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Introduction
In 3GPP RAN1 #110, some agreements on the evaluation on AI/ML based CSI feedback enhancement have been made as follows [1]. In this contribution, we present our views on various aspects, including evaluation methodology, KPI and some preliminary results on AI/ML for CSI feedback enhancement based on [1][2].
Agreement
For the evaluation of the AI/ML based CSI feedback enhancement, if the GCS/SGCS is adopted as the intermediate KPI as part of the ‘Evaluation Metric’, between GCS and SGCS, SGCS is adopted
Agreement
The following cases are considered for verifying the generalization performance of an AI/ML model over various scenarios/configurations as a starting point:
· Case 1: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model performs inference/test on a dataset from the same Scenario#A/Configuration#A
· Case 2: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model performs inference/test on a different dataset than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B
· Case 3: The AI/ML model is trained based on training dataset constructed by mixing datasets from multiple scenarios/configurations including Scenario#A/Configuration#A and a different dataset than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B, and then the AI/ML model performs inference/test on a dataset from a single Scenario/Configuration from the multiple scenarios/configurations, e.g.,  Scenario#A/Configuration#A, Scenario#B/Configuration#B, Scenario#A/Configuration#B.
· Note: Companies to report the ratio for dataset mixing
· Note: number of the multiple scenarios/configurations can be larger than two
· FFS the detailed set of scenarios/configurations
· FFS other cases for generalization verification, e.g.,
· Case 2A: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model is updated based on a fine-tuning dataset different than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B. After that, the AI/ML model is tested on a different dataset than Scenario#A/Configuration#A, e.g., subject to Scenario#B/Configuration#B, Scenario#A/Configuration#B.
Agreement
For CSI enhancement evaluations, to verify the generalization performance of an AI/ML model over various scenarios, the set of scenarios are considered focusing on one or more of the following aspects as a starting point:
· Various deployment scenarios (e.g., UMa, UMi, InH)
· Various outdoor/indoor UE distributions for UMa/UMi (e.g., 10:0, 8:2, 5:5, 2:8, 0:10)
· Various carrier frequencies (e.g., 2GHz, 3.5GHz)
· Other aspects of scenarios are not precluded, e.g., various antenna spacing, various antenna virtualization (TxRU mapping), various ISDs, various UE speeds, etc.
· Companies to report the selected scenarios for generalization verification





Agreement
For CSI enhancement evaluations, to verify the generalization/scalability performance of an AI/ML model over various configurations (e.g., which may potentially lead to different dimensions of model input/output), the set of configurations are considered focusing on one or more of the following aspects as a starting point:
· Various bandwidths (e.g., 10MHz, 20MHz) and/or frequency granularities, (e.g., size of subband)
· Various sizes of CSI feedback payloads, FFS candidate payload number
· Various antenna port layouts, e.g., (N1/N2/P) and/or antenna port numbers (e.g., 32 ports, 16 ports)
· Other aspects of configurations are not precluded, e.g., various numerologies, various rank numbers/layers, etc.
· Companies to report the selected configurations for generalization verification
· Companies are encouraged to report the method to achieve generalization over various configurations to achieve scalability of the AI/ML input/output, including pre-processing, post-processing, etc.
Conclusion
For the evaluation of the AI/ML based CSI feedback enhancement, for ‘Channel estimation’, it is up to companies to choose the error modeling method for realistic channel estimation and report by willingness.
· Note: It is not precluded that companies use ideal channel to calibrate

Agreement
For the evaluation of the AI/ML based CSI feedback enhancement, the throughput in the ‘Evaluation Metric’ includes average UPT, 5%ile UE throughput, and CDF of UPT.
Agreement
For the evaluation of the AI/ML based CSI compression sub use cases, companies are encouraged to report the specific quantization/dequantization method, e.g., vector quantization, scalar quantization, etc.
Agreement
For the evaluation of the AI/ML based CSI compression sub use cases, the capability/complexity related KPIs, including FLOPs as well as AI/ML model size and/or number of AI/ML parameters, are to be reported separately for the CSI generation part and the CSI reconstruction part.


