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Introduction
In this paper, we present initial views on the study of AI/ML applications to physical layer for beam management based on the objectives in the Rel-18 NR study item on AI/ML [1]:
	 Use cases to focus on: 
· Initial set of use cases includes: 
· Beam management, e.g., beam prediction in time, and/or spatial domain for overhead and latency reduction, beam selection accuracy improvement [RAN1]
· Finalize representative sub use cases for each use case for characterization and baseline performance evaluations by RAN#98
· The AI/ML approaches for the selected sub use cases need to be diverse enough to support various requirements on the gNB-UE collaboration levels



We discuss basic evaluation methodology to commence the study and steps needed to align results across participating companies for meaningful comparison. We also present initial evaluation results for spatial domain beam prediction with detailed specification impact and sub-use-case discussion provided in our companion contribution [6].
[bookmark: _Hlk47732020]Evaluation Methodology
The beam management use case for AI/ML study can be broadly divided into two sub-cases i.e., spatial domain beam management and temporal domain beam management. Regardless for the specific use case, a common evaluation methodology can be considered with respect to the AI/ML model training and deployment. 


[bookmark: _Ref101998927]Figure 1: AI/ML Model Training and Deployment
An example is shown in Figure 1, where a supervised machine learning model with offline training/validation is considered. In the first step, a dataset should be generated based on the specific use case being considered. The dataset should contain beam-specific information including inputs for the AI/ML model as well output labels for training, validation, and testing. The dataset is usually split into non-overlapping portions for training and testing.  The next step is data pre-processing and normalization to ensure that the data is in the proper value range for the considered AI/ML model. Note that it may also be necessary to normalize the output labels depending on the problem formulation and type of output layer activation function being used. Based on this normalized input (output) data, the AI/ML model is trained and validated. As part of training to ensure better accuracy hyperparameter tuning is also an important step but care should be taken to ensure that the model is not overfitted to the training data. In this example, the dataset generation as well the model training is assumed to be an offline non-real-time process. Once the model is trained, the held-out test data is used for determining the model accuracy. Once the model accuracy is acceptable, the model can be deployed in a real-time environment to aid in specific beam management tasks. 
Although more sophisticated online training methods including reinforcement learning exist in literature, the current study item should first concentrate on the offline training methodology with bigger emphasis on realistic evaluation assumptions and use-cases. Online models, if required, can be studied in future. 
Proposal 1: [bookmark: _Ref111198558]For AI/ML evaluation for beam management use cases, including spatial and temporal domain beam management, consider only offline training of AI/ML models.

In RAN1#110, the following agreement was made on the selection of Set B of beams or beam-pairs. 
	Agreement
· Study the following options on the selection of Set B of beams (pairs) 
· Option 1: Set B is fixed across training and inference
· FFS on the beams of Set B
· Option 2: Set B is variable (e.g., different beams (pairs) patterns in each report/measurement during training and/or inference) 
· FFS on fixed or variable number of beams (pairs)
· FFS on the details 
· Other options are not precluded. 
· FFS on the number of beams (pairs) in Set B
· Note: This does not preclude the alternative that Set B is different from Set A.



The options are not very clearly articulated. In our view, the Set B should be fixed in cardinality across training and inference. Furthermore, the definition of Set B itself should not depend on L1 measurement and reporting details like periodicity. It can be the case that during inference, different elements of Set B are updated at different times due to availability of L1 report corresponding to the desired beam or beam-pair. But this should not translate to Set B being variable across training and inference. 
Proposal 2: The variability of Set B can only be due to updating the L1 measurements corresponding to beams or beam-pairs in Set B at different intervals. The cardinality of the set should not change across training and inference.

Additionally, it should be discussed if dataset construction for training is within the purview of 3GPP or has any impact to specification. If not, it may not be straightforward to define and maintain the definition of a Set A and B of beams especially since “beams” are not specified. Further discussion on this point is necessary. 

Spatial Domain Beam Prediction
For spatial domain beam prediction, the following agreement on baseline performance was reached in RAN1#109e:
	Agreement
· For spatial-domain beam prediction, further study the following options as baseline performance
· Option 1: Select the best beam within Set A of beams based on the measurement of all RS resources or all possible beams of beam Set A (exhaustive beam sweeping)  
· FFS CSI-RS/SSB as the RS resources
· Option 2: Select the best beam within Set A of beams based on the measurement of RS resources from Set B of beams
· FFS: Set B is a subset of Set A and/or Set A consists of narrow beams and Set B consists of wide beams
· FFS: how conventional scheme to obtain performance KPIs
· FFS: how to determine the subset of RS resources is reported by companies
· Other options are not precluded.


