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1 Introduction
According to discussion in 3GPP RAN1#110 meeting [1], some progress has been made on evaluation methodology for CSI feedback enhancement. In this contribution, we provide our views on further details for evaluation methodology and share some initial evaluation results. In our companion contribution [2], representative sub-use case selection and potential specification impacts are discussed accordingly.
2 Generic issues on evaluation methodology
2.1 System Level Simulation Evaluation
	· Agreements in RAN1#109-e
Agreement:
For the evaluation of the AI/ML based CSI feedback enhancement, for ‘Channel estimation’, ideal DL channel estimation is optionally taken into the baseline of EVM for the purpose of calibration and/or comparing intermediate results (e.g., accuracy of AI/ML output CSI, etc.)
· Note: Eventual performance comparison with the benchmark release and drawing SI conclusions should be based on realistic DL channel estimation.
· FFS: the ideal channel estimation is applied for dataset construction, or performance evaluation/inference.
· FFS: How to model the realistic channel estimation
· FFS: Whether ideal channel is used as target CSI for intermediate results calculation with AI/ML output CSI from realistic channel estimation
Agreement:
For the evaluation of the AI/ML based CSI feedback enhancement, if SLS is adopted, the ‘Baseline for performance evaluation’ in the baseline of EVM is captured as follows
	Base Baseline for performance evaluation
	Companies need to report which option is used between
-        Rel-16 TypeII Codebook as the baseline for performance and overhead evaluation.
-        Rel-17 TypeII Codebook as the baseline for performance and overhead evaluation.
-         FFS: Whether Type I Codebook can be optionally considered at least for performance evaluation





After RAN1#109-e and RAN1#110, some remaining issues have been left.
· Issue#1: Whether full buffer traffic model is optionally taken for the purpose of calibration and eventual performance comparison with the benchmark release and drawing SI conclusions. 
· Issue#2: Whether ideal channel is used as target CSI for intermediate results calculation with AI/ML output CSI from realistic channel estimation
· Issue#3: Whether Type I Codebook can be optionally considered at least for performance evaluation
For the Issue#1, we think that full buffer can be optionally taken into account for calibration purpose. At the same time, SI conclusions should be drawn according to evaluation results of FTP traffic models rather than full buffer.
Proposal 1: Full buffer traffic model can be optionally taken for calibration purpose and SI conclusions should be based on evaluation results of FTP traffic models.
For the Issue#2, if ideal channel is used as a target CSI for intermediate results calculation with AI/ML output CSI from realistic channel estimation, companies can easily identify the performance loss compared to the ideal channel. 
Proposal 2: Intermediate results should be calculated based on ideal channel and AI/ML model output at least for calibration purpose.
Considering the Issue#3, it is not necessary to take Type I CB for performance evaluation since the AI CSI should target on improving performance of MU-MIMO. According to previous study, Type I CB can barely achieve performance gain over traditional Type II codebook . Therefore, we prefer Rel-16 Type II CB or Rel-17 Type II CB to be adopted as the baseline for performance comparison.
Proposal 3: Type I CB is not necessary to be taken as a baseline for performance evaluation.
2.2 Evaluation Metrics
	· Agreements in RAN1#109-e
Agreement:
For the evaluation of the AI/ML based CSI feedback enhancement, if the GCS/SGCS is adopted as the intermediate KPI as part of the ‘Evaluation Metric’ for rank>1 cases, companies to report the GCS/SGCS calculation/extension methods, including:
· Method 1: Average over all layers
· Note: [image: ] is the [image: ]eigenvector of the target CSI at resource unit i and K is the rank. [image: ]is the [image: ] output vector of the output CSI of resource unit i. [image: ] is the total number of resource units. [image: ] denotes the average operation over multiple samples.
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· Method 2: Weighted average over all layers
· Note: Companies to report the formula (e.g., whether normalization is applied for eigenvalues)
· Method 3: GCS/SGCS is separately calculated for each layer (e.g., for K layers, K GCS/SGCS values are
derived respectively, and comparison is performed per layer)
· Other methods are not precluded
· FFS: Further down-selection among the above options or take one/a subset of the above methods as baseline(s).
· Agreements in RAN1#110
Agreement:
For the evaluation of the AI/ML based CSI feedback enhancement, if the GCS/SGCS is adopted as the 
intermediate KPI as part of the ‘Evaluation Metric’, between GCS and SGCS, SGCS is adopted
Agreement:
For the evaluation of the AI/ML based CSI compression sub use cases, the capability/complexity related KPIs, including FLOPs as well as AI/ML model size and/or number of AI/ML parameters, are to be reported separately for the CSI generation part and the CSI reconstruction part.


