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1. Introduction
Potential Rel-18 study item on AI/ML-based NR enhancement was discussed in the email thread RAN93e-R18Prep-12. The moderator summarized companies’ views and provide proposals on project structure and principle, air interface use cases, evaluation methodology, UE and Network involvement, etc [1]. But some open issues are still pending for further discussion. We are in general support the proposals from the moderator. In this paper, the open issues are analyzed and our views are further elaborated.
And to support our analysis, three use cases are analyzed in appendix with more details, incl. data set, evaluation methodology, complexity and preliminary simulation results:
· Appendix A: AI/ML-based CSI feedback;
· Appendix B: AI/ML-based positioning;
· Appendix C: AI/ML-based RS reduction.
2. AI/ML project structure and principles
Email discussion status
In [1] Section 3.1, the moderator provided the proposal on the AI/ML structure as below.
	
	Temporary Title
	SI/WI
	Primary WG
	Secondary WGs
	Notes

	1
	AI/ML for NG-RAN
	WI
	RAN3
	RAN2
	Based on the outcome of RAN3-led Rel-17 SI FS_NR_ENDC_data_collect.

	2
	AI/ML for Air-Interface
	SI
	RAN1
	RAN2, RAN4
	SI for entire Rel-18 timeframe focusing on limited identified use cases, preferably one. 

	3
	Additional Use Cases for AI/ML for NG-RAN
	SI
	RAN3
	
	Study of additional use cases for RAN3 project.


