
TSG-RAN Meeting #6 TSGRP#6(99)641
Nice, France, 13 – 15 December 1999

Title: Agreed CRs of category "D" (Editorial) to TS 25.322

Source: TSG-RAN WG2

Agenda item: 5.2.3

Doc # Status- Spec CR Rev Subject Cat Versio Versio
R2-99f04 agreed 25.322 001 RLC: Editorial corrections D 3.0.0 3.1.0
R2-99i00 agreed 25.322 002 1 Editorial changes on RLC protocol D 3.0.0 3.1.0
R2-99i01 agreed 25.322 007 Updated RLC SDL D 3.0.0 3.1.0
R2-99k23 agreed 25.322 014 Editorial changes D 3.0.0 3.1.0
R2-99k71 agreed 25.322 017 1 RLC editorial corrections D 3.0.0 3.1.0

3GPP

1

3GPP TSG-RAN Meeting #6 Document (R2-99f04)
Nice, France, 13-15 December 1999 e.g. for 3GPP use the format TP-99xxx

or for SMG, use the format P-99-xxx

CHANGE REQUEST Please see embedded help file at the bottom of this
page for instructions on how to fill in this form correctly.

Current Version: 3.0.025.322 CR 001
GSM (AA.BB) or 3G (AA.BBB) specification number ↑ ↑ CR number as allocated by MCC support team

For submission to: TSG-RAN#6 for approval X strategic (for SMG
list expected approval meeting # here ↑ for information non-strategic use only)

Form: CR cover sheet, version 2 for 3GPP and SMG The latest version of this form is available from: ftp://ftp.3gpp.org/Information/CR-Form-v2.doc

Proposed change affects: (U)SIM ME X UTRAN / Radio X Core Network
(at least one should be marked with an X)

Source: TSG-RAN WG2 Date: 28/11/1999

Subject: RLC: Editorial corrections

Work item:

Category: F Correction Release: Phase 2
A Corresponds to a correction in an earlier release Release 96

(only one category B Addition of feature Release 97
shall be marked C Functional modification of feature Release 98
with an X) D Editorial modification X Release 99 X

Release 00

Reason for
change:

obvious editorial mistakes are removed and obsolete parts are removed

Clauses affected: 4.2.1.2, 7, 9.2.2.3, 9.2.2.7, 9.2.2.8, 9.2.2.9, 9.3.3.3, 9.7.2, 9.7.3.2, 9.7.4, 11.2.2,
11.5.2,

Other specs Other 3G core specifications → List of CRs:
affected: Other GSM core specifications → List of CRs:

MS test specifications → List of CRs:
BSS test specifications → List of CRs:
O&M specifications → List of CRs:

Other
comments:

help.doc

 <--------- double-click here for help and instructions on how to create a CR.

3G 25.322 Version 3.0.0 (1999-10)

3GPP

10

4.2.1.2 Unacknowledged mode entities

Figure 4-3 below shows the model of two unacknowledged mode peer entities.

Figure 4-3: Model of two unacknowledged mode peer entities

The transmitting UM-entity receives SDUs from the higher layers. If the SDU is very large it is segmented into RLC
might segment the SDUs into RLC PDUs of appropriate size. The SDU might also be concatenated with other SDUs.
RLC adds a header and the PDU is placed in the transmission buffer. RLC delivers the RLC PDUs to MAC through
either a DCCH, a SHCCH (downlink only) or a DTCH. The CCCH also uses unacknowledged mode, but only for the
downlink. Which type of logical channel depends on if the higher layer is located in the control plane (CCCH, DCCH,
SHCCH) or user plane (DTCH).

The receiving UM-entity receives PDUs through one of the logical channels from the MAC sublayer. RLC removes
header from the PDUs and reassembles the PDUs (if segmentation has been performed) into RLC SDUs. After that
tThe RLC SDUs are delivered to the higher layer.

3G 25.322 Version 3.0.0 (1999-10)

3GPP

20

7 Services expected from MAC
For a detailed description of the following functions see [3].

- Data transfer;

9.2.2.3 Sequence Number (SN)

This field indicates the sequence number of the payload unit. In a normal AMD-PDU If header compression is applied
the sequence number of the first PU in the PDU is indicated. If the PUs are not in sequence,Otherwise a sequence
number is indicated separately for each PU in the extended header.