Discussion on CSI compression
Evaluation methodology 
Firstly, some aspects about the baseline SLS EVM table require further discussions as below.
The system-level simulation approach has been used as the baseline for the evaluation of AI/ML based CSI feedback enhancement. The corresponding SLS EVM table is also approved, which mainly captures the common parts of the R16 CSI enhancement EVM table and the R17 CSI enhancement EVM table. However, considering the channel reciprocity between downlink and uplink channel is utilized in R17 CSI enhancement, which has not been well discussed and researched in this SI, we mainly focus on R16 Type II CSI enhancement as the baseline for intermediate KPI and SLS throughput calibration. How to model the channel reciprocity and utilize the uplink SRS assisted information into AI/ML based downlink CSI feedback requires further study. Hence, we have the following proposal:
Proposal 1: For intermediate KPI and SLS throughput evaluation, focus on R16 CSI enhancement as the baseline in current stage
· FFS: R17 CSI enhancement considering downlink/uplink channel reciprocity as the baseline.
For traffic model in the SLS EVM table, we agree that FTP model 1 can be used as a baseline to draw the conclusion. Meanwhile, the SLS throughput results with full buffer is also valuable, since it has the potential to provide the maximum performance gain of AI/ML CSI feedback compared to R16 Type II baseline. Therefore, we also suggest that companies can provide the SLS throughput results with full buffer traffic model for performance calibration. However, from our understanding, whether to use FTP or full buffer traffic model has no effect on intermediate KPI. For example, the CSI recovery accuracy expressed by SGCS is only determined by the dataset and AI model, while the selection of traffic model only influence the final SLS throughput. Therefore, we have the following proposal:
Proposal 2: For traffic model, use FTP model 1 as the baseline and companies are encouraged to provide full buffer results for SLS throughput comparison.
For channel estimation, it is agreed to use realistic DL channel estimation as the baseline during inference stage for evaluating the eventual performance and drawing the SI conclusions, wherein the input encoder at the UE side is the estimated CSI. For dataset construction, the ideal channel estimation is still utilized, wherein both the input of encoder at the UE side and the label of the output of the decoder at the gNB side are the ideal CSI. Therefore, in our simulations, the realistic channel estimation error is not included during training stage. Actually, by introducing channel estimation error modeling in training phase, the AI/ML model may be trained better to adapt to the realistic channel estimation in SLS. However, in current stage of this SI, considering the difficulty of realize an agreed realistic channel estimation model between companies, we should pay more attention to improve the AI/ML based CSI feedback performance with ideal channel estimation during training stage.
Proposal 3: For channel estimation, use realistic channel estimation as the baseline for eventual SLS performance evaluation in inference stage and ideal channel estimation for dataset construction in AI/ML model training stage.
Intermediate KPI
As agreed in RAN1 #110, if GCS/SGCS is adopted as the intermediate KPI as part of the ‘Evaluation Metric’, between GCS and SGCS, SGCS is adopted. 
Besides GCS/SGCS, multiple kinds of other intermediate KPIs are also proposed in RAN1 #110 for discussion. However, from our opinion, the intermediate KPI is only utilized for AI model performance calibration, instead of for drawing the conclusion. Therefore, too diverse intermediate KPIs are not helpful for calibration between companies. We suggest using a unified intermediate KPI should be agreed for performance calibration between companies. 
Moreover, for rank > 1 condition, if SGCS is only an intermediate KPI to evaluate the CSI recovery accuracy, we prefer to down-select a simple way as averaging all ranks for rank > 1 since it has no effect on AI/ML model training. However, if the SGCS for rank > 1 is also adopted as the loss function during AI/ML model training stage, whether other metrics like weighted average over all ranks can provides benefits for obtaining better AI/ML model requires further study. Hence, we have the following proposal:
Proposal 4: For intermediate KPI, use SGCS as the evaluation metric for calibration.
· Average all ranks for rank > 1
Generalization and scalability
In 3GPP RAN1 #110, some agreements about the generalization and scalability evaluation have been made. In current agreements, the generalization and scalability issues are proposed together. However, considering the difficulty of solving the scalability of AI/ML model, it is better to discuss the generalization and scalability issue separately.
Generalization issue
As for generalization issue, the input/output CSI dimension keeps the same with different configuration(s)/scenario(s) for both training and inference stages. Therefore, the AI/ML model trained on one dataset with Scenario#A/Configuration#A or mixing dataset from multiple scenarios/configuraions can be directly inferenced/tested on dataset from Scenario#A/Configuration#B or Scenario#B/Configuraion#B. 
Firstly, the generalization performance on different scenarios, such as various deployment scenarios (e.g., UMa, UMi, InH), various outdoor/indoor UE distributions for UMa/UMi (e.g. 10:0, 8:2, 5:5, 2:8, 0:10), various carrier frequencies (e.g. 2GHz, 3.5GHz) and other aspects (e.g. antenna spacing, antenna virtualization, ISDs, UE speeds, etc.) can be evaluated. 
Secondly, the generalization performance on different configurations, such as various bandwidths (e.g. 10MHz, 20MHz), various antenna port layouts, e.g., (N1/N2/P), other aspects of configurations (e.g. various numerologies, various rank numbers/layers, etc.) which have no effect on the input/output dimension of AI/ML model, can be evaluated. 
However, although the baseline SLS EVM has been agreed to construct the dataset, there are still multiple kinds of combinations of scenarios and configurations to generate different mixing datasets for generalization evaluation. From our opinion,  in the initial stage, companies are encouraged to provide generalization performance results on various kinds of datasets as diverse as possible to get more insights about AI-based CSI compression. In the second stage, it would be better to construct one or several typical dataset(s) with aligned mixed configuration(s)/scenario(s) to draw the conclusion on generalization performance in this SI. 