And the moderator suggested to reuse the RAN3 agreed principles (from the ongoing SI on FS_NR_ENDC_data_collect) as the starting point of the Rel-18 AI/ML study:
· Detailed AI/ML algorithms and models are left for implementation;
· User data privacy needs to be preserved;
· Support of AL/ML shall reuse the existing RAN architecture and new interfaces shall not be introduced.
Analysis on open issues
After the email discussion, we are in general fine with moderator’s proposal on the project structure. On the potential RAN3 work, we do not think it is necessary to spend more time on new use cases considering majority companies are more interested in RAN1-led use cases. Therefore we do not think the new study on additional use cases by RAN3 is necessary. For RAN1-led SI, we agree that the number of use cases should be limited. But it is too early to say “preferably one”. So we prefer to remove the wording “preferably one”. For SI AI for Air-Interface it is not clear why RAN4 should be involved. In addition we suggest to also consider the throughput bottleneck when online delivery of AI/ML model is necessary during the study.
And we are generally fine with the 3 principles (reuse RAN3 principles as starting point). But we can further discuss during study whether new principle is needed. For example, the first principle in the three, from our perspective, should not preclude the necessary analysis on AI/ML models. Different from the RAN3 AI/ML study, RAN1 would carry out the AI/ML study based on the performance evaluation. Therefore some information (e.g. type of neural network, layer structure, training method, hyper-parameter and loss function) need to be clarified during RAN1 evaluation process, so for other companies to analyze and confirm the reasonability of an evaluation result from the proponent. If the no details of the AI/ML model training are disclosed, the study item will have a risk of introducing unreliable evaluation results.
Proposals
Proposal 1: Focus on the study on RAN1-led AI/ML use cases. Avoid spending time on studying RAN3-led new use cases. The motivation of involving RAN4 in the RAN1-led SI needs to be clarified.
Proposal 2: Strive for limiting the number of use cases for study, but determine the number after further discussions.
Proposal 3: Detailed AI/ML algorithms and models are left for implementation. But some information (e.g. type of neural network, layer structure, training method, hyper-parameter and loss function) need to be submitted and clarified during RAN1 evaluation process.
3. Use Cases for AI/ML for Air-Interface SI
Email discussion status
In [1] Section 3.2, the moderator proposed to base further discussions on use cases for a candidate Rel-18 SI on AI/ML for Air-Interface on the following set of use cases:
· CSI feedback compression (lower overhead)
· Beam management (beam selection, beam recovery...)
· Positioning
· RS overhead reduction (channel estimation)
· Mobility
Analysis on open issues
From our perspective, the selection of study use cases should take the following factors into account:
· Maturity of AI/ML model study in industry, academics and public 5G AI competitions (e.g. https://www.datafountain.cn/special/IMT-2020-2/competition?lang=en-US [3]) – reference model is ready as a starting point;
· Maturity of training data set and evaluation methodology in industry, academics and public 5G AI competitions – data set and evaluation methodology are ready as a starting point;
· Training complexity is verified to be acceptable – Companies can afford the needed computation power;
· Cover different areas as possible when the above factors are satisfied.
After the email discussion, we propose to take CSI feedback compression as the first RAN1-led AI/ML use cases, and in parallel down select the rest during study. More detailed analysis on this use case can be found in Appendix A of this contribution. In this way down selection of use cases and other work e.g. building the data set can proceed in parallel. Positioning and RS overhead reduction could be the candidate use cases for further consideration. Appendix B and C of this contribution provides more details on the two use cases. Beam management and mobility are also proposed by some companies in the email discussion. In theory, AI/ML models may bring performance gain in the two areas. But the simulation for this use case would be more complex than the above three use cases. Considering the evaluation methodology is still unstable and needs to be carefully identified, it would be premature to start the AI/ML study for beam management in the initial study.
Proposals
Proposal 4: Take CSI feedback compression as the first RAN1-led AI/ML use cases, and in parallel down select from the rest during study.
4. Evaluation Methodology and KPIs for AI/ML for Air-Interface SI
Email discussion status
In [1] Section 3.3, the moderator provided following proposals:
· Base the evaluation methodology in AI/ML for Air-Interface study on existing 3GPP framework for evaluations, i.e., statistical channel models (from TR 38.901 and TR 38.857 [positioning]), link and system level simulations, etc.
· Additionally, use field data to further assess the performance and robustness in real-world environments. How the field data set is obtained (per company vs. common data set) needs to be further discussed. 
· KPIs are broadly understood to be use case specific but a number of common metrics prevail, e.g., complexity and performance vs. proper (non-AI/ML) state-of-the-art baseline. Similarly, overhead associated with enabling respective AI/ML scheme should be well documented and accounted for. 
· Evaluated AI/ML schemes should be based on offline training for evaluation.
KPI and study areas
From our perspective, the KPIs used for evaluating traditional solutions can be reused as starting point for the study item. For example, CSI feedback accuracy (e.g. MSE or cosine similarity), throughput and overhead are still the suitable KPIs for evaluating AI/ML-based CSI feedback enhancement solutions. Positioning accuracy is used to evaluate AI/ML positioning approaches. One additional aspect is the evaluation of computation complexity of AI/ML inference.
Following study areas can be addressed for AI/ML evaluation methodology:
(1) Study and identify the training data set for evaluation (for training, validation and testing)