For Option 2, hierarchical beam search can be considered as the baseline. Based on the sub-use case being studied, Set B  Set A can be used for the case when BM Case 1 with narrow beams as input to ML model and prediction of the best narrow beam is considered. For the case when in BM Case 1, Set B contains wide beams, the ML model maps the wide beams to the best narrow beam. In this case, Set B contains wide beams, as well as a set of narrow beams for hierarchical search while Set A contains narrow beams. In this case, the hierarchical search is first to select a best wide beam and then to select a best narrow beam from a set of narrow beams in Set B which are highly correlated with the wide beam. 
Proposal 3: [bookmark: _Ref111198726][bookmark: _Hlk115438631]For baseline performance evaluation, Option 2 should correspond to hierarchical beam search where, based on sub-use case being evaluated, set B may be a subset of set A or set B can contain both wide and correlated narrow beams. 
For SLS assumptions for spatial domain beam prediction, UE distribution within a cell was discussed in RAN1#110. For dataset generation, a very large number of UEs e.g., 1000 UEs may be dropped in a cell since interference is not considered in this case for the ML model to map the measurements from a sub-set of beams to the best beam. For the case of throughput evaluation for testing the trained ML model, the number of UEs per cell should be limited to 10 UEs/TRP, since interference is considered in this scenario.
Proposal 4: [bookmark: _Ref111198750]For SLS UE distribution, large number of UEs per cell should be allowed for dataset generation but should be limited to 10 UEs/TRP for throughput evaluation using trained model for beam selection. 
If performance metrics other than L1-RSRP are supported e.g., throughput from system level evaluations, to keep the study and results collection workload manageable, only full-buffer traffic models should be supported. Since the main goal is evaluation of the efficiency of the AI/ML models, full-buffer should provide the worst case performance of such models by assuming that UEs are always active in the system and in need of an aligned beam. 
Proposal 5: For system performance KPIs, if supported, only full-buffer traffic models should be used. 
Temporal Domain Beam Prediction
UE Trajectory and Spatial Consistency Modeling 
UE Trajectory Modeling
UE trajectory modeling is an important part of temporal domain beam prediction. In the feMIMO mobility EVM, the trajectories of the UEs along with the starting points and ending points are fixed. Different from the feMIMO EVM, for training AI/ML models more diversity in environment is better. Therefore, we propose a more generic trajectory modeling as shown in Figure 2.
[image: ]
[bookmark: _Ref47722409][bookmark: _Ref47722393]Figure 2: UE Trajectory for travel time of 2sec at 150km/hr
In this model, the UE can be dropped randomly at any location within the deployment and moves in a straight-line trajectory to an end point. The travel time is fixed, and the trajectory is sampled at equal intervals and beam specific data is collected along the trajectory for training the AI/ML model. If the trajectory hits the cell boundary, the trajectory is terminated and if the trajectory observation time is less than a threshold, the trajectory sample is discarded. 
Proposal 6: [bookmark: _Ref111198766]UE trajectories with straight line movement without sharp turns should be considered as a first step for evaluation.
	
Additionally, the following agreement was made in RAN1#110:
	Agreement
· If UE orientation is modeled, it can be independently modeled from UE moving trajectory model. 
· This is not precluded that UE orientation coupled with UE moving trajectory model. 



While eventually, random UE orientation should be accounted for, as a first step, we would recommend using fixed UE orientation which is identical to direction of travel of the UE. 
Spatial Consistency Modeling
Since the main goal is to capture the temporal variation of beam performance of a UE under motion, the SLS evaluation for this case is fundamentally different from drop based evaluations performed in the past where UEs are dropped into the system once at the beginning of the simulation and their positions are not changed for the duration of the simulation. In these static use cases, spatial consistency does not have a major impact on the evaluation results. However, in the new evaluation setup, where UEs are moving across the cell, it is very important to properly model spatial consistency for both large-scale as well small-scale fading parameters since this has a major impact on the overall simulation results. For example, if not modeled in a spatially consistent manner, the shadow fading can fluctuate widely over the trajectory of the UE and therefore yield a highly unstable channel realization which manifests itself in the fact that the UE is totally incapable of tracking the beams properly. This is not a desirable phenomenon and would adversely impact the training capabilities of the AI/ML models since the data samples across the trajectory may appear uncorrelated. Therefore, it is of utmost importance to ensure that large- and small-scale parameters are generated such that they vary slowly (within a realistic range). While the implementation of spatially consistent large-scale parameter generation is up to companies, care should be taken to ensure that there is approximately the exponential autocorrelation relationship 