Scalability issue
For scalability issue, different input/output dimensions for various configurations with one AI/ML model should be studied, including various frequency granularities (e.g. size of sub-band), various size of CSI feedback payloads, various antenna port numbers (e.g. 32ports, 16ports) and other aspects of configurations which lead to different input/output CSI dimensions. 
In current stage, since the scalability issue has not been well studied, companies are encouraged to provide the details of methodologies to achieve the scalability of AI/ML model, including the pre-processing on the input and post-processing on the output of the AI/ML model, and the advanced training method to obtain the AI/ML model with good scalability. 


Figure 1: Zero-padding pre-processing on the input CSI of the encoder: (a) zero-padding on antenna port dimension; (b) zero-padding on sub-band dimension
Specifically, the zero-padding pre-processing on the input CSI of the encoder at the UE side can be utilized. For example, as shown in Figure 1 (a), the AI/ML model trained on dataset from Configuration#A with 32 port can be inferenced/tested on dataset from Configuration#B with 16 port and zero-padding on the antenna port domain. Similarly, as shown in Figure 2 (a), the AI/ML model trained on dataset from Configuration#A with 13 sub-band can be inferenced/tested on dataset from Configuration#B with 8 sub-band and zero-padding on the sub-band domain. 
Meanwhile, the clipping post-processing on the output CSI of the decoder at the gNB side should be utilized correspondingly. For example, for Figure 1 (a), the output CSI on the first 16 port should be reserved with real CSI input and another part of output CSI on the latter 16 port should be clipped with zero-padding input. For Figure 1 (b), the output CSI on first 8 sub-band should be reserved with real CSI input and another part of output CSI on the latter 5 sub-band should be clipped with zero-padding input.
For different CSI feedback payloads, referred to as the output of encoder and the input of decoder, the bitstream truncation operation can be considered. Specifically, we have two kinds of datasets from Configuration#A with CSI feedback payload  bits and Configuration#B with CSI feedback payload  bits with . When the AI/ML model trained on Configuration#A is adopted on Configuration#B, the first  bits can be reserved, and the latter  bits can be truncated during the interface feedback. Then, the truncated   bits can be regarded as default 0 or 1 for the decoder input.
For the scalability evaluation, we also suggest that companies to report the details of methods and configurations in current stage. Next, it would be better to construct one or several typical dataset(s) with aligned different configurations to draw the conclusion on scalability performance in this SI. 
Based on the above discussions, we have the following proposals:
Proposal 5: Suggest to study generalization issue and scalability issue separately.
· Focus on the same input and output CSI dimension with different configuration(s)/scenario(s) for generalization performance evaluation
· Focus on different input and output CSI dimensions with different configuration(s) for scalability performance evaluation
· E.g., different numbers of antenna ports, different number of sub-bands and different CSI feedback payloads
Proposal 6: Suggest to construct some typical datasets with aligned scenarios/configuration(s) to draw the conclusion on generalization performance.
· Companies to report the details of utilized scenarios/configurations in the current stage
Proposal 7: Suggest to construct some typical datasets with aligned configuration(s) to draw the conclusion on scalability performance
· Companies to report the details of utilized methods and configurations in the current stage
Proposal 8: For scalability evaluation, zero-padding, clipping and truncation can be considered for pre-processing and post-processing.
AI/ML model
In this contribution, we use the encoder at UE side and decoder at gNB side with Transformer backbone. The complexity with FLOPs and model size with trainable parameters are listed in Table 1. 
Table 1 FLOPs and trainable parameters
	AI/ML model
	FLOPs
	Trainable parameters