· Identify adequate amount (e.g. [50k] training samples, [5k] validation samples and [5k] testing samples for CSI) of training data public to all companies. Or, at least the method to generate the data set needs to be clearly defined and calibrated.
[bookmark: _GoBack]Different from traditional evaluation, AI/ML model is data-driven. The training data cannot be generated by companies separately based on an equation-expressed channel model. The data set should be published to 3GPP companies before the evaluation starts. The data set should be downloadable from a public URL link (e.g. https://github.com/WAIC2st2021/-AI-based-Channel-State-Information-Feedback  [4]). Or the method to generate the data set needs to be calibrated using the reference model.
· Examine the quality of the data set, e.g. generalization characteristics. Both single-scenario and multi-scenario data sets are needed.
By checking its channel statistics and testing with a reference AI/ML model. The data set widely used in industry, academics and public competitions can be reused as starting point
· Use the computer-generated data set based on TR 38.901 and TR 38.857 (for positioning) as baseline. 
Although generated by computer, the data set can guarantee the basic generalization characteristics by randomization. Strive for generating a data set based on field test. But the data set quality needs also to be examined because a data set generated from small-scale field test may lead to over-fitting problem, and not applicable for evaluating an AI/ML model performance.
· Data set needs to be separately identified for different use cases, e.g. for CSI and positioning respectively. 
(2) Study and identify the evaluation process and metrics for identifying performance of AI/ML approaches
· First identify a reference model for each use case. 
The reference model provides basic AI/ML inference performance with the identified training data set. The reference model should be downloadable from a public URL link (e.g. https://github.com/WAIC2st2021/-AI-based-Channel-State-Information-Feedback  [4]).
· Companies can train and optimize their AI/ML models starting from the reference model (what model optimization approaches are allowed can be pre-defined), and providing inference results after training.
Necessary information about the model needs to be submitted together with the results, e.g. type of neural network, layer structure, training method, hyper-parameter and loss function.
· If a conclusion on AI/ML’s gain is needed, among the inference results submitted by companies, consolidate the evaluation result based on some “good results”;
Different evaluation for traditional algorithms, AI/ML model keeps evolving during training. Finally, different companies will use different AI/ML models to provide results. So the traditional “averaging aligned results” approach does not work. The average performance from the “good results” should be adopted as evaluation result. To enable other companies to cross-check the results, requiring the “best models” to be enclosed to other companies can be considered.)
(3) Complexity analysis for the AI/ML models
· Investigate the typical computation power on UE and gNB sides and the distribution of computation resource between Modem and apps, to identify the computation complexity limit for AI/ML inference. 
· Limit the maximum time complexity (in unit of [FLOPS] for each use case, by considering the required inference latency from the processing timeline budget, e.g. CSI feedback timeline.
· Limit the submitted model size under the maximum model size considering the affordable storage complexity.
(4) Study and evaluate the performance of scenario-fitting models and multi-model switching approach
· In addition to training a single generalized model for each use case, study the approach training a set of AI/ML models fitting different channel conditions or deployment scenarios. 
· Evaluate the performance of scenario-aware multi-model switching approach, comparing with single generalized model and traditional approaches.
· Consider to set a max number of models for evaluation.
· Analyze the storage requirements and/or model downloading overhead.
(5) Study and evaluate the performance of online training of AI/ML models
· Study the online transfer learning approach based on scenario adaptation. 
· Evaluate the performance of online transfer learning approach, comparing with the offline-trained model.
· Consider the practical complexity and latency requirement.
Analysis on open issues
After the email discussion, we are in general fine with moderator’s proposal on the evaluation methodology. Regarding the use of field data, our opinion is that it is too early to tell the feasibility of using field data for AI/ML evaluation. As shown in Figure A-1, a channel extracted from field data could be with very low level multipath fading, thus even simpler than the simplest channel generated based on TR 38.901 (CDL-A is roughly a single-path channel).
Based on the result, we conclude that, channels defined in TR 38.901 stand for different levels of multi-path fading, and then can be used to train a generalized AI/ML model. The UMa channel and the CDL-C channel can be utilized with first priority to evaluate the AI based CSI enhancement models. Due to the difficulties in field tests (e.g. poor transportation condition for road test, restriction on parking at wanted testing position), it is generally difficult to capture the channel data in dense urban environments. Most of field channel data sets are captured in suburban areas (e.g. university campus, science park, satellite city) or indoor rooms. These field channels may provide important components to a comprehensive AI/ML training set. But it is risky to rely on field data set for AI/ML training because the heavy multipath fading channels reflecting dense urban environment are usually absent. Therefore the use of field data in Rel-18 AI/ML study needs to be carefully evaluated and cautiously considered. Only the field data with fundamental generalization characteristics and reflecting typical 5G channel condition are (e.g. captured from a number of cells covering various types of deployment scenarios) qualified for the AI/ML training and testing. Otherwise, a unique field data set lack of generalization is not conducive to a meaningful and reliable evaluation conclusion.
And the field data should also be aligned for evaluation in different companies. If different companies use different field data to simulate their AI/ML models, the comparison between companies’ results does not make much sense because the channel characteristics of the field data can be completely different. 