In order to evaluate and calibrate the performance of AI/ML models among companies, intermediate KPIs have been decided in RAN1#109-e and RAN1#110, and one remaining issue has been left.
· Issue#1: Whether to further down-select among options for SGCS calculation when rank>1
In the above agreement, several SGCS calculation methods are proposed for rank>1. Since Method 1 and Method 2 either puts on the same weight or different weight on different layers, it’s hard to identify the performance gain for each layer. Method 3 can be used to analyze intermediate performance gains from different layers, which actually influence the eventual system throughput. 
Proposal 4: Method 3 can be adopted as a baseline for SCGS calculation when rank>1.
2.3 Methodology for Generalization
	· Agreements in RAN1#110
Agreement
The following cases are considered for verifying the generalization performance of an AI/ML model over various scenarios/configurations as a starting point:
· Case 1: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model performs inference/test on a dataset from the same Scenario#A/Configuration#A
· Case 2: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model performs inference/test on a different dataset than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B
· Case 3: The AI/ML model is trained based on training dataset constructed by mixing datasets from multiple scenarios/configurations including Scenario#A/Configuration#A and a different dataset than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B, and then the AI/ML model performs inference/test on a dataset from a single Scenario/Configuration from the multiple scenarios/configurations, e.g.,  Scenario#A/Configuration#A, Scenario#B/Configuration#B, Scenario#A/Configuration#B.
· Note: Companies to report the ratio for dataset mixing
· Note: number of the multiple scenarios/configurations can be larger than two
· FFS the detailed set of scenarios/configurations
· FFS other cases for generalization verification, e.g.,
· Case 2A: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model is updated based on a fine-tuning dataset different than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B. After that, the AI/ML model is tested on a different dataset than Scenario#A/Configuration#A, e.g., subject to Scenario#B/Configuration#B, Scenario#A/Configuration#B.
Agreement
For CSI enhancement evaluations, to verify the generalization performance of an AI/ML model over various scenarios, the set of scenarios are considered focusing on one or more of the following aspects as a starting point:
· Various deployment scenarios (e.g., UMa, UMi, InH)
· Various outdoor/indoor UE distributions for UMa/UMi (e.g., 10:0, 8:2, 5:5, 2:8, 0:10)
· Various carrier frequencies (e.g., 2GHz, 3.5GHz)
· Other aspects of scenarios are not precluded, e.g., various antenna spacing, various antenna virtualization (TxRU mapping), various ISDs, various UE speeds, etc.
· Companies to report the selected scenarios for generalization verification
Agreement
For CSI enhancement evaluations, to verify the generalization/scalability performance of an AI/ML model over various configurations (e.g., which may potentially lead to different dimensions of model input/output), the set of configurations are considered focusing on one or more of the following aspects as a starting point:
· Various bandwidths (e.g., 10MHz, 20MHz) and/or frequency granularities, (e.g., size of subband)
· Various sizes of CSI feedback payloads, FFS candidate payload number
· Various antenna port layouts, e.g., (N1/N2/P) and/or antenna port numbers (e.g., 32 ports, 16 ports)
· Other aspects of configurations are not precluded, e.g., various numerologies, various rank numbers/layers, etc.
· Companies to report the selected configurations for generalization verification
· Companies are encouraged to report the method to achieve generalization over various configurations to achieve scalability of the AI/ML input/output, including pre-processing, post-processing, etc.


In order to evaluate and calibrate the performance of AI/ML models among companies, generalization evaluation methodologies have been agreed in RAN1#109-e and RAN1#110. There is one remaining issue
· Issue#1: Case 2A for generalization verification is FFS
For case 2A, the AI/ML model is trained based on training data from the first Scenario/Configuration, and then updated based on training data from the second Scenario/Configuration different from the first Scenario/Configuration. Case 2A tends to evaluate the performance improvement on the second Scenario/Configuration compared with Case 2, since Case 2A targets on the performance of a fine-tuned model. While Case 2 simply cares about the generalization performance of the original model. In addition, Case 2A also differs from Case 3 that Case 2A only focuses on the performance in the second Scenario/Configuration. However,  Case 3 takes the performance of both Scenarios/Configurations into account. Therefore, it is more appropriate for Case 2A to be listed as an independent case for further study, which should not be merged into either Case 2 or Case 3.
Proposal 5: Case 2A can be listed as an independent case for verifying model generalization
3 Evaluations on CSI compression in spatial and frequency domain
3.1 Model input and model output
	· Agreements in RAN1#109-e
Agreement:
For the evaluation of the AI/ML based CSI compression sub-use cases, a two-sided model is considered as a starting point, including an AI/ML-based CSI generation part to generate the CSI feedback information and an AI/ML-based CSI reconstruction part which is used to reconstruct the CSI from the received CSI feedback information.
· At least for inference, the CSI generation part is located at the UE side, and the CSI reconstruction part is located at the gNB side.