PDU type Length Notes
AMD PDU 12 bits Used for retransmission and reassembly
UMD PDU 7 bits Used for reassembly

9.2.2.7 Header Extension Type (HE)

Length: 2 bits

This two-bit field indicates the format of the extended header.

Value Description
00 The succeeding octets contains data
01 The succeeding octet contains a 7bit length indicator

and E bit
10 The succeeding octetfield contains an extended header

field
11 The succeeding two octets contains a 15bit length

indicator and E bit

9.2.2.8 Length Indicator (LI)

This field is optional and is used if concatenation, padding or a piggybacked STATUS PDU takes place in a PU. It
indicates the end of the last segment of a SDU. It points out the end of a segment by giving the number of octets
between the end of the header fields (including the length indicator fields) and the end of the segment. The size of the
Length Indicator may be either 7bits or 15bits. If the last segment of a SDU do not completely fill a PU either padding
or a piggybacked STATUS PDU can be added. Predefined values of the length indicator are used to indicate this. The
padding/piggybacked STATUS PDU predefined length indicators shall be added after the length indicator that indicates
the end of the last SDU segment in the PU. The values that are reserved for special purposes are listed in the tables
below depending on the size of the Length Indicator.

If a length indicator that indicates padding/piggybacked STATUS PDU refers to the last PU in the PDU it implicitly
means that the rest of the PDU contains padding/piggybacked STATUS PDU. If the last PU in a PDU does not include
padding or piggybacked STATUS PDU, but the PDU includes padding or a piggybacked STATUS PDU, an extra
length indicator field shall be added as a normal length indicator to the last PU. This extra length indicator shall
indicate either padding or a piggybacked STATUS PDU and shall be placed as the last length indicator in the PDU.
The space needed for this length indicator shall not be taken from the data part in the PU, but from the padding or
piggybacked STATUS PDU in the PDU. The receiving entity shall discard this length indicator.

If RLC PDUs always carry only one PU, 7bit indicators are used in a particular RLC PDU if the address space is
sufficient to indicate all SDU segment borders. Otherwise 15bit Length Indicators are applied.

3G 25.322 Version 3.0.0 (1999-10)

3GPP

21

If RLC PDUs may carry more than one PUs the length of the Length Indicator only depends on the size of the largest
RLC PDU and the size of the Length Indicator is always the same for all PUs.

Only one size of Length Indicators is used in one RLC PDU.

Length: 7bit

Bit Description
0000000 The previous RLC PU was exactly filled with the last segment of a RLC SDU.
1111110 The rest part of the RLC PU or RLC PDU includes a piggybacked STATUS

PDU.
1111111 The rest part of the RLC PU or RLC PDU is padding.

Length: 15bit

Bit Description
000000000000000 The previous RLC PU was exactly filled with the last segment of a RLC

SDU.
111111111111110 The rest part of the RLC PU or RLC PDU includes a piggybacked

STATUS PDU.
111111111111111 The rest part of the RLC PU or RLC PDU is padding.

9.2.2.9 Data

RLC SDUs are mapped to this field. If a RLC SDUs is too large to fit into the data field it ismight be segmented. If
possible, the last segment of a SDU shall be concatenated with the first segment of the next SDU in order to fill the data
field completely and avoid unnecessary padding. The length indicator field is used to point the borders between SDUs.

9.3.3.3 Reset Pending State

In the reset pending state the entity waits for a response from its peer entity and no data can be exchanged between the
entities. Upon reception of CRLC-CONFIG-Req from higher layer the RLC entity is terminated and the null state is
entered.

Upon reception of a RESET ACK PDU, the RLC entity resets the protocol and enters the acknowledged data transfer
ready state.

Upon reception of a RESET PDU, the RLC entity resets the protocol, send a RESET ACK PDU and enters the
acknowledged data transfer ready state.