Proposals
Proposal 5: The use of field data in Rel-18 AI/ML study needs to be carefully evaluated and cautiously considered. Only the field data with fundamental generalization characteristics and reflecting typical 5G channel condition (e.g. captured from a number of cells covering various types of deployment scenarios) are qualified for the AI/ML training and testing.
Proposal 6: Common data set should be used for AI/ML performance evaluation, including computer-generated data set and field data set.
5. UE and Network involvement for AI/ML for Air-Interface SI
Email discussion status
In [1] Section 3.4, the moderator framed the problem into following categorization:
· 0a) No collaboration framework: AI/ML algorithms purely implementation based and not requiring air-interface changes.
· 0b) No collaboration framework with modified Air-Interface catering to efficient implementation-based AI/ML algorithms purely implementation based.
· 1) Inter-node assistance to improve the respective nodes AI/ML algorithms. This would apply to UEs getting assistance from gNBs (for training, adaptation, etc.) and vice-versa. This level does not require model exchange between network nodes. 
· 2) Joint ML operation between UEs and gNBs. This level requires AI/ML model instruction or exchange between network nodes.
Analysis on open issues
In general, we are OK to adopt the categorization as a starting point of the study. But some clarifications are needed for the frameworks. If our understanding is correct, with Category 0a), 0b) and 1, the AI/ML models are all implementation-based. The information of the models used on UE or gNB sides can be transparent. We even do not know the UE or gNB is using the AI/ML-based algorithm or traditional algorithm. The difference between 0a) and 0b)/1) is that no air-interface changes is needed for 0a), but 0b)/1) requires some enhancements on signals (e.g. RS), channels and/or signaling, although the signals, channels and signaling are traditional “non-AI” type. Hence from our perspective, Category 0b) and 1) are similar and can be combined into one Category. 
Category 2) is different from the other three because it requires collaboration between UE and gNB on AI/ML model perspective. In this case, the UE and gNB need to have some knowledge about the AI/ML model used on the other side. In SA1 Rel-18 TR 22.874 “AI/ML model transfer in 5GS” (AMMT) [2], UE/NW collaboration similar to Category 2) was studied, including three scenarios:
· AI/ML operation splitting between AI/ML endpoints;
· AI/ML model/data distribution and sharing over 5G system;
· Distributed/Federated Learning over 5G system. 
In the first scenario, UE and NW may run different parts of the same AI/ML model, as shown in Fig.5-1. In the second scenario, UE downloads an AI/ML model to use. In the third scenario, NW and UE jointly train the same AI/ML model. Although TR 22.874 focus on the AI/ML model used for 3rd-party applications, the framework is also applicable for Air-Interface AI/ML. Hence Category 2) may requires the alignment of AI/ML model information between UE and gNB, including the model and the intermediate information for UE/NW split inference.
[image: 61-split AI image]
Fig.5-1: Split AI/ML operation (from TR 22.874 [2])
In summary, we think the UE and network involvement in [1] can be modified to:
· 0) Non-collaborative framework: AI/ML algorithms purely implementation based and not requiring air-interface changes.
· 1) Non-collaborative framework with inter-node assistance: AI/ML algorithms purely implementation based. UEs gets assistance from gNBs (for inference, training, adaptation, etc.) and vice-versa. This level requires non-AI/ML information exchange between network nodes. 
· 2) Joint ML operation between UEs and gNBs: This level requires AI/ML information (model, inference/training intermediate data) exchange between network nodes.
Proposals
Proposal 7: The UE and network involvement can be categorized into three frameworks:
· 0) Non-collaborative framework: AI/ML algorithms purely implementation based and not requiring air-interface changes.
· 1) Non-collaborative framework with inter-node assistance: AI/ML algorithms purely implementation based. UEs gets assistance from gNBs (for inference, training, adaptation, etc.) and vice-versa. This level requires non-AI/ML information exchange between network nodes. 
· 2) Joint wAI/ML operation between UEs and gNBs: This level requires AI/ML information (model, inference/training intermediate data) exchange between network nodes.
6. Conclusions
Proposal 1: Focus on the study on RAN1-led AI/ML use cases. Avoid spending time on studying RAN3-led new use cases. The motivation of involving RAN4 in the RAN1-led SI needs to be clarified.
Proposal 2: Strive for limiting the number of use cases for study, but determine the number after further discussions.
Proposal 3: Detailed AI/ML algorithms and models are left for implementation. But some information (e.g. type of neural network, layer structure, training method, hyper-parameter and loss function) need to be submitted and clarified during RAN1 evaluation process.
Proposal 4: Take CSI feedback compression as the first RAN1-led AI/ML use cases, and in parallel down select from the rest during study.
Proposal 5: The use of field data in Rel-18 AI/ML study needs to be carefully evaluated and cautiously considered. Only the field data with fundamental generalization characteristics and reflecting typical 5G channel condition (e.g. captured from a number of cells covering various types of deployment scenarios) are qualified for the AI/ML training and testing.
Proposal 6: Common data set should be used for AI/ML performance evaluation, including for computer-generated data set and field data set.
Proposal 7: The UE and network involvement can be categorized into three frameworks:
· 0) Non-collaborative framework: AI/ML algorithms purely implementation based and not requiring air-interface changes.
· 1) Non-collaborative framework with inter-node assistance: AI/ML algorithms purely implementation based. UEs gets assistance from gNBs (for inference, training, adaptation, etc.) and vice-versa. This level requires non-AI/ML information exchange between network nodes. 
· 2) Joint AI/ML operation between UEs and gNBs: This level requires AI/ML information (model, inference/training intermediate data) exchange between network nodes.