In RAN1#109-e, AI/ML based CSI compression sub-use case was agreed. For ease of comparison, the data type & data size of the training data input to AI models are encouraged to be discussed and aligned if possible. In our contribution proposed for RAN1#109-e [4], we provided the model input and the model output details for rank=1. In this contribution, more details of rank>1 will be elaborated.
For rank>1, in our initial evaluation, we propose two cases for AI/ML model to compress and recover the sub-band eigenvectors for CSI compression sub-use case. 
· Case 1: Single layer in model input and single layer in model output






For Case 1, we mix the sub-band eigenvectors of multiple layers from multiple UEs as training samples so the total number of training samples is , where  denotes the layer number and  denotes the number of UEs. For model testing/inference, the input of AI model is a group of sub-band eigenvectors obtained from the same layer, which can be a three-dimensional tensor with a size of , where 2 denotes real and imaginary parts of each complex channel coefficient,  denotes the number of transmit antenna ports, and  denotes the number of sub-bands. Then, the output of AI model is recovered eigenvectors. Essentially, the AI input is still one layer of data and the model structure is the same as rank=1. The detailed AI/ML framework is shown in Figure 1(a). 
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Figure 1(a) The input and output of AI/ML models for Case 1
· Case 2: Multiple layers in model input and multiple layers in model output







For Case 2, we generate the sub-band eigenvectors of multiple layers from multiple UEs as training samples so the total number of training sample is , where  denotes the number of UE samples. For model testing/inference, the input of AI model is a group of sub-band eigenvectors obtained from  layers, which can be a three-dimensional tensor with a size of , where 2 denotes real and imaginary parts of each complex channel coefficient,  denotes the layer number,  denotes the number of transmit antenna ports, and  denotes the number of sub-bands. Then, the output of AI model is recovered eigenvectors. Different from Case 1, the AI input is multiple layers of data and the model structure needs to be changed from rank=1. The detailed AI/ML framework is shown in Figure 1(b). 
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Figure 1(b) The input and output of AI/ML models for Case 2 
Proposal 6: For rank>1, two cases on model input/output can be considered for intermediate KPIs and eventual performance evaluation as a starting point.
· Case 1: Single layer in model input and single layer in model output 
· Case 2: Multiple layers in model input and multiple layers in model output
3.2 CSI training dataset and inference dataset separation
In RAN1#110 meeting, the issue of CSI training dataset and inference dataset separation was raised for discussion, since inappropriate dataset separation for AI training/inference may cause an unconvincing conclusion. For example, if the testing data derives from the training dataset, the testing data and training data are so similar that the trained model may show better performance than the real model performance.. For dataset construction for training and inference,.there are at least two methods can be applied. With the first method, UE channel data may be generated for one TTI from multiple drops, which brings abundant channel diversity. With the second method, UE channel data may be generated for multiple TTIs from a few drops, which may introduce strong time correlation across different TTIs of the same drop. Two different dataset constructions may show different performance gains, where AI model will show real performance gains with the first method while inaccurate performance gains may be obtained using the second method. From our perspective, the first method can be adopted for dataset separation, i.e. training dataset and inference dataset follow multiple diverse drops.
Proposal 7: For CSI dataset construction, training dataset and inference dataset should be separated in different drops at least for calibration purpose.
4 Evaluations on CSI prediction involving temporal domain
According to discussion in 3GPP RAN1#110 meeting [1], some conclusions have been drawn on evaluation methodology for the sub use case of CSI prediction involving temporal domain as follows:
	· Conclusions in RAN1#110
Conclusion:
If the AI/ML based CSI prediction sub use cases is to be selected as a sub use case, consider CSI prediction involving temporal domain as a starting point.
Conclusion:
If the AI/ML based CSI prediction sub use cases is to be selected as a sub use case, consider CSI prediction involving temporal domain as a starting point.
Conclusion
If the AI/ML based CSI prediction sub use case is to be selected as a sub use case, a one-sided structure is considered as a starting point, where the AI/ML inference is performed at either gNB or UE.
Conclusion
If the AI/ML based CSI prediction sub use case is to be selected as a sub use case, for evaluation,
· 100% outdoor UE is assumed for UE distribution.
· FFS: whether to add O2I car penetration loss per TS 38.901 if the simulation assumes UEs inside vehicles
· UE speed is assumed for evaluation with 10, 20, 30, 60, 120km/h
· Note: Companies to report the set/subset of speeds
· 5ms CSI feedback periodicity is taken as baseline, while other CSI feedback periodicity values can be reported for the EVM
Conclusion
If the AI/ML based CSI prediction sub use case is to be selected as a sub use case, companies are encouraged to report the details of their models for evaluation, including:
· The structure of the AI/ML model, e.g., type (FCN, RNN, CNN,…), the number of layers, branches, format of parameters, etc.
· The input CSI type, e.g., raw channel matrix, eigenvector(s) of the raw channel matrix, feedback CSI information, etc.
· The output CSI type, e.g., channel matrix, eigenvector(s), feedback CSI information, etc.
· Data pre-processing/post-processing
· Loss function
· Others are not precluded