[bookmark: _Hlk47717413]between different points at distance d m in the trajectory as specified in the WINNER II channel model Error! Reference source not found., and where is the decorrelation distance. Additionally, there are two spatial consistency models specified in [4]. The spatial consistency model A is meant for a traditional drop-based simulation where UE positions are not changed over the simulation duration. This model is not suitable for the temporal domain beam prediction evaluations, since it is based on extrapolation from the initial dropped location of the UE and does not account for mobility. The spatial consistency model B should be used since this model calculates the small-scale parameters at each point in the trajectory based on a grid of random numbers which is generated once per simulation for each UE and gNB and the random number values are calculated based on the grid and the UE position at each trajectory update. 
Proposal 7: [bookmark: _Ref111198789]Spatially consistent large-scale parameter generation should be used for mobility evaluations. Additionally, only spatial consistency model B in [4] can be used for mobility evaluation.

The trajectory of the UEs can be sampled at different periodicities and companies should report how often the UE locations are updated in their evaluation assumptions. In order to ensure large scale parameters are updated often enough during the evaluation, it is preferable to update the location every 1m or at least at a distance less than the minimum decorrelation distance of the large-scale parameters for the given evaluation scenario.
Proposal 8: [bookmark: _Ref111198801]The UE trajectory should be sampled at least at the minimum decorrelation distance of the large-scale parameters corresponding to the scenario of evaluation.

To highlight this importance, results for SLS based spatially consistent UE trajectory sampling is provided below. For this case, a single UE moving in a linear trajectory within a cell as shown in Figure 2 is modeled. The trajectory is shown for 2sec of travel time and the preliminary results for beam tracking are provided over 1sec of travel time on this trajectory. The trajectory is sampled every 1m. The UE has two panels facing 180 apart and system is operating at a CF = 30 GHz and 120kHz SCS. An Urban Micro deployment with 200m ISD and an outdoor UE at a speed of 150km/hr is considered. Detailed evaluation assumptions are provided in the Appendix. 
In this simulation spatial consistency has been modeled for both large scale parameters and small-scale parameters using spatial consistency model B from [4]. The following figures show how the large-scale parameters vary over the trajectory sample points. [image: ]
[bookmark: _Ref47723269]Figure 3: LSP variation over the UE trajectory for 1sec travel time
From Figure 3, it can be seen that the large-scale parameters, especially shadow fading, which has a major impact on RSRP varies slowly over time as the trajectory is sampled. The same holds true for other LSPs. For small-scale fading, the spatial consistency model B is leveraged and the fast-fading RSRP also shows consistent behavior over the UE trajectory. Based on these initial results, proper modeling of parameters for channel modeling is very important for creating a meaningful dataset for AI/ML evaluation for temporal domain beam prediction.  
Initial Evaluation Results
In this section, we provide some initial evaluation results for spatial domain beam prediction use case with additional details on problem formulation, dataset generation and AI/ML model assumptions. 
Problem Formulation (Spatial beam prediction at UE)
Traditionally, beam acquisition or tracking would require measurement on all the beams at the UE for any specific gNB transmit beam. In order to select the best beam pair link, there would need to a prohibitive number of measurements at the UE if exhaustive search were used rendering it infeasible. The goal of the AI/ML aided beam acquisition and tracking is to use a sub-set of these measurements to predict the best beam. 
[image: ]
[bookmark: _Ref102033413]Figure 4: ML aided beam prediction at gNB conditioned on single UE beam
A possible problem formulation shown in Figure 4 which assumes that the AI/ML model will predict the RSRP values for all the gNB beams based on the input of RSRP values from only a few measurement beams. This is different from the traditional classification problem which predicts only the best beam index. In this regression-based formulation, the RSRP values for all the beams are predicted which enables the model to identify not only the best beam index but also the top-K (K=2,3,4, …) beam indexes. 
[image: ]
[bookmark: _Ref102033525]Figure 5: Example DNN for UE beam prediction