Appendix A. AI/ML-based CSI feedback
Channel State Information (CSI) feedback is of paramount importance in cellular communication systems. Recently, the artificial intelligent (AI) based approaches, as a new trend that is inspired from the data computing science, have attracted much of attention in this domain. In this contribution, the framework, evaluation method, dataset and complexity issues on AI based CSI feedback will be analyzed. In addition, detailed results from simulations will be addressed and discussed.
A.1.  KPIs and evaluation methodology
For AI based CSI feedback, the original CSI information can be compressed by an AI encoder located in UE, and recovered by an AI decoder located in gNB. KPIs, such as MSE (or Cosine Similarity) between the original info and recovered one, can be used to evaluate the performance gain. In addition, BLER or throughput obtained from link-level simulations can also be used to evaluate the performance gain. Type 1 and Type 2 based approaches that defined in Rel-15/16 can be used as the comparative baseline. 
A.2.  Data set
Channels used for link level simulations and system level simulations (e.g. defined in TR 38.901) can be used to construct the data set. As shown in Fig.A-1, we have analyzed different candidate channels during pre-studies, including a system-level UMa channel, a link-level CDL-C channel, a link-level CDL-A channel and a field data in real-world environments. Among these channels, clearly the UMa channel embodies rich multipath characteristics and is the most complex channel for channel estimation and CSI feedback. The CDL-C channel is with a moderate level of multipath fading. The CDL-A channel has been biased towards a relatively simple single-path environment. The channel extracted from field data, as a comparative case, is with very low level multipath fading, thus even simpler than CDL-A. 
Based on the result, we conclude that, channels defined in TR 38.901 stand for different levels of multi-path fading, and then can be used to train a generalized AI/ML model. The UMa channel and the CDL-C channel can be utilized with first priority to evaluate the AI based CSI enhancement models. Due to the difficulties in field tests (e.g. poor transportation condition for road test, restriction on parking at wanted testing position), it is generally difficult to capture the channel data in dense urban environments. Most of field channel data sets are captured in suburban areas (e.g. university campus, science park, satellite city) or indoor rooms. These field channels may provide important components to a comprehensive AI/ML training set. But it is risky to rely on field data set for AI/ML training because the heavy multipath fading channels reflecting dense urban environment are usually absent. Therefore the use of field data in Rel-18 AI/ML study needs to be carefully evaluated and cautiously considered. Only the field data with fundamental generalization characteristics and reflecting typical 5G channel condition are qualified for the AI/ML training and testing. Otherwise, a unique field data set lack of generalization is not conducive to a meaningful and reliable evaluation conclusion.
[image: ] [image: ]
(a) TR 38.901-based system-level UMa channel	(b) TR 38.901-based Link-level CDL-C channel
[image: ] [image: ]
(c) TR 38.901-based link-level CDL-A	(d) An example channel captured from field test
Fig.A-1: Different channels for AI/ML training data
Besides, the train set, validation set and test set need to be aligned among different companies. At least parameters used to generate these channels need to be aligned. Considering the generalization issue, both single scenario and mixed scenarios need to be evaluated, e.g. mixed channels with different CDL channels or system-level channels.
A.3.  Complexity
Complexity of AI base approaches need to be evaluated in this study. The maximum computing complexity (in unit of [FLOPs]) needs to be limited, by considering the required inference latency under a reference computation capability (in unit of [FLOPS or TOPS]). The maximum model size needs to be limited as well considering the affordable storage complexity.
A.4.  Preliminary simulation results
As shown in Fig.A-2, in the simulations shown in this section, UE could obtain an CSI eigenvector W from a full channel H, and then encodes W to a M-dimensional bitstream s through the AI-Encoder and forwards it to BS. The BS could decode the received bitstream s to W’ through an AI-decoder to recover the pre-extracted CSI information W. The square of generalized cosine similarity (GCS) is used as the criterion to evaluate the difference between the recovered channel and original channel.
[image: ]
Fig.A-2: Framework for AI-based CSI feedback
Clustered delay line (CDL) channel models defined in 3GPP TR 38.901 for link-level simulations are adopted in this work. The basic parameters are listed in Table A-1. Both CDL-A and CDL-C channel models with delay spread 30ns and 300ns are considered. For each training-set[10w samples] and test-set[1k samples] with specific channel model, Ntrain × Ttrain and Ntest × Ttest channel samples are provided, where Ntrain = 1000 and Ntest = 50 denote the numbers of randomly distributed UEs for training set and test set, respectively, Ttrain = 100 and Ttest = 20 represent the corresponding numbers of sampling slots for each UE. 100 interval slots are utilized between two sampling slots in the training-set to cover more channel conditions in training-set from time dimension.