4.1 Evaluation assumptions for temporal CSI prediction
In the AI-based CSI prediction design, the AI model is designed to derive the prediction of CSI in the future occasion as the output of model when using the historical CSIs as the input. The process of AI-based CSI prediction is illustrated in Figure 2. 
[image: ]
Figure 2 The process of AI-based CSI prediction
For CSI prediction, the data generation generally follows the SLS simulation assumptions of AI-based CSI compression [3], where some specific assumptions for CSI prediction are listed: 
· UE distribution: 100% outdoor
· UE speed: 30km/h
· CSI feedback periodicity: 5ms
· UE trajectory: Reflected by Doppler shift
· Non-AI baseline for CSI prediction: Nearest historical CSI (sample-and-hold)
Proposal 8: Evaluation assumptions for AI-based CSI prediction can reuse agreed assumptions in Rel-18 MIMO for Type-II codebook refinement under high/medium velocities as much as possible.
4.2 Model input and model output




For CSI prediction involving temporal domain, we design a single-sided AI model applied at UE in our initial evaluation. The AI/ML model aims at predicting the channel matrices in future occasions based on multiple historical channel measurements. In our evaluation, the input of AI model is a group of historical channel on PRBs from one receiving RF chain, which constructs a four-dimensional tensor with a size of , where 2 denotes real and imaginary parts of each complex channel coefficient,  denotes the number of historical CSI measurement,  denotes the number of transmission antenna ports, and  denotes the number of physical resource blocks. Then, the output of AI model is predicted channel on PRBs in a future occasion. The detailed AI/ML model is shown in Figure 3.
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Figure 3 The input and output of AI/ML models for CSI prediction
Proposal 9: For AI-based CSI prediction, the raw channel matrix on PRBs as model input/output can be considered for intermediate evaluations at least for calibration purpose.
5 Preliminary Evaluation Results for CSI compression
We perform a preliminary simulation on spatial-frequency domain CSI compression sub-use case to evaluate the performance of AI models and the Rel-16 eTypeII is also simulated for baseline comparison. The detailed simulation assumptions are shown in Table 9-1. In addition, detailed AI model training parameters are listed in Table 9-2. The system-level channel data is generated from 3000 simulation drops and 210 UEs per simulation drop, which results in 630000 samples in total. Then, the datasets are randomly divided into three parts which are training, validation, and testing datasets with 600000, 10000, and 20000 samples respectively. In our evaluation, ideal sub-band eigenvectors are used as the input of AI models for training, validation and testing. The number of parameters ranges from about 9M-11M, where the CSI generation part is about 4M-5M and the CSI reconstruction part is 5M-6M. In addition, the FLOPs of CSI generation part and CSI reconstruction part are approximately 25M-26M and 27M-29M, respectively.
5.1 Rank up to 1
In this section, we initially evaluate the intermediate KPIs, e.g. GCS/SGCS, between our AI approach and the Rel-16 eType II. The results are shown in Figure 4(a). According to the simulation results, the AI based CSI recovery shows about 3%-4% GCS gains and 7%-8% SGCS gains over the Rel-16 eType II. In order to explore the eventual UPT performance of our AI model, the SLS is performed for the case of up to 4 layers MU scheduling under FTP3 traffic model with 70% RU and the simulation results are shown in Figure 4(b). Only less than 1% UPT performance gain can be obtained since Rel-16 eTypeII can already achieve good performance. 
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Figure 4(a) Subband-level SGCS simulation results       Figure 4(b) Average UPT gain with RU=70%
Observation 1: AI based CSI reconstruction completely outperforms the Rel-16 eType II in term of SGCS for rank=1. With the same feedback overhead, AI based CSI recovery can obtain 7%-8% SGCS gains. 
Observation 2: AI based CSI reconstruction achieves very little UPT gain for the case of rank=1 and less than 1% average UPT gain over Rel-16 eTypeII with the same feedback overhead. 
5.2 Rank up to 2
In this section, the intermediate and eventual simulation results for Rel-16 eTypeII and AI based CSI recovery are provided. Figure 5 illustrates the SGCS comparison between the AI model and Rel-16 Type II codebook for each layer under the rank=2 case. As can be seen, the 1st layer outperforms the 2nd layer in terms of SGCS, where the reason may be that the 1st layer contains less features compared to the 2nd layer. Moreover, AI outperforms Rel-16 Type II codebook in terms of SGCS for each layer, indicating higher accuracy of CSI recovery by AI. In addition, Case 1 with single-layer model input and single-layer model output generally shows better SGCS performance than Case 2 with multi-layer model input and multi-layer model output for each layer. 
[image: ]
Figure 5 SGCS simulation results for each layer	Comment by ZTE: Title and figure should be in the same page.
Observation 3: AI based CSI reconstruction with Case 1 method (single-layer model input and single-layer model output) shows performance gains in SGCS per layer over the Rel-16 eType II for rank =2.
Observation 4: Case 1(single-layer model input and single-layer model output) can achieve better performance than Case 2 (multi-layer model input and multi-layer model output).