	Encoder
	~21.4M
	~10.7M

	Decoder
	~21.4M
	~10.7M

	Total
	~42.8M
	~21.4M



We used a model named EVCsiNet-T (as shown in Figure 2), in which each vector of sub-band in the input CSI matrix is firstly processed by an embedding layer and then 6 self-attention based blocks are sequentially introduced before a mixed 3bits/2bits quantization layer. As for the decoder part, after dequantization layer, a dense layer with 64 nodes is employed, followed by 6 self-attention based blocks as well. Finally, a reshape layer is implemented to obtain the output with the shape of the original CSI. The SGCS loss function is used to train the EVCsiNet-T. 
[image: ]
Figure 2: Illustration of EVCsiNet-T model for CSI feedback compression
From our opinion, in the initial stage of this SI, companies are encouraged to open their utilized dataset(s) and/or reference model(s), which would be very helpful for crosscheck between companies.  Furthermore, common dataset(s) and/or reference model(s) would be more efficient for performance calibration and drawing final conclusions. The reference model in our simulations for AI/ML based CSI feedback enhancement can be find in https://wireless-intelligence.com/#/download. However, how to establish common dataset(s) and/or reference model(s) in 3GPP frame remains further study.
Proposal 9: Companies are encouraged to disclose their utilized dataset(s) and reference model(s)
· FFS: to establish common dataset(s) and/or reference model(s) for performance calibration and drawing final conclusions.

Performance evaluation results
SLS throughput
In this section, we give some performance evaluation results with 32Tx4Rx antenna configuration. The SGCS for rank 1 and rank 2 on sub-band level for different CSI feedback overhead are provided in Figure 3 and Figure 4, where the R16 eType II is used as the comparable baseline. For rank 1, the CSI feedback overhead is (67, 92, 120, 174, 231, 250, 285, 335) bit for EVCsiNet-T-layer 1 and eType II. For rank 2, the CSI feedback overhead is (67, 92, 120, 174, 231, 250, 285, 335) bit for both EVCsiNet-T-layer 1 and EVCsiNet-T-layer 2, where the AI/ML model is trained on dataset for layer 1 and dataset for layer 2 with the same architecture EVCsiNet-T, respectively.  And the SGCS for rank 2 is calculated by the average of SGCS of layer 1 and layer 2. The training and testing dataset for each layer is 600k and 5k, respectively. 
Please note that “rank2” refers to the dynamic transmission of single-layer and 2-layer MIMO scheduled by gNB in the evaluation of SLS throughput. 

Figure 3. Comparison of SGCS between AI based CSI feedback and R16 eType II baseline (rank 1)

Figure 4. Comparison of SGCS between AI based CSI feedback and eType II baseline (rank 2)

Observed from Figure 3 and Figure 4 AI based CSI feedback with EVCsiNet-T can achieve higher SGCS performance compared with R16 eType II baseline for both rank 1 (5%~8%) and rank 2 (8%~16%), especially with lower feedback payload. Meanwhile, compared with rank 1, the AI based CSI feedback has larger performance gain in rank 2. 