Figure 9-18: The state model for the acknowledged mode entities

9.7.2 STATUS PDU transmission for acknowledged mode

The receiver of AMD PDUs transmits STATUS PDUs to the sender in order to inform about which PUs that have been
received and not received. There are several triggers for sending a STATUS PDU. The network (RRC) controls which
triggers should be used for each RLC entity, except for one, which is always present. The receiver shall always send a
STATUS PDU when receiving a poll request. Except for that trigger following triggers are configurable:

1) Detection of missing PU(s).

3G 25.322 Version 3.0.0 (1999-10)

3GPP

22

If the receiver detects one or several missing PUs it shall send a STATUS PDU to the sender.

2) Timer based STATUS PDU transfer

The receiver transmits a STATUS PDU periodically to the sender. The time period is controlled by the timer
Timer_Status_Periodic.

3) The EPC mechanism

The EPC is started when a STATUS PDU is transmitted to the peer entity. If not all PUs requested for
retransmission have been received before the EPC has expired a new STATUS PDU is transmitted to the peer
entity. A more detailed description of the EPC mechanism is given in section 9.7.42.

3G 25.322 Version 3.0.0 (1999-10)

3GPP

36

9.7.3.2 Timer based discard, without explicit signalling

This alternative uses the same timer based trigger for SDU discard (Timer_Discard) as the one described in the
section 9.7.3.1. The difference is that this discard method does not use any peer-to-peer signalling. For unacknowledged
mode RLC, peer-to-peer signalling is never needed. The SDUs are simply discarded in the transmitter, once the
transmission time is exceeded. For acknowledged mode RLC, peer-to-peer signalling can be avoided as long as SDU
discard is always performed in the transmitter before it is performed in the receiver. As long as the corresponding SDU
is eventually discarded in the receiver too, possible retransmission requests of PDU of discarded SDUs can be ignored
by the transmitter. The bigger the time difference is between the triggering of the discard condition at the transmitter
and the receiver, the bigger the unnecessary buffering need is at the receiver and the more bandwidth is lost on the
reverse link due to unnecessary retransmission requests. On the other hand, forward link bandwidth is saved, as no
explicit SDU discard signalling is needed.

9.7.4 The Estimated PDU Counter

The Estimated PDU Counter is a mechanism used for scheduling the retransmission of status reports in the receiver
side. With this mechanism, the receiver will send a new Status PDU in which it requests for PUs not yet received. The
time between two subsequent status report retransmissions is not fixed, but it is controlled by the Estimated PDU
Counter (EPC), which adapt this time to the current bit rate, indicated in the TFI, in order to minimise the delay of the
status report retransmission.

The EPC is a counter, which is decremented every transmission time interval with the estimated number of PUs that
should have been transmitted during that transmission time interval. When the receiver detects that PDUs are missing it
generates and sends a Status PDU to the transmitter and sets the EPC equal to the number of requested PUs.

A special timer, called EPC timer, controls the maximum time that the EPC needs to wait before it will start counting
down. This timer starts immediately after a transmission of a retransmission request from the receiver (Status PDU).
The EPC timer typically depends on the roundtrip delay, which consists of the propagation delay, processing time in the
transmitter and receiver and the frame structure. This timer can also be implemented as a counter, which counts the
number of 10 ms radio frames that could be expected to elapse before the first requested AMD PDU is received.

When the EPC is equal to zero and not all of these requested PUs have been received correctly, a new Status PDU will
be transmitted and the EPC will be reset accordingly. The EPC timer will be started once more.

The EPC is based on the estimation of the number of PUs that should have been received during a transmission time
interval. To estimate this number is easiest done by means of the TFI bits. However, if these bits are lost due to some
reason or another, this estimation must be based on something else. A straightforward solution is to base the estimation
on the number done in the previous transmission time interval. Only if the rate has changed this estimation is incorrect.
Another method of estimating the number of PUs is based on the maximum allowable rate. The consequence of this is
that if the estimation is incorrect, the Status PDU is sent too early. Alternatively, the estimation can be based on the
lowest possible transmission rate. In this case, if the estimation is incorrect, the Status PDU will most likely be
transmitted too late.

11.5.2 Initiation

This procedure is initiated by the receiver in any of following cases:

1) The poll bit in a received AMD PDU is set to 1.

2) Detection of missing PUs is used and a missing PU is detected.