To evaluate the eventual performance of AI/ML approaches, we further evaluate average UPT versus feedback overhead under the up to 8 layers MU scheduling and FTP 3 traffic model with 50% and 70% resource utilization (RU). Regarding the SGCS performance between the two cases of AI models, Case1 AI model is adopted for the subsequent eventual throughput simulation. The simulation results are shown in Figure 6(a) and Figure 6(b).
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Figure 6(a) Average UPT gain with RU=50%         Figure 6(b) Average UPT gain with RU=70%
Observation 5: With maximum rank up to 2 under the same feedback overhead, AI based CSI reconstruction has about 4%-6% average UPT gain over the Rel-16 eType II under the case of 50% RU and 5%-8.5% average UPT gain can be obtained by AI based CSI recovery under the case of 70% RU.
Observation 6: The SGCS performance for AI/ML-based CSI compression presents positive correlation with the throughput performance for maximum rank up to 2.
Observation 7: AI/ML approaches show better throughput performance with heavy traffic load for up to rank=2.
5.3 Rank up to 4
In this section, the intermediate and eventual simulation results for Rel-16 eTypeII and AI based CSI recovery are provided. Figure 7 shows the comparison of SGCS between the AI model and Rel-16 Type II codebook for each layer under the rank=4 cases, in which Figure 7 provides the SGCS performance for rank=4. As can be seen, there are larger performance gains in the 3rd layer and the 4th layer than the 1st layer and the 2nd layer in terms of SGCS, where the reason may be that some feedback bits of layer 1/2 are sacrificed and distributed to layer 3/4 compared with eType II... However, AI still outperforms Rel-16 Type II codebook in terms of SGCS for each layer, indicating higher accuracy of CSI recovery by AI.  
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Figure 7 SGCS for each layer for rank=4
Observation 8: AI based CSI reconstruction shows performance gain in SGCS per layer over the Rel-16 eType II for rank =3/4.
Observation 9: AI based CSI reconstruction shows larger performance gains in layer 3/4 than layer 1/2 in terms of SGCS with the assumption of the same feedback overhead of each layer.
To evaluate the eventual performance of AI/ML approaches, we further evaluate average UPT versus feedback overhead under up to 12 layers MU scheduling and FTP 3 traffic model with 50% and 70% resource utilization (RU). The simulation results are shown in Figure 8(a) and Figure 8(b).
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Figure 8(a) Average UPT gain with RU=50%         Figure 8(b) Average UPT gain with RU=70%
Observation 10: For up to rank=4, with the same feedback overhead, AI based CSI reconstruction has about 4%-13% average UPT gain over the Rel-16 eType II under the case of 50% RU and 6%-16% average UPT gain can be obtained by AI based CSI reconstruction under the case of 70% RU.
Observation 11: The SGCS performance for AI/ML-based CSI compression presents positive correlation with the throughput performance for up to rank=4.
Observation 12: AI/ML approaches show better throughput performance with heavy traffic load for up to rank=4.
Proposal 10: The case of rank>1 should be prioritized in later discussion.
5.4 Model gGeneralization 
In this section, we provide some results for the evaluation of model generalization capability.. 
Various deployment scenarios:
We simulate AI generalization for various deployment scenarios, where the following three cases are considered.
· Case 1: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model performs inference/test on a dataset from the same Scenario#A/Configuration#A
· Case 2: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model performs inference/test on a different dataset than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B
· Case 3: The AI/ML model is trained based on training dataset constructed by mixing datasets from multiple scenarios/configurations including Scenario#A/Configuration#A and a different dataset than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B, and then the AI/ML model performs inference/test on a dataset from a single Scenario/Configuration from the multiple scenarios/configurations, e.g., Scenario#A/Configuration#A, Scenario#B/Configuration#B, Scenario#A/Configuration#B.
Table 5-1 provides generalization performance in term of SGCS for scenarios of UMa, UMi, InH and two mixed scenarios. The training dataset consists of 600000 samples and the testing dataset consists of 20000 samples for each generalization operationcase. The mixed training dataset has two types, where the first type is Mixed 1 with UMa:UMi=1:1, and the second type is Mixed 2 with UMa:UMi:InH=1:1:1. For comparison, (.) in Table 5-1 also givesshows performance gains of baseline scheme(i.e., out the gains over the corresponding performance of case 1). As shown in the Table 5-1, the generalization results of case 2 show large negative effect, where most of  of  SGCS performance reduction is smalleres  more than 0.02. However, the generalization results of case 3 show smaller negative effectmarginal performance loss over baseline scheme, indicating that the mixed dataset is beneficial to model generalization.
Table 5-1 SGCS for various deployment scenarios
	Model training 
	Model testing
Overhead: total 644bits with each layer for 322bits
SGCS: Layer1/Layer2
SGCS gains: (Layer1/Layer2)

	
	UMa
	UMi
	InH

	UMa
	0.9218/0.8661
(0/0)
	0.9137/0.8560
(-0.0177/-0.0252)
	0.9339/0.9087
(-0.0165/-0.0222)

	UMi
	0.9226/0.8636
(0.0008/-0.0025)
	0.9314/0.8812
(0/0)
	0.9367/0.9084
(-0.0137/-0.0225)