An example DNN network is shown in Figure 5, where the hidden fully connected layers use ReLU activation, and the final output layer uses a tanh activation for RSRP prediction for all beams. An alternate CNN was also evaluated where the 1D-conv layers were used. The CNN with same depth as the DNN has 10x less trainable parameters than the DNN.  In the next sections, we provide initial evaluation results based on SLS and LLS based data generation.
SLS Based Evaluations 
Dataset Generation and Training
For the dataset generation, 5G UMa channel models are used. Different channel conditions, such as 1) 80% indoor + 20% outdoor UE distribution and nLoS + LoS mixed channels, and 2) 100% outdoor UE distribution and nLoS + LoS mixed channels, are considered. The UE is assumed to have 2 panels and each panel has 1x4 cross-polarized antenna elements with DFT beams. The gNB is assumed to have 1 panel which has 8x8=64 cross-polarized antenna elements with DFT beams. The 64 gNB antenna elements form 64 narrow beams and 16 virtualized wide beams at gNB. 
In this section, three problems are considered, 
· BM-Case-1a: Narrow beam measurement-based BS narrow beam prediction with best UE panel and beam selection 
· BM-Case-1b: Wide beam measurement-based BS narrow beam prediction with best UE panel and beam selection
· BM-Case-9: Joint UE-BS beam-pair-link prediction with best UE panel selection. 
For the first and second problem, we assume the UE can select the best UE panel and the best UE beam of the panel by comparing the average RSRPs across all narrow/wide gNB-UE beam pairs of two panels. For the third problem, we assume the UE selects the panel and there are 64x4 gNB-UE narrow beam pair links. Next, a certain number of beams are measured and the RSRP is provided as the input of the ML model. For example, 8, 10, 12, and 16 beams are measured in case-1a and case-1b. 16 and 32 beams are measured in case-9.
250,000 data points are generated for dataset, and each datapoint consists of RSRP values measured on all the beams. The data is partitioned as 70% is used for training, of which 10% is used for validation. In order to limit the input data range within (-1,1), each data point was individually normalized by the max absolute value of the RSRP of the input beams. For training the outputs were also similarly normalized.
A 5-layer 2 dimensional CNN with Leaky ReLU as activation function was trained for 500 epochs with early stopping. The batch size was kept at 200. 
Four KPIs of beam prediction accuracy are evaluated for the problems as follows.
· Top-1 beam: Top-1 predicted beam
· Top-1 beam with 1dB margin: percentage of the Top-1 predicted beam whose ideal L1-RSRP is within 1dB of the ideal L1-RSRP of the Top-1 genie-aided beam
· Top-3 beam (opt-1): The beam prediction accuracy is the percentage of the Top-1 predicted beam is one of the Top-3 genie-aided beams
· Top-3 beam (opt-2): The beam prediction accuracy is the percentage of the Top-1 genie-aided beam is one of the Top-3 predicted beams

Performance Results
Beam Prediction with Fixed UE Beam
As mentioned above, we consider two cases for beam prediction with fixed UE beam, case-1a, narrow beam measurement-based BS narrow beam prediction with best UE panel and beam selection, and case-1b, wide beam measurement-based BS narrow beam prediction with best UE panel and beam selection. 
In case-1a, the 64 input beams are sampled to 8, 10, 12, or 16 beams, according to the sampling pattern shown in Figure 6 -  Figure 9, to predict the optimal beam among the 64 beams. The beam prediction accuracies for different number of samples and different metrics are shown in Figure 10 - Figure 12, where different channel conditions are considered.
[image: ]
[bookmark: _Ref111125542]Figure 6. Case-1a 8 samples from 64 beams
[image: ]
Figure 7. Case-1a 10 samples from 64 beams
[image: ]
Figure 8. Case-1a 12 samples from 64 beams
[image: ]
[bookmark: _Ref111125552]Figure 9. Case-1a 16 samples from 64 beams