Table A-1: Key Parameters for The Simulation
	Parameter
	Value

	Carrier Frequency
	3.5GHz

	Bandwidth
	10MHz

	Subcarrier spacing
	15KHz

	RB number
	48

	Sunband number
	12

	
	32

	
	4

	Channel Model
	CDL-A, CDL-C

	UE speed
	3km/h

	Delay spread
	300ns, 30ns

	Channel estimation
	Ideal

	MCS
	19

	Adaptive modulation and coding
	off

	L (for type2)
	2,4

	 (for type2)
	0.25

	Ntrain
	1000

	Ttrain
	100

	Ntest
	50

	Ttest
	20

	Number of interval slots
	100


The simulation results include:
· Evaluations on link level CDL-A and CDL-C channels with different delay spread, as shown in Fig.A-3(a) and Fig.A-4(a).
· Evaluations on mixed channels with CDL-A/CDL-C and with different delay spread, as shown in Fig.A-3(b) and Fig.A-4(b).
· Evaluations with Rank2 related issues, as shown in Fig.A-5 and Fig.A-6.
· Type 1 and Type 2 based approaches that defined in Rel-15/16 are used as the comparative baseline, and comparisons on BLER have been evaluated. 
According to the simulation results, we conclude that:
· With the same feedback overhead, AI based approaches could obtain 10%~20% performance gain in the square of generalized cosine similarity, 
· With the same performance gain in the square of generalized cosine similarity, about 50%~60% feedback bits can be reduced.
The tested model in these simulations is designed based on the ResNet-like architecture. 1.7*10^6 FLOPs are needed in the encoder(@UE) and 7.7*10^6 FLOPs are needed in the decoder(@gNB), considering the claimed AI capability that 26 TOPS in Snapdragon888, the AI inference on CSI compression and recovery can be done within 1μs. Less than 1Mbyte is needed in the encoder(@UE) and 8Mbytes are needed in the decoder(@gNB)

[image: ]
(a) Single scenario, CDL-C300, CDL-C30 and CDL-A300
[image: ]
(b) Mixed scenarios, CDL-C30 and CDL-C300 constructs the mix-set1, CDL-A300 and CDL-C300 constructs the mix-set2, train on mixed sets and test on CDL-C300
Fig.A-3: Simulation results for CDL-A/C
  [image: ]
(a) CDL-C300 channel with different feedback overheads, 32bits, 48bit, 120bits
[image: ]
(b) Mixed channels with different feedback overheads, CDL-C30 and CDL-C300 constructs the mix-set1, CDL-A300 and CDL-C300 constructs the mix-set2, train on mixed sets and test on CDL-C300
Fig.A-4: BLER on CDL-A/C with Rank1
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(a) CDL-C30
[image: ]
(b) CDL-C300
 [image: ]
(c) CDL-A30
[image: ]
(d) CDL-A300
Fig.A-5: Simulation results for CDL-A/C with Rank2
[image: ]
Fig.A-6 Simulation results for mixed channels with Rank2, train on CDL-C300 mixed with CDL-C30, CDL-C300 mixed with CDL-A300, test on CDL-C300

[bookmark: _Hlk81398220]Appendix B. AI based Positioning
In positioning scenarios, multipath, non-line-of-sight (NLOS), indoor coverage and non-ideal synchronization may create obstacles that are difficult to overcome through traditional methods. Therefore, the AI based positioning approaches have been proposed. In this contribution, the framework, evaluation method, dataset and complexity issues on AI based positioning will be analyzed. In addition, detailed results from simulations will be discussed.
B.1  KPIs and evaluation methodology
For AI based positioning, the measurement results and/or channel states (e.g. RSRP/RSSI, or CIR/PDP/CTF) can be used to obtain the position of a UE through an AI based positioning model, both UL based positioning and UE assisted DL based positioning need to be considered in this case.
KPIs, such as accuracy achieved @[90]% as defined in TR 38.857, can be used to evaluate the performance gain. Traditional approaches that used in pre-Rel-18 can be evaluated as the comparative baseline.
B.2  Data set
Scenarios that defined in 3GPP TR 38.857 can be reused as the AI based positioning scenarios. Channels, measurement results and other information used for train/validate/test AI models need to be aligned among different companies, at least parameters used to generate these channels need to be aligned. NLoS scenarios need to be evaluated first, since in Rel-17, it is clearly that to meet the 3GPP requirements on NLoS positioning through traditional approaches is a very challenging task. Candidate settings for simulation are listed in Table.B-1.
In addition, correlation between different scenarios and different UEs needs to be evaluated in AI based positioning cases. If we drop all training-set UEs within one/or a few scenarios, e.g. a room or a factory, the obtained performance gain and the generalization of the trained model will be totally different from that obtained by dropping each training-set UE within different scenarios, e.g. within different rooms or within different cities. As shown in Fig.B-1, the distributions of Δτ without spatial correlation and with spatial correlation are given. Without spatial correlation in each drop, Δτ is randomly distributed so that CIRs for UEs are totally independent. While considering spatial correlation in each drop, Δτ at different locations are dependent, so that closer UEs may have similar CIRs due to more correlative Δτ.
Table B-1: Scenarios for simulation
	[bookmark: OLE_LINK9]
	FR1 Specific Values 
	FR2 Specific Values