	InH
	0.8706/0.7972
(-0.0512/-0.0689)
	0.8510/0.7685
(-0.0804/-0.1127)
	0.9504/0.9309
(0/0)

	Mixed 1:
UMa:UMI=1:1
	0.9226/0.8668
(0.0008/0.0007)
	0.9228/0.8696
(-0.0086/-0.0116)
	0.9403/0.9155
(-0.0101/-0.0154)

	Mixed 2:
UMa:UMI:InH=1:1:1
	0.9211/0.8652
(0.0007/-0.0009)
	0.9217/0.8691
(-0.0097/-0.0121)
	0.9609/0.9420
(0.0105/0.0111)


Observation 13: Case 3(AI model trained with mixed deployment scenarios) shows good generalization performance for various deployment scenarios.
Observation 14: The AI model trained with the scenario of UMa/UMi shows good generalization performance for InH dataset, while the AI model trained with the scenario of InH shows generalization degradation for UMa/UMi dataset.

Various configurations on bandwidths:

We simulate AI generalization for different datasets with bandwidths of 10MHz (52RBs) and 20MHz (104RBs). According to agreements made in previous meetings, 4RBs per sub-band for 10MHz and 8RBs per sub-band for 20MHz are adopted, hence the AI input sizes keep the same for both datasets, which are . Besides, two generalization cases are designed as follows and the results are shown in Figure 9. Compared with the cases of training and testing following the same bandwidth configuration, there is no obvious performance loss for both Case A and Case B.
· Case A: 10M dataset for training/validation and 20M dataset for testing
· Case B: 20M dataset for training/validation and 10M dataset for testing
[image: ]
Figure 9 AI generalization for different bandwidth configurations
Observation 15: AI/ML approaches can achieve good generalization performance for the case that the training/validation dataset and testing dataset are generated with different bandwidth configurations.
Various configurations on antenna port numbers:
We also simulate AI generalization for various antenna port numbers, where three cases of generalization are considered. Table 4-2 provides generalization performance in term of SGCS for port numbers of 16, 32 and their mixed version. The training dataset consists of 600000 samples and the testing dataset consists of 20000 samples for each generalization operation. For comparison, (.) in Table 5-2 showsalso shows performance gains of baseline scheme(i.e., case 1) the gains over the performance of case 1. In addition, the generalizations of case 2 have large performance degradation, where generalization performance reduces more than 0.05. However, the case 3 generally shows better generalization performance than case 2, where the SGCS performance loss is less than 0.02..
Table 5-2 SGCS for various antenna port number
	Model training 
	Model testing:Overhead:total 644bits with each layer for 322bits
SGCS: Layer1/Layer2
SGCS gains: (Layer1/Layer2)

	
	16 Ports(Zero padding to 32 ports)
	32 Ports


	16 Ports(Zero padding to 32 ports)
	0.9470/0.9047
(0/0)
	TBD

	32 Ports
	0.9151/0.8525
(-0.0319/-0.0522)

	0.9218/0.8661
(0/0)

	Mixed:
16 Ports:32 Ports = 1:1

	0.9553/0.9168
(0.0083/0.0121)
	0.9136/0.8534
(-0.0082/-0.0127)


Observation 16: Case 3(AI model trained with mixed configurations of antenna port numbers) shows good generalization performance for various antenna port numbers.
Observation 17: AI model trained with the configuration of 32 antenna ports can maintain performance for 16 antenna ports.
Proposal 11: Case 3(AI model trained with mixed dataset) can be utilized to study AI generalization as a starting point.
6 Preliminary Evaluation Results for CSI Prediction
We perform a preliminary simulation on the sub-use case of CSI prediction to evaluate the performance of AI models and the nearest sampled CSI is selected for non-AI baseline comparison. For AI/ML model, detailed training parameters are listed in Table 9-3. The channel data is divided into three parts which are training, validation, and testing datasets with 80000, 2000, and 2000 samples respectively. In our evaluation, historical channel measurements are used as the input of AI models for training, validation and testing. The parameter number of our AI/ML models is about 14.3K. In addition, the FLOPs of prediction in a future occasion are 3.9M.
6.1 Performance comparison with non-AI approach
In this section, we initially evaluate the intermediate KPIs, e.g. NMSE, between our AI approach and the non-AI baseline. We simulate 4 historical CSIs and 10 historical CSIs as the input of AI model to predict 3 CSIs in future occasions, respectively. The results are shown in Table 6-1 and Table 6-2. According to the simulation results, the AI based CSI prediction completely outperforms non-AI baseline in both cases.
Table 6-1 CSI prediction based on 4 historical CSIs
	Predicted time
	P=1 (+5ms)
	P=2 (+10ms)
	P=3 (+15ms)

	Type
	AI
	Non-AI
	AI
	Non-AI
	AI
	Non-AI

	NMSE(dB)
	-12.33
	0.6817
	-6.482
	4.291
	-5.322
	3.756


Table 6-2 CSI prediction based on 10 historical CSIs
	Predicted time
	P=1 (+5ms)
	P=2 (+10ms)
	P=3 (+15ms)