[image: ]
[bookmark: _Ref111125560]Figure 10. Case-1a NLOS + LOS channel

[image: ]
[bookmark: _Ref111125568]Figure 11. Case-1a NLOS + LOS channel

[image: ]
[bookmark: _Ref111125592]Figure 12. Case-1a LOS channel
[image: ]
[bookmark: _Ref111127536]Figure 13. Case-1a CDF of RSRP difference
From Figure 10– Figure 12, we can see that the beam prediction accuracy increases with the number of sampled beams. Although the beam prediction accuracies are imperfect under Top-1 beam prediction criteria, the Top-3 beam prediction accuracies are good for different channel scenarios. From Figure 13, it can be seen that even for the error cases, most of the predicted beam indexes may still be good enough since the 90th percentile of the RSRP error CDF is around 5dB. 
The soft evaluation metrics such as Top-1 beam prediction accuracy with 1 dB margin and Top-3 beam (option 1 and option 2) lead to a gap between the hard evaluation metric of Top-1 beam. The gaps different for different channel conditions. For example, in outdoor scenario, the gap between Top-1 beam prediction accuracy with 1 dB margin and without margin is about 0.05. And in indoor scenario, the gap is about 0.1. And the Top-3 beam prediction option 1 has slightly higher accuracy then option 2 for the same data set.
Furthermore, a hierarchical beam search scheme is considered as a baseline scheme to compare with the AI/ML based beam prediction. The hierarchical beam search consists of two steps. First, x beams are uniformly sampled from the 64 input beams, and the beam corresponding to the largest RSRP is selected. Second, y beams around the selected beam in step 1 is selected, and the beam corresponding to the largest RSRP is selected as the final beam search output. The accuracy of CNN-based beam prediction with 16 samples and baseline beam search scheme with x=8/y=8 is shown in Table 1, which shows that the CNN-based beam prediction outperforms the baseline scheme for all the evaluation metrics and scenarios.
[bookmark: _Ref111143585][bookmark: _Ref111143565]Table 1. Case-1a Accuracy Comparison of Baseline and CNN-based scheme with 16 samples 
	
	Top-1 beam
	Top-1 beam w/ 1dB margin
	Top-3 beam (opt-1)

	
	CNN
	Baseline
	CNN
	Baseline
	CNN
	Baseline

	NLOS+LOS, 80% indoor
	0.7273    
	0.6639    
	0.8198    
	0.7296    
	0.9630
	0.9141

	NLOS+LOS, outdoor
	0.8704
	0.8235    
	0.9204
	0.8484    
	0.9853
	0.9411

	Los, 80% indoor
	0.7580
	0.6953
	0.8450
	0.7567
	0.9717
	0.9248



In case-1b, the 16 input beams are sampled to 8, 10, 12, or 16 beams, according to uniform sampling the beam indices, to predict the optimal beam among the 64 beams. The beam prediction accuracies for different number of samples and different metrics are shown in Figure 14– Figure 17, where different channel conditions are considered.
[image: ]
[bookmark: _Ref111125681]Figure 14. Case-1b LOS channel

[image: ]
Figure 15. Case-1b LOS Channel

[image: ]
Figure 16. Case-1b NLOS + LOS channel

[image: ]
[bookmark: _Ref111125686]Figure 17. Case-1b NLOS + LOS channel
Similar to case-1a, Figure 14 - Figure 17 show that the beam prediction accuracy increases with the number of sampled beams. The Top-3 beam prediction accuracies are good for different channel scenarios.
Similar to case-1a, the soft evaluation metrics such as Top-1 beam prediction accuracy with 1 dB margin and Top-3 beam (option 1 and option 2) lead to a gap between the hard evaluation metric of Top-1 beam. The gaps different for different channel conditions. For example, in outdoor scenario, the gap between Top-1 beam prediction accuracy with 1 dB margin and without margin is about 0.05. And in indoor scenario, the gap is about 0.1. And the option-1 and option-2 of Top-3 beam prediction accuracies are almost the same for the same data set. 
For both case-1a and case-1b, it can be seen that NLOS channel models are less accurate than the LOS case, and 80% indoor + 20% outdoor channel models are less accurate than the 100% outdoor channel models. But Top-3 beam prediction accuracies are always acceptable. We also notice that the wide beam-based beam prediction has slightly higher beam prediction accuracy than the narrow beam based one when number of sampled beam is small, e.g. 8. This is because there is some beam correspondence between wide beam and narrow beam. 
Furthermore, a hierarchical beam search scheme is considered as a baseline scheme to compare with the AI/ML based beam prediction. The hierarchical beam search consists of two steps. First, 16 beams are uniformly sampled from the 16 input wide beams, and the beam corresponding to the largest RSRP is selected. Second, 4 narrow beams corresponding to the selected wide beam in step 1 is selected, and the beam corresponding to the largest RSRP is selected as the final beam search output. The accuracy of CNN-based beam prediction with 16 samples and baseline beam search scheme is shown in Table 2, which shows that the CNN-based beam prediction outperforms the baseline scheme significantly. 
[bookmark: _Ref111197638]Table 2. Case-1b Accuracy Comparison of Baseline and CNN-based scheme with 16 samples
	