3) The timer based STATUS PDU transfer is used and the timer Timer_Status_Periodic has expired.

The receiver shall transmit a STATUS PDU on the DCCH logical channel if the receiver is located in the control plane
and on the DTCH if it is located in the user plane. Separate logical channels can be assigned for AMD PDU transfer
and for Control PDU transfer.

3G 25.322 Version 3.0.0 (1999-10)

3GPP

37

The STATUS PDU has higher priority than data PDUs.

There are two functions that can prohibit the receiver from sending a STATUS PDU. If any of following conditions are
fulfilled the sending of the STATUS PDU shall be delayed, even if any of the conditions above are fulfilled:

1) STATUS PDU prohibit is used and the timer Timer_Status_Prohibit is active.

The STATUS PDU shall be transmitted after the Timer_Status_Prohibit has expired. The receiver shall send
only one STATUS PDU, even if there are several triggers when the timer is running.

2) The EPC mechanism is used and the timer Timer_EPC is active or VR(EP) is counting down.

The STATUS PDU shall be transmitted after the VR(EP) has reached 0. The receiver send only one STATUS
PDU, even if there are several triggers when the timer is active or the counter is counting down.

If the timer based STATUS PDU transfer shall be used and the Timer_Status_Periodic has expired it shall be restarted.

If the EPC meachanism shall be used the timer Timer_EPC shall be started and the VR(EP) shall be set equal to the
number PUs requested to be retransmitted.

3GPP TSG-RAN Meeting #6 Document (R2-99i00)
Nice, France, 13-15 December 1999 e.g. for 3GPP use the format TP-99xxx

or for SMG, use the format P-99-xxx

CHANGE REQUEST Please see embedded help file at the bottom of this
page for instructions on how to fill in this form correctly.

Current Version: 3.0.025.322 CR 002r1
GSM (AA.BB) or 3G (AA.BBB) specification number ↑ ↑ CR number as allocated by MCC support team

For submission to: TSG-RAN#6 for approval X strategic (for SMG
list expected approval meeting # here ↑ for information non-strategic use only)

Form: CR cover sheet, version 2 for 3GPP and SMG The latest version of this form is available from: ftp://ftp.3gpp.org/Information/CR-Form-v2.doc

Proposed change affects: (U)SIM ME X UTRAN / Radio X Core Network
(at least one should be marked with an X)

Source: TSG-RAN WG2 Date: 1999-11-24

Subject: Editorial changes on RLC protocol specification

Work item:

Category: F Correction Release: Phase 2
A Corresponds to a correction in an earlier release Release 96

(only one category B Addition of feature Release 97
shall be marked C Functional modification of feature Release 98
with an X) D Editorial modification X Release 99 X

Release 00

Reason for
change:

The purpose of these changes is to make some of the contents in the current RLC
specification clearer.

Clauses affected: 8.1, 9.2.2.7.1, 9.5

Other specs Other 3G core specifications → List of CRs:
affected: Other GSM core specifications → List of CRs:

MS test specifications → List of CRs:
BSS test specifications → List of CRs:
O&M specifications → List of CRs:

Other
comments:

help.doc

 <--------- double-click here for help and instructions on how to create a CR.
-

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

8.1 Primitives between RLC and higher layers
The primitives between RLC and upper layers are shown in table 8-1.

Table 8-1 : Primitives between RLC and upper layers

Generic Name Parameter
Req. Ind. Resp. Conf.

RLC-AM-DATA Data, CFN, MUI Data Not Defined MUI
RLC-UM-DATA Data, Data Not Defined Not Defined
RLC-TR-DATA Data Data Not Defined Not Defined
CRLC-CONFIG E/R, Ciphering

Elements (UM/AM
only), AM_parameters

(AM only)

Not Defined Not Defined Not Defined

CRLC-STATUS Not Defined EVC Not Defined Not Defined

Each Primitive is defined as follows:

RLC-AM-DATA-Req/Ind/Conf

- RLC-AM-DATA-Req is used by higher layers to request transmission of a higher layer PDU in acknowledged
mode.

- RLC-AM-DATA-Ind is used by RLC to deliver to higher layers RLC SDUs, that have been transmitted in
acknowledged mode.