Figure 5: Comparisons of SLS throughput between AI based CSI feedback and R16 eType II baseline with ideal channel estimation



Figure 6: Comparisons of SLS throughput between AI based CSI feedback and R16 eType II baseline with realistic channel estimation 
Observed from Figure 5 and Figure 6, AI based CSI feedback can achieve higher SLS throughput for all conditions, such as rank 1/2, FTP/Full buffer and ideal/realistic channel estimation, especially with lower CSI feedback overhead. Specifically, for rank 1 with realistic channel estimation, full buffer model can provide about 3%~6% and FTP model can provide about 1%~3% performance gain. Similar to SGCS comparison results, the performance gain is also larger for rank 2 configuration, about 4%~10% performance gain with FTP model. Based on the above evaluation results, we have the following observations:
Observation 1: Compared to rank 1 achieving 5%~8% SGCS gain and 1%~3% SLS throughput gain, AI based CSI feedback achieves 8%~16% SGCS gain and 4%~10% SLS throughput gain for rank 2.
Observation 2: Compared to higher feedback overhead achieving 1% for rank 1 and 4% for rank 2 SLS throughput gain, AI based CSI feedback achieves larger SLS throughput gain with lower feedback overhead, about 3% for rank 1 and 10% for rank 2.
Observation 3: Compared to FTP model achieving 1%~3% SLS throughput gain for rank 1, AI based CSI feedback achieves larger SLS throughput gain for full buffer model about 3%~6%.
In our simulations, only rank 1 and rank 2 configurations are evaluated on both intermediate KPI and SLS throughput considering MU-MIMO limitation. In the initial stage of this SI, the performance calibration for rank 1 and rank 2 should be firstly considered. While in the second stage, the performance for rank 3 and rank 4 on both intermediate KPI and SLS throughput using SU-MIMO should also be evaluated.
Proposal 10: For SLS evaluation and calibration:
· Evaluate and calibrate rank 1 and rank 2 with MU-MIMO in the first stage
· Evaluate and calibrate rank 3 and rank 4 with SU-MIMO in the second stage
Generalization evaluation
The generalization performance is presented in this part. As shown in Table 2, the intermediate KPI with SGCS trained on UMa/UMi/mixing datasets and inferenced on UMa/UMi with 67/174bit CSI feedback payload is given. Each training data consists of 600k samples, and each testing set includes 5k samples. For the mixing dataset, it includes 300k UMa samples and 300k UMi samples.
Table 2 Generalization performance evaluation
	Training set
	Testing set: payload

	
	UMa:67bit
	UMi:67bit
	UMa:174bit
	UMi:174bit

	UMa#600k
	0.786
	0.752
	0.878
	0.850

	UMi#600k
	0.772
	0.774
	0.844
	0.860

	UMa#300k + UMi#300k
	0.781
	0.765
	0.875
	0.857


Obviously, the SGCS of the AI/ML model trained on UMa degrades slightly when testing on UMi and vice versa. Meanwhile, the AI/ML model trained on mixing dataset can achieve relatively higher SGCS compared with the condition when training set and testing set are mismatching. Therefore, based on the results above, we have the following observations:
Observation 4: For different scenarios, the SGCS degradation is slight (about 1%~3%) when training set and testing set are mismatching.
Observation 5: For different scenarios, training on mixing dataset can improve the generalization performance of AI/ML model.
Scalability evaluation
The scalability performance is presented in this part, where the CDL-C channels with 300ns delay spread are utilized. Here, three kinds of configurations, including 32port#67bit, 16port#67bit and 16port#49bit are considered. Each dataset includes 100k samples, where 95k for training and 5k for testing. The intermediate KPI with SGCS for different training sets and testing sets are listed in Table 3.
Table 3 Scalability performance evaluation 
	Training set
	Testing set