	Channel model
	InF-DH
	InF-DH

	Layout 
	Hall size
	InF-DH: 
(baseline) 120x60 m

	
	BS locations
	18 BSs on a square lattice with spacing D, located D/2 from the walls.
-	for the small hall (L=120m x W=60m): D=20m
[image: ]

	
	Room height
	10m

	Total gNB TX power, dBm
	24dBm
	24dBm

	Penetration loss
	0dB

	Clutter parameters: {density , 
height ,
size }
	High clutter density:
{40%, 2m, 2m}
{60%, 6m, 2m}


[image: ]
(a) Without spatial correlation
[image: ]
(b) With spatial correlation
Fig.B-1: The distributions of Δτ with/without spatial correlation
B.3  Complexity
As discussed in the CSI feedback compression case, the maximum computing complexity (in unit of [FLOPs]) needs to be limited, by considering the required inference latency under a reference computation capability (in unit of [FLOPS or TOPS]). The maximum model size needs to be limited as well considering the affordable storage complexity
B.4  Preliminary simulation results
For AI based positioning, as shown in Fig.B-2, we assume that the network is deployed at the BS side. Inputs, e.g. the channel impulse response (CIR) vector, are reported from UE to the BS, and the UE location expressed as (x,y) is the output by assuming fixed height of UE. 


Fig.B-2: AI based positioning framework
As given in Table B-2, the scenario to be tested in this section is set as InF-DH with size 120m60m and clutter density [0.6,6m,2m]. The 18 BS are uniformly located with spacing D=20m. 1Tx and 1Rx antenna is adopted at the BS and UE side, respectively. For FR1, 256 samples are used in time domain. Therefore, for each CIR, the dimension of network input is [18,256,2] (here 2 indicates real and imaginary parts). The ideal synchronization is assumed here.
To evaluate the positioning precision in different scales, 3 scenarios with different assumptions on generalization are evaluated in the simulation, i.e. (1) training on 8w UE within 1 drop and testing on 1w UE within the drop, to mimic a scenario that an AI positioning model is trained and tested with one room. (2) training on 8w UE within 10 drops and testing on 1w UE within the drops, to mimic a scenario that an AI positioning model is trained and tested with a factory with 10 rooms. (3) training on 8w UE within 8w drops and testing on 1w UE within separate drops, to mimic a generalized scenario.
Table B-2: Simulation parameters
	Parameter
	Value

	Scenario
	InF-DH, 120m60m

	Clutter density
	[0.6,6m,2m]

	Bandwidth
	100M

	BS number
	18

	BS spacing
	20m

	Antenna configuration
	1Tx,1Rx

	UE height
	1.5m

	CIR length
	256(FR1)

	Synchronization
	Ideal

	Training set
	80000

	Testing set
	10000


Simulation results include:
· Evaluations on AI based positioning mechanisms and traditional positioning mechanism, as shown in Fig.B-3.
· Evaluations on AI based positioning mechanisms with single-scenario and multi-scenarios, as shown in Fig.B-3.
In DH (0.6,6,2), which is the most challenging scenario that discussed in Rel-17, the results from traditional positioning method only achieved 18m in accuracy achieved @[90]% as endorsed in TR 38.857. Through simulations shown in Fig.3 and Fig.4, with different assumptions on generalization, the AI based approached can achieve 0.5m~5m positioning accuracy @90% UE within different scenarios.
The tested model in these simulations is designed based on the ResNet-like architecture. 3*10^6 FLOPs are needed, considering the claimed AI capability that 26 TOPS in Snapdragon888, the AI inference on positioning can be done within 1μs. Less than 1.5Mbyte storage is needed.
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Fig.B-3: Evaluations on AI based positioning mechanisms: AI – 1 (train on 8w UE with 1 drop, test on 1w UE within the drop); AI – 10 (train on 8w UE with 10 drops, test on 1w UE within the drops); AI - 8w (train on 8w UE with 8w drops, test on 1w UE within separate drops)

Appendix C. AI based RS reduction
In this appendix, we analyze the framework, evaluation method, data-set and complexity for AI-based channel estimation. Moreover, simulation results are also provided.