- RLC-AM-DATA-Conf is used by RLC to confirm to higher layers the transmission of a RLC SDU.

RLC-UM-DATA-Req/Ind

- RLC-UM-DATA-Req is used by higher layers to request transmission of a higher layer PDU in unacknowledged
mode.

- RLC-UM-DATA-Ind is used by RLC to deliver to higher layers RLC SDUs, that have been transmitted in
unacknowledged mode.

RLC-TR-DATA-Req/Ind

- RLC-TR-DATA-Req is used by higher layers to request transmission of a higher layer PDU in transparent mode.

- RLC-TR-DATA-Ind is used by RLC to deliver to higher layers RLC SDUs, that have been transmitted in
transparent mode.

CRLC-CONFIG-Req

This primitive is used by RRC to establish, release or reconfigure the RLC. Ciphering elements are included for UM and
AM operation.

CRLC-STATUS-Ind

It is used by the RLC to send status information to RRC.

Following parameters are used in the primitives:

1) The parameter Data is the RLC SDU that is mapped onto the Data field in RLC PDUs. The Data parameter may
be divided over several RLC PDUs. In case of a RLC-AM-DATA or a RLC-UM-DATA primitive the length of
the Data parameter shall be octet alligned.

2) The parameter Confirmation request (CNF) indicates whether the RLC needs to confirm the correct transmission
of the RLC SDU.

3) The parameter Message Unit Identifier (MUI) is an identity of the RLC SDU, which is used to indicate which

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

RLC SDU that is confirmed with the RLC-AM-DATA conf. primitive.

4) The parameter E/R indicates whether RLC should enter or exit the data transfer ready state.

5) The parameter Event Code (EVC) indicates the reason for the CRLC-STATUS-ind (i.e. unrecoverable errors
such as data link layer loss or recoverable status events such as reset, etc.).

6) 6) The parameter ciphering elements are only applicable for UM and AM operation. These parameters are
Ciphering Mode, Ciphering Key and Ciphering Sequence Number.

7) The AM_parameters is only applicable for AM operation. It contains PU size, Timer values (see section 9.5),
Protocol parameter values (see section 9.6), Polling triggers (see section 9.7.1), Status triggers (see section
9.7.2), SDU discard mode (see section 9.7.3),.

9.2.2.7.1 AMD PDU Extended Header

The Extended Header is used when additional sequence numbers are needed to indicate PUs that are not sequential
within a PDU or when the rest of a PDU, which is not filled by PUs, is equal or larger than the size of a PU. A PDU that
includes more than one sequence number shall include sequence numbers for all PUs in the PDU. The nth sequence
number in the PDU indicates the sequence number of the nth PU in the PDU. The decision to use Extended Header is
made by the transmitting RLC.

First all the Extended Headers are listed. Then all Length Indicators are listed. Finally the PUs follow.

Sequence Number
Sequence Number

Oct1
Oct2HE

Sequence Number
Sequence Number

Oct1
Oct2HE R

Figure 9-7: Format of the extended header

9.5 Timers
a) Timer_Poll

This timer is only used when the poll timer trigger is used. It is started when the transmitting side sends a poll to
the peer entity. The timer is stopped when receiving a STATUS PDU that contains an acknowledgement or
negative acknowledgement of the AMD PDU that triggered the timer. The value of the timer is signalled by
RRC.

If the timer expires and no STATUS PDU containing an acknowledgement or negative acknowledgement of the
AMD PDU that triggered the timer has been received, the receiver is polled once more (either by the
transmission of a PDU which was not yet sent, or by a retransmission) and the timer is restarted. If there is no PU
to be transmitted and all PUs have already been acknowledged, the receiver shall not be polled.

If a new poll is sent when the timer is running it is restarted.

b) Timer_Poll_Prohibit

This timer is only used when the poll prohibit function is used. It is used to prohibit transmission of polls within a
certain period. A poll shall be delayed until the timer expires if a poll is triggered when the timer is active Only
one poll shall be transmitted when the timer expires even if several polls were triggered when the timer was
active. If there is no PU to be transmitted and all PUs have already been acknowledged, a poll shall not be
transmitted. This timer will not be stopped by a STATUS PDU. The value of the timer is signalled by RRC.