	
	32 port#67bit
	16 port#67bit
	16 port#49bit

	32 port#67bit
	0.855
	0.693
	/

	16 port#67bit
	/
	0.886
	0.734

	16 port#49bit
	/
	/
	0.861

	32 port#67bit + 16 port#67bit
	0.853
	0.898
	/

	32 port#67bit + 16 port#49bit
	0.834
	/
	0.821


Here, when AI/ML model trained on 32-port dataset and tested on 16-port dataset, or trained on mixing datasets with 32 port and 16 port, the zero-padding pre-processing and clipping post-processing is utilized for 16-port dataset. When AI/ML model trained on 67bit and tested on 49bit, or trained on mixing datasets with 67bit and 49bit, the bitstream truncation and default 0 is utilized for 49bit dataset. 
Obviously, for the scalability on various antenna port, the AI/ML model only trained on 32 port performs terrible on 16 port, while the AI/ML model trained on mixing datasets with 32 port and 16 port can improve the SGCS significantly when testing on 16 port. Meanwhile, for the scalability on various CSI feedback payloads, the AI/ML model only trained on 67bit performs terrible on 49bit, while the AI/ML model trained on mixing datasets with 32 port#67bit and 16 port#49bit can improve the SGCS when testing on 49bit. Therefore, the scalability performance of AI/ML model can be improved by trained on mixing datasets including various configurations. Based on the results above, we have the following observations:
Observation 6: The scalability performance of AI/ML model for various antenna ports and CSI feedback payloads can be improved by trained on mixing datasets.
Discussion on CSI prediction
In 3GPP RAN1 #110, some conclusions about CSI prediction are also achieved as follows.
Conclusion
If the AI/ML based CSI prediction sub use cases is to be selected as a sub use case, consider CSI prediction involving temporal domain as a starting point.
Conclusion
If the AI/ML based CSI prediction sub use case is to be selected as a sub use case, a one-sided structure is considered as a starting point, where the AI/ML inference is performed at either gNB or UE.
Conclusion
If the AI/ML based CSI prediction sub use case is to be selected as a sub use case, for evaluation,
· 100% outdoor UE is assumed for UE distribution.
· FFS: whether to add O2I carpenetration loss per TS 38.901 if the simulation assumes UEs inside vehicles
· UE speed is assumed for evaluation with 10, 20, 30, 60, 120km/h
· Note: Companies to report the set/subset of speeds
· 5ms CSI feedback periodicity is taken as baseline, while other CSI feedback periodicity values can be reported for the EVM

Conclusion
If the AI/ML based CSI prediction sub use case is to be selected as a sub use case, companies are encouraged to report the details of their models for evaluation, including:
· The structure of the AI/ML model, e.g., type (FCN, RNN, CNN,…), the number of layers, branches, format of parameters, etc.
· The input CSI type, e.g., raw channel matrix, eigenvector(s) of the raw channel matrix, feedback CSI information, etc.
· The output CSI type, e.g., channel matrix, eigenvector(s), feedback CSI information, etc.
· Data pre-processing/post-processing
· Loss function
· Others are not precluded