[image: 1630653261(1)]
Fig.C-1: Illustration of channel estimation and recovery
Fig.C-1 shows the procedure of channel estimation and recovery. The pilot and data symbols are allocated on time-frequency resource block and transmitted through wireless channel. The receiver conducts the channel estimation firstly obtaining the channel information on the pilot pattern. Further, according to the estimated channel on pilot pattern, remaining full channel information is recovered, obtaining the whole picture of channel information on time-frequency resources. These procedures can be partially or fully replaced by AI solutions.
C.1.  KPIs and evaluation methodology
For AI based RS reduction, the obtained RS(e.g. CSI-RS, DMRS, SRS) can be utilized by an AI model to estimate the wireless channel information. The number of RS resources that is needed by AI based solutions and that is needed by traditional solutions can be evaluated to justify the performance gain in this use case. For example, e.g. with the same RS overhead, AI based solution could obtain [xxx] performance gain in [MSE], or with the same performance gain, [yyy%] RS resources can be reduced by AI based solutions. In addition, BLER or throughput obtained from link-level simulations can also be used to evaluate this case.
C.2.  Data set
Reference signals(e.g. CSI-RS, DMRS, SRS) and Channels used for link level simulations and system level simulations(e.g. defined in TR 38.901) can be used to construct the train set, validation set and test set and the corresponding label tag, and need to be aligned among different companies. At least parameters used to generate these channels need to be aligned. Considering the generalization issue, both single scenario and mixed scenarios need to be evaluated. As discussed in the CSI section in Appendix 1, channels used for link level simulations and system level simulations(e.g. defined in TR 38.901) can be used to construct the data set. The UMa channel and the CDL-C channel can be utilized with first priority to evaluate the AI based CSI works.
C.3.  Complexity
As discussed in the CSI section in Appendix 1, the maximum computing complexity needs to be limited and the maximum model size needs to be limited as well.
C.4. Preliminary simulation results
As shown in Fig.C-2, in simulations shown in this section, the traditional channel estimation block will be replaced by AI module dealing with the increasingly complex channel characteristics. The received reference signal(e.g. DMRS) is forwarded into an AI model and then the estimated channel matrix can be obtained from output of the model. MSE is used as the criterion to evaluate the difference between the recovered channel and original channel.


Fig.C-2: AI based CE framework
Table C-1 shows the parameter settings for simulation, and the traditional Wiener filtering method is used as the baseline to be compared. We consider the clustered delay line (CDL) channel models defined in 3GPP TR 38.901 for simulations. 1Tx and 1Rx antenna is adopted at the BS and UE side, respectively. The number of samples in training and testing sets are 100000 (1000 UE * 100 slots) and 5000 (50 UE * 100 slots), respectively. 
Table C-1: Simulation parameters
	Parameter
	Value

	SNR (dB)
	10

	Carrier Frequency
	3.5GHz

	Number of PRBs
	4

	Number of Subcarriers per PRB
	12

	PDSCH Mapping Type
	A

	DMRS-AdditionalPosition
	0, 1, 3

	DMRS Density on Frequency Domain
	50%, 25%

	Number of RX
	1

	Number of TX
	1

	Channel Model
	CDL C300

	UE Speed
	3km/h, 300km/h

	Training set
	100000

	Testing set
	5000

	Ntrain
	1000

	Ttrain
	100

	Ntest
	50

	Ttest
	20



In order to compare the performance of AI methods under different configurations, simulations including,
· AI methods under different DMRS densities in the time domain and frequency domain configured according to 3GPP TS 38.211, as shown in Fig.C-3,
· Three types of AI model for comparison, i.e., i) Full Connected Network (FCN) based model, ii) Residual Network (ResNet) based model and iii) Attention (Att) based model, as shown in Fig.C-4.
· The performance of AI under different UE speeds, i.e., 3km/h and 300km/h, as shown in Fig.C-5. 
According to the simulation results, we conclude that,
· With the help of AI based solutions, the error of channel estimation can be greatly reduced, especially in the case of high-speed movement,
· With the help of AI based solutions, the resource overhead for channel estimation can be greatly reduced, especially in the case of high-speed movement.
The model used in simulations are designed based on the ResNet-like and Attention-like architectures, less than 2*10^6 FLOPs are needed, considering the claimed AI capability that 26 TOPS in Snapdragon888, the AI inference on CSI compression and recovery can be done within 1μs. Less than 1Mbyte storage is needed.
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Fig.C-3: Comparison of MSE performance for varying density of DMRS(UE speed = 3km/h)
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Fig.C-4: Comparison of MSE performance for different schemes (UE speed = 3km/h)
[image: ]
Fig.C-5: Comparison of MSE performance for varying UE speed
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