	Type
	AI
	Non-AI
	AI
	Non-AI
	AI
	Non-AI

	NMSE(dB)
	-19.09
	1.174
	-10.013
	4.284
	-6.29
	3.367


Observation 18: AI-based CSI prediction completely outperforms the non-AI method.
Observation 19: The prediction accuracy of AI-based approach drops seriously when the predicted time becomes longer due to the channel aging. However, AI-based CSI prediction can still maintain its performance for a long time.
Observation 20: The prediction accuracy of AI-based approach improves with the increasing number of historical CSIs as model input.
6.2 Diverse historical CSI samples for AI CSI prediction
In order to evaluate the performance influenced by the length of observation window, we set diverse samples of historical CSIs as AI model inputs.The simulation results are shown in Table 6-3. According to the simulation results, the prediction accuracy of AI-based approach improves with the increasing number of historical CSIs as model input..



Table 6-3 CSI prediction based on diverse samples of historical CSIs
	Historical samples
	AI,T=1
	AI,T=2
	AI,T=3
	AI,T=4
	AI,T=6
	AI,T=8
	AI,T=10
	Non-AI

	NMSE(dB)
	-0.8175
	-8.205
	-10.34
	-12.12
	-15.99
	-17.42
	-17.70
	0.0688


Observation 21: The prediction accuracy of AI-based approach presents positive correlation with the number of historical CSIs as model input.
Proposal 12: The number of observation window and prediction window need to be discussed at least for calibration purpose. 
7 Conclusion
In this contribution, we discuss the evaluations on AI/ML for CSI feedback enhancement, and provide preliminary simulation results. We have the following observations and proposals.
Proposal 1: Full buffer traffic model can be optionally taken for calibration purpose and SI conclusions should be based on evaluation results of FTP traffic models.
Proposal 2: Intermediate results should be calculated based on ideal channel and AI/ML model output at least for calibration purpose.
Proposal 3: Type I CB is not necessary to be taken as a baseline for performance evaluation.
Proposal 4: Method 3 can be adopted as a baseline for SCGS calculation when rank>1.
Proposal 5: Case 2A can be listed as an independent case for verifying model generalization
Proposal 6: For rank>1, two cases on model input/output can be considered for intermediate KPIs and eventual performance evaluation as a starting point.
· Case 1: Single layer in model input and single layer in model output 
· Case 2: Multiple layers in model input and multiple layers in model output
Proposal 7: For CSI dataset construction, training dataset and inference dataset should be separated in different drops at least for calibration purpose.
Proposal 8: Evaluation assumptions for AI-based CSI prediction can reuse agreed assumptions in Rel-18 MIMO for Type-II codebook refinement under high/medium velocities as much as possible.
Proposal 9: For AI-based CSI prediction, the raw channel matrix on PRBs as model input/output can be considered for intermediate evaluations at least for calibration purpose.
Proposal 10: The case of rank>1 should be prioritized in later discussion.
Proposal 11: Case 3(AI model trained with mixed dataset) can be utilized to study AI generalization as a starting point.
Proposal 12: The number of observation window and prediction window need to be discussed at least for calibration purpose. 
Observation 1: AI based CSI reconstruction completely outperforms the Rel-16 eType II in term of SGCS for rank=1. With the same feedback overhead, AI based CSI recovery can obtain 7%-8% SGCS gains. 
Observation 2: AI based CSI reconstruction achieves very little UPT gain for the case of rank=1 and less than 1% average UPT gain over Rel-16 eTypeII with the same feedback overhead. 
Observation 3: AI based CSI reconstruction with Case 1 method (single-layer model input and single-layer model output) shows performance gains in SGCS per layer over the Rel-16 eType II for rank =2.
Observation 4: Case 1(single-layer model input and single-layer model output) can achieve better performance than Case 2 (multi-layer model input and multi-layer model output).
Observation 5: With maximum rank up to 2 under the same feedback overhead, AI based CSI recovery has about 4%-6% average UPT gain over the Rel-16 eType II under the case of 50% RU and 5%-8.5% average UPT gain can be obtained by AI based CSI recovery under the case of 70% RU.
Observation 6: The SGCS performance for AI/ML-based CSI compression presents positive correlation with the throughput performance for maximum rank up to 2.
Observation 7: AI/ML approaches show better throughput performance with heavy traffic load for up to rank=2.
Observation 8: AI based CSI reconstruction shows performance gain in SGCS per layer over the Rel-16 eType II for rank =3/4.
Observation 9: AI based CSI reconstruction shows larger performance gains in layer 3/4 than layer 1/2 in terms of SGCS with the assumption of the same feedback overhead of each layer.
Observation 10: For up to rank=4, with the same feedback overhead, AI based CSI reconstruction has about 4%-13% average UPT gain over the Rel-16 eType II under the case of 50% RU and 6%-16% average UPT gain can be obtained by AI based CSI reconstruction under the case of 70% RU.
Observation 11: The SGCS performance for AI/ML-based CSI compression presents positive correlation with the throughput performance for up to rank = 4.
Observation 12: AI/ML approaches show better throughput performance with heavy traffic load for up to rank = 4.
Observation 13: Case 3(AI model trained with mixed deployment scenarios) shows good generalization performance for various deployment scenarios.
Observation 14: The AI model trained with the scenario of UMa/UMi shows good generalization performance for InH dataset, while the AI model trained with the scenario of InH shows generalization degradation for UMa/UMi dataset.
Observation 15: AI/ML approaches can achieve good generalization performance for the case that the training/validation dataset and testing dataset are generated with different bandwidth configurations.
Observation 16: Case 3(AI model trained with mixed configurations of antenna port numbers) shows good generalization performance for various antenna port numbers.
Observation 17: AI model trained with the configuration of 32 antenna ports can maintain performance for 16 antenna ports.
Observation 18: AI-based CSI prediction completely outperforms the non-AI method.
Observation 19: The prediction accuracy of AI-based approach drops seriously when the predicted time becomes longer due to the channel aging. However, AI-based CSI prediction can still maintain its performance for a long time.
Observation 20: The prediction accuracy of AI-based approach improves with the increasing number of historical CSIs as model input.
Observation 21: The prediction accuracy of AI-based approach presents positive correlation with the number of historical CSIs as model input.
8 References
[1] Chairman’s notes, RAN1 #110.
[2] R1-2208522, Discussion on other aspects for AI CSI feedback enhancement, ZTE Corporation.
[3] Chairman’s notes, RAN1 #109-e
[4] R1-2203248, Evaluation assumptions on AIML for CSI feedback, ZTE Corporation