Evaluation methodology 
As for CSI prediction, if it is selected as one sub use case, the EVM used for CSI compression sub use case should be the baseline for simplicity. Then, other specific parameters for CSI prediction (e.g. UE speed, outdoor/indoor UE distribution, CSI feedback periodicity) can be further considered. And whether UE trajectory and spatial consistency should be modeled should also be discussed. Before these detailed EVM settings, we should firstly focus on two issues as follows:
Firstly, the input and output of the AI/ML model for CSI prediction should be clarified. Here, both raw channel and eigenvector can be utilized. For raw channel prediction, the input/output of AI/ML model would be the channel matrix , where  are the numbers of Tx port, Rx port and subcarrier. For eigenvector prediction, the input/output of AI/ML model would be the eigenvector , where  is the number of sub-band.  Generally, selecting raw channel as the input/output may lead to a much huger dataset with massive storage space compared to eigenvector, which is inconvenient for dataset construction and AI/ML model training. Moreover, as for the intermediate KPI, normalized mean square error (NMSE) and SGCS can be used for raw channel and eigenvector, respectively. We think that using eigenvector for CSI prediction and SGCS as the intermediate KPI would be more intuitive since it has been widely used in CSI compression sub use case. 
Proposal 11：Suggest use eigenvector as the input and output of AI/ML model for CSI prediction sub use case.
Secondly, a proper non-AI baseline should be selected for comparison to AI/ML based CSI prediction. For CSI compression, we can obtain the relative performance gain over R16 Type II baseline. For CSI prediction, it is helpful for performance evaluation if companies can agree a public non-AI CSI prediction algorithm baseline (e.g. Kalman filtering, MMSE filtering, etc.).
Proposal 12: Suggest to use a public non-AI CSI prediction (e.g. Kalman filtering, MMSE filtering, etc.) as baseline for evaluation.
Conclusion
[bookmark: _GoBack]In this contribution, we provide some discussions and preliminary results about the evaluation on AI/ML for CSI feedback enhancement. Based on the discussions and evaluations, we have following observations and proposals:
Observation 1: Compared to rank 1 achieving 5%~8% SGCS gain and 1%~3% SLS throughput gain, AI based CSI feedback achieves 8%~16% SGCS gain and 4%~10% SLS throughput gain for rank 2.
Observation 2: Compared to higher feedback overhead achieving 1% for rank 1 and 4% for rank 2 SLS throughput gain, AI based CSI feedback achieves larger SLS throughput gain with lower feedback overhead, about 3% for rank 1 and 10% for rank 2.
Observation 3: Compared to FTP model achieving 1%~3% SLS throughput gain for rank 1, AI based CSI feedback achieves larger SLS throughput gain for full buffer model about 3%~6%.
Observation 4: For different scenarios, the SGCS degradation is slight (about 1%~3%) when training set and testing set are mismatching.
Observation 5: For different scenarios, training on mixing dataset can improve the generalization performance of AI/ML model.
Observation 6: The scalability performance of AI/ML model for various antenna ports and CSI feedback payloads can be improved by trained on mixing datasets.

Proposal 1: For intermediate KPI and SLS throughput evaluation, focus on R16 CSI enhancement as the baseline in current stage
· FFS: R17 CSI enhancement considering downlink/uplink channel reciprocity as the baseline.
Proposal 2: For traffic model, use FTP model 1 as the baseline and companies are encouraged to provide full buffer results for SLS throughput comparison.
Proposal 3: For channel estimation, use realistic channel estimation as the baseline for eventual SLS performance evaluation in inference stage and ideal channel estimation for dataset construction in AI/ML model training stage.
Proposal 4: For intermediate KPI, use SGCS as the evaluation metric for calibration.
· Average all ranks for rank > 1
Proposal 5: Suggest to study generalization issue and scalability issue separately.
· Focus on the same input and output CSI dimension with different configuration(s)/scenario(s) for generalization performance evaluation
· Focus on different input and output CSI dimensions with different configuration(s) for scalability performance evaluation
· E.g., different numbers of antenna ports, different number of sub-bands and different CSI feedback payloads
Proposal 6: Suggest to construct some typical datasets with aligned scenarios/configuration(s) to draw the conclusion on generalization performance.
· Companies to report the details of utilized scenarios/configurations in the current stage
Proposal 7: Suggest to construct some typical datasets with aligned configuration(s) to draw the conclusion on scalability performance
· Companies to report the details of utilized methods and configurations in the current stage
Proposal 8: For scalability evaluation, zero-padding, clipping and truncation can be considered for pre-processing and post-processing.
Proposal 9: Companies are encouraged to disclose their utilized dataset(s) and reference model(s)
· FFS: to establish common dataset(s) and/or reference model(s) for performance calibration and drawing final conclusions.
Proposal 10: For SLS evaluation and calibration:
· Evaluate and calibrate rank 1 and rank 2 with MU-MIMO in the first stage
· Evaluate and calibrate rank 3 and rank 4 with SU-MIMO in the second stage
Proposal 11：Suggest use eigenvector as the input and output of AI/ML model for CSI prediction sub use case.
Proposal 12: Suggest to use a public non-AI CSI prediction (e.g. Kalman filtering, MMSE filtering, etc.) as baseline for evaluation.
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R16 	67	96	117	174	231	285	250	335	0	1.2349189669371041E-2	2.9590502029523069E-2	4.4777349872200833E-2	4.8739318083857786E-2	5.2395715315378899E-2	5.7531577908203957E-2	6.0959468981558462E-2	AI	32	67	96	120	174	231	250	285	335	6.4041464458630681E-3	2.7491531083857046E-2	3.6292154532292731E-2	4.3993558814647615E-2	6.0074418332347168E-2	6.3862243942421237E-2	6.6286201424146096E-2	6.8679392717254872E-2	7.4589189239241849E-2	