	Top-1 beam
	Top-1 beam w/ 1dB margin
	Top-3 beam (opt-1)

	
	CNN
	Baseline
	CNN
	Baseline
	CNN
	Baseline

	NLOS+LOS, 80% indoor
	0.6820
	0.6120
	0.7727
	0.6878
	0.9281
	0.9541

	NLOS+LOS, outdoor
	0.8697    
	0.6467    
	0.9217    
	0.6860    
	0.9830
	0.9421

	Los, 80% indoor
	0.7151    
	0.6199    
	0.8018    
	0.6913    
	0.9424
	0.9571

	Los, outdoor
	0.9399    
	0.6758    
	0.9754    
	0.7080    
	0.9961
	0.9484



Joint UE-gNB Beam Pair Link Prediction
As mentioned above, we consider joint UE-gNB beam prediction with best UE panel selection (case-9). The 256 input beams pairs are sampled to 8, 16, or 32 beams, according to uniform sampling the beam indices, to predict the optimal beam among the 256 beam pairs. The beam prediction accuracies for different number of samples and different metrics are shown in Figure 18 - Figure 19. As shown in the figures, the beam prediction accuracy increases with the number of sampled beams. It can be seen that NLOS channel models are less accurate than the LOS case, and 80% indoor + 20% outdoor channel models are less accurate than the 100% outdoor channel models. Although using 8 samples over 256 beam pairs has acceptable prediction accuracy over 85% for LOS outdoor channel, it is too sparse to be used to predict well in other more complicated channel conditions. 


