement of number of dataset samples at UE side is much lower than the requirement when the AI algorithm or model structure is different between UE side and network side.
Observation 6: The AI model trained with mixed dataset across various scenarios might have some performance loss comparing with dedicated model.
Observation 7: The AI model trained under one number of subbands might have some performance loss when performing interference on CSI compression of a different number of subbands.
Observation 8:  The unified AI model of one common encoder and multiple specific decoders performs well across different number of feedback bits.

Proposal 1: For rank > 1 cases, SGCS is separately calculated for each layer.
Proposal 2: The generalization capability of AI model across different configurations/ scenarios could be evaluated.
Proposal 3: The solution to improve the generalization capability of AI model across different configurations/ scenarios could be further studied.
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