9 Appendix
Table 9-1 SLS assumptions for AI/ML based CSI feedback
	Parameter
	Value

	Duplex, Waveform
	FDD, OFDM

	Multiple access
	OFDMA

	Scenario
	Dense Urban (Macro only)

	Frequency Range
	FR1 only,  2GHz 

	Inter-BS distance
	200m

	Channel model        
	According to TR 38.901

	Antenna setup and port layouts at gNB
	32 ports: (8,8,2,1,1,2,8), (dH,dV) = (0.5, 0.8)λ

	Antenna setup and port layouts at UE
	4RX: (1,2,2,1,1,1,2), (dH,dV) = (0.5, 0.5)λ for (rank 1-4)

	BS Tx power
	41 dBm for 10MHz

	BS antenna height
	25m

	UE antenna height & gain
	Follow TR36.873

	UE receiver noise figure
	9dB

	Modulation
	Up to 256QAM

	Coding on PDSCH
	LDPC
Max code-block size=8448bit

	Numerology
	Slot/non-slot
	14 OFDM symbol slot

	
	SCS
	15kHz for 2GHz

	Simulation bandwidth
	10MHz

	Frame structure
	Slot Format 0 (all downlink) for all slots

	MIMO scheme
	SU/MU-MIMO with rank adaptation.

	MIMO layers
	Maximum MU 4 layers for max rank=1
Maximum MU 8 layers for max rank=2

	CSI feedback
	Feedback assumption at least for baseline scheme
CSI feedback periodicity (full CSI feedback) :  5 ms,
Scheduling delay (from CSI feedback to time to apply in scheduling) :  4 ms

	Overhead
	2 OFDM symbols for PDCCH，type 2 for DMRS(24 REs/PRB/slot)
CSI-RS overhead(32 REs/PRB/5 slot)

	Traffic model
	FTP 3

	Traffic load (Resource utilization)
	RU 50% and 70%

	UE distribution
	80% indoor (3km/h), 20% outdoor (30km/h)

	UE receiver
	MMSE-IRC 

	Feedback assumption
	Realistic

	Channel estimation         
	Realistic 

	Evaluation Metric
	Throughput and CSI feedback overhead 

	Baseline for performance evaluation
	Rel-16 TypeII Codebook 



Table 9-2  Training parameters of AI/ML model for CSI compression
	Parameter
	Value

	Backbone
	Transformer

	Parameter type
	Real value

	Input CSI type
	Eigenvectors of the ideal channel matrix estimated by UE

	Output CSI type     
	Recovered eigenvectors by AI/ML model in gNB

	Data-processing
	Normalization

	Quantization
	Vector quantization

	Training dataset
	600000

	Validation dataset
	10000

	Testing dataset
	20000

	Batch size
	400

	Optimizer
	Adam

	Loss function
	MSE



Table 9-3  Training parameters of AI/ML model for CSI prediction
	Parameter
	Value

	Backbone
	ResNet

	Parameter type
	Real value

	Input CSI type
	Historical channel matrices measured by UE

	Output CSI type     
	Predicted channel matrix by AI/ML model in UE

	Training dataset
	80000

	Validation dataset
	2000

	Testing dataset
	2000

	Batch size
	200

	Optimizer
	Adam

	Loss function
	MSE
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