[image: ]
[bookmark: _Ref111125692]Figure 18. Case-9 LOS channel

[image: ]
[bookmark: _Ref111125696]Figure 19. Case-9 NLOS + LOS channel


LLS Based Evaluations
Dataset Generation and Training
For the dataset generation, 3GPP CDL channel models were used. The UE panel was assumed to have 8x8 = 64 cross-polarized antenna elements with DFT beams. The fixed gNB beam was assumed to be pointing towards the horizon at 90 degrees from the vertical. Each datapoint consists of RSRP values measured on all the UE beams for a given orientation of the UE antenna array. 1 million data points were generated each with a different UE antenna panel orientation, and the data was partitioned as shown in Figure 20. In order to limit the input data range within (-1,1), each data point was individually normalized by the max absolute value of the RSRP of the input beams. For training the outputs were also similarly normalized. The normalization is performed per data point to ensure there is no cross-UE dependence on the normalization for the case when the model may be deployed in practical networks. 
[image: ]
[bookmark: _Ref102033930]Figure 20: Dataset split for training, validation and testing. The percentages shown are examples.
The DNN was trained for 500 epochs with early stopping. The batch size was kept at 100 and Adam optimizer was used. For this problem, the accuracy of predicting the best beam as well the accuracy for predicting the top K=3 beams were considered. For instance, if the model predicts only one of the best 3 beams, the accuracy is 33.33%, for two of the best beams, the accuracy 66.66% and so on. These hard metrics give an indication of the absolute performance of the network. 
Performance Results
Beam Prediction at the UE with Fixed gNB Beam
The AI/ML model was provided with 8 out of the 64 beams for measurement for different channel models and performance was evaluated with respect to beam prediction accuracy. 
[image: ]
[bookmark: _Ref102035385]Figure 21:ML-aided UE beam prediction with 8 measurement beams and uniform sampling of measurement beams in the index domain
[image: ]
[bookmark: _Ref102035388]Figure 22: ML-aided UE beam prediction with 8 measurement beams and optimized sampling of measurement beams
From Figure 21 and Figure 22, it can be seen that beam prediction in the spatial domain at the UE side has good accuracy even with only 8 beams out of 64 beams measured. It is also seen that sampling the measurement beams plays a role in model accuracy with the more optimized sampling providing even better performance. Note that despite the 10% error rate in LOS case, the actual RSRP difference even in most of the error cases is quite small as shown by Figure 23 which plots the CDF of the RSRP difference matrix for the error cases for the optimized sampling. 
[image: ]
[bookmark: _Ref111199358]Figure 23. RSRP difference between predicted beams and optimal beams for the error cases in AI/ML model prediction for UE beam prediction conditioned on a fixed gNB beam
[image: ]
[bookmark: _Ref102037130]Figure 24: ML-aided UE beam prediction with 6 measurement beams and optimized sampling of measurement beams
Figure 24 shows the performance of 6 measurement beams with optimized sampling where the performance is quite close to the case for 8 measurement beams. Note that other sampling methods with 6 beams do not yield good results. 
Next, we can consider a larger antenna array at the UE to check if the results from smaller arrays scale for larger number of antennas. In the following, we consider a 16x16 2D planar array at the UE with 256 non-oversampled DFT beams. 
[image: ]
Figure 25: ML-aided UE beam prediction with 256 UE beams and 32 measurement measuremt beams
It can be seen that NLOS channel models are less accurate than the LOS case, but the accuracy is still within acceptable levels especially considering the overhead reduction from measurements. 
Joint UE-gNB Beam Pair Link Prediction
In this problem formulation, joint beam pair link at UE and BS is predicted by the model. For dataset generation, RSRP across all gNB beams and UE beams is considered with only a subset used for input to the model. The implication of using the subset is that specific UE-gNB beam pair links are measured. Considering a gNB array with 32 DFT beams and UE array with 8 DFT beams, 16 measurement beam pair links are considered. The measurement beams at UE and gNB are shown in Figure 26. Details of problem formulation and impact to specification are discussed in [5]
[image: ]
[bookmark: _Ref102038194]Figure 26: Joint BS-UE beam pair link prediction. The rows correspond to UE beams and the columns correspond to gNB beams with the red boxes representing measurement beam pair links.
From the results it can be seen that performance of AI/ML models for joint beam pair link prediction is very promising both LOS (CDL-E) and NLOS (CDL-A) channels.  
Conclusion
In this paper, beam management for AI/ML applications has been discussed. The main proposals from this paper are outlined here:
Proposal 1: For AI/ML evaluation for beam management use cases, including spatial and temporal domain beam management, consider only offline training of AI/ML models.

Proposal 2: The variability of Set B can only be due to updating the L1 measurements corresponding to beams or beam-pairs in Set B at different intervals. The cardinality of the set should not change across training and inference.

Proposal 3: For baseline performance evaluation, Option 2 should correspond to hierarchical beam search where, based on sub-use case being evaluated, set B may be a subset of set A or set B can contain both wide and correlated narrow beams
Proposal 4: For SLS UE distribution, large number of UEs per cell should be allowed for dataset generation but should be limited to 10 UEs/TRP for throughput evaluation using trained model for beam selection. 
Proposal 5: For system performance KPIs, if supported, only full-buffer traffic models should be used. 

Proposal 6: UE trajectories with straight line movement without sharp turns should be considered as a first step for evaluation

Proposal 7: Spatially consistent large-scale parameter generation should be used for mobility evaluations. Additionally, only spatial consistency model B in [4] can be used for mobility evaluation

Proposal 8: The UE trajectory should be sampled at least at the minimum decorrelation distance of the large-scale parameters corresponding to the scenario of evaluation
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Appendix
SLS Dataset Generation Assumptions

	Simulation Parameters
	Dense Urban MACRO eMBB

	Carrier Frequency
	30 GHz

	Simulation BW
	50 MHz

	Sub-carrier Spacing and Slot Length
	120 kHz

	Channel Model
	UMa, NLOS + LOS channel and LOS channel

	Inter-Site Distance
	200m

	BS Antenna Configuration
	One panel: (M, N, P, Mg, Ng) = (8, 8, 2, 1, 1)

	UE Antenna Configuration
	Two panels, (M, N, P) = (1, 4, 2)

	BS Height
	25m

	UE Deployment
	Option 1: 80% indoor ,20% outdoor 
Option 2: 100% outdoor
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