FTP rank2- ideal CE

R16 	118	175	213	326	439	547	475	644	0	3.7391671493911982E-2	0.10578188286466372	0.15064874762858005	0.16566286518727247	0.17946632100176063	0.19590095744475033	0.20820878281720701	AI	64	134	192	240	348	462	500	570	670	0.10914938436973998	0.12843256973709805	0.14864099292927113	0.1965316669189352	0.2118371262773231	0.21443644139648299	0.22270258213050509	0.24113814494937369	



Full buffer rank1-realistic CE
R16 	67	96	117	174	231	285	250	335	0	2.0779220779220786E-2	5.1948051948051965E-2	8.181818181818179E-2	9.0909090909090828E-2	9.0909090909090828E-2	0.10779220779220777	0.11298701298701297	AI	32	67	96	120	174	231	250	285	335	1.8181818181818077E-2	5.7142857142857162E-2	6.883116883116891E-2	8.3116883116883145E-2	0.11818181818181817	0.12337662337662336	0.12467532467532472	0.12987012987012969	0.1376623376623376	R16 	67	96	117	174	231	285	250	335	0	2.0779220779220786E-2	5.1948051948051965E-2	8.181818181818179E-2	9.0909090909090828E-2	9.0909090909090828E-2	0.10779220779220777	0.11298701298701297	AI	32	67	96	120	174	231	250	285	335	1.8181818181818077E-2	5.7142857142857162E-2	6.883116883116891E-2	8.3116883116883145E-2	0.11818181818181817	0.12337662337662336	0.12467532467532472	0.12987012987012969	0.1376623376623376	



FTP rank1-realistic CE

R16 	67	96	117	174	231	285	250	335	0	1.2444948356711283E-2	2.8281639706890571E-2	4.3246384305320795E-2	4.7048579545282854E-2	4.810053331609776E-2	5.3857133623800957E-2	5.5798853633151735E-2	AI	32	67	96	120	174	231	250	285	335	8.991290197288837E-4	2.4205809635932773E-2	3.0596662863162649E-2	3.6279266996920967E-2	5.4907879293816686E-2	5.7640301276177253E-2	5.8940519761206955E-2	6.1647269601586396E-2	6.4258579478837508E-2	



FTP rank2- realistic CE

R16 	118	175	213	326	439	547	475	644	0	4.0342939629358199E-2	0.10841138740826217	0.15520926278023572	0.16947949416287877	0.18029860647198714	0.19574467091156267	0.20810539986265608	AI	64	134	192	240	348	462	500	570	670	0.10721149578858369	0.12605168620159679	0.14259837149223831	0.19635314232858869	0.21239693358435208	0.2128430680974116	0.21897496508004743	0.23912833257809685	



Microsoft_Visio_Drawing.vsdx
Configuration#B16 port
zero-padding
Configuraion#A
32 port
Antenna port
Sub-band
Configuration#B8 sub-band
zero-padding
Configuration#A 13 sub-band
Antenna port
Sub-band
(a)
(b)



image2.jpg
EVCsiNet-T

Encoder

Decoder

Input

Embedding

Quantization

Dequantization

FG

Output





image1.emf
Configuration#B

16 port

zero-padding

Configuraion#A

32 port 

Antenna port

Sub

-

band 

Configuration#B

8 sub-band

zero-padding

Configuration#A 

13 sub-band

Antenna port

Sub

-

band 

(a)

 (b)