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

c) Timer_EPC

This timer is only used when the EPC function is used and it accounts for the roundtrip delay, i.e. the time when
the first retransmitted PU should be received after a STATUS has been sent. The timer is started when a
STATUS report is transmitted and when it expires EPC can start decrease (see section 9.7.3). The value of the
timer is signalled by RRC.

d) Timer_Discard

This timer is used for the SDU discard function. In the transmitter, the timer is activated upon reception of a SDU
from higher layer. If the SDU has not been acknowledged when the timer expires, the SDU is discarded and a
Move Receiving Window request is sent to the receiver. If the SDU discard function does not use the Move
Receiving Window request, the timer is also used in the receiver, where it is activated once a PDU is detected as
outstanding, i.e. there is a gap between sequence numbers of received PDUs. The value of the timer is signalled
by RRC.

e) Timer_Poll_Periodic

This timer is only used when the timer based polling is used. The timer is started when the RLC entity is created.
Each time the timer expires a poll is transmitted and the timer is restarted. If there is no PU to be transmitted and
all PUs have already been acknowledged, a poll shall not be transmitted and the timer shall only be restarted. The
value of the timer is signalled by RRC.

f) Timer_Status_Prohibit

This timer is only used when the STATUS PDU prohibit function is used. It prohibits the receiving side from
sending STATUS PDUs. The timer is started when a STATUS PDU is transmitted and no new STATUS PDU
can be transmitted before the timer has expired. The value of the timer is signalled by RRC.

g) Timer_Status_Periodic

This timer is only used when timer based STATUS PDU sending is used. The timer is started when the RLC
entity is created. Each time the timer expires a STATUS PDU is transmitted and the timer is restarted. The value
of the timer is signalled by RRC.

h) Timer_RST

It is used to detect the loss of RESET ACK PDU from the peer RLC entity. This timer is set when the RESET
PDU is transmitted. And it will be stopped upon reception of RESET ACK PDU. If it expires, RESET PDU will
be retransmitted.

3GPP TSG-RAN Meeting #6 Document (R2-99i01)
Nice, France, 13-15 December 1999 e.g. for 3GPP use the format TP-99xxx

or for SMG, use the format P-99-xxx

CHANGE REQUEST Please see embedded help file at the bottom of this
page for instructions on how to fill in this form correctly.

Current Version: 3.0.025.322 CR 007
GSM (AA.BB) or 3G (AA.BBB) specification number ↑ ↑ CR number as allocated by MCC support team

For submission to: TSG-RAN#6 for approval X strategic (for SMG
list expected approval meeting # here

↑
for information non-strategic use only)

Form: CR cover sheet, version 2 for 3GPP and SMG The latest version of this form is available from: ftp://ftp.3gpp.org/Information/CR-Form-v2.doc

Proposed change affects: (U)SIM ME X UTRAN / Radio X Core Network
(at least one should be marked with an X)

Source: TSG-RAN WG2 Date: 1999-11-29

Subject: Updated RLC SDL

Work item:

Category: F Correction Release: Phase 2
A Corresponds to a correction in an earlier release Release 96

(only one category B Addition of feature Release 97
shall be marked C Functional modification of feature Release 98
with an X) D Editorial modification X Release 99 X

Release 00

Reason for
change:

Correction of the editorial mistakes in the current RLC SDL and updating it in
accordance with the latest RLC specification.

Clauses affected: Annex A

Other specs Other 3G core specifications → List of CRs:
affected: Other GSM core

specifications
→ List of CRs:

MS test specifications → List of CRs:
BSS test specifications → List of CRs:
O&M specifications → List of CRs:

Other
comments:

help.doc

 <--------- double-click here for help and instructions on how to create a CR.
-

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

Annex A (informative):
SDL diagrams
This annex contains the SDL diagrams. For Release’99, it is meant for informative purposes only.

[All the section shall be reviewed when the protocol is defined;

all the SDL diagrams presented are [FFS]]

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

;
SIGNALSET
 Crlc_amconfig_req,
 Crlc_Status_ind,
 Rlc_AmData_req,
 Rlc_AmData_ind,
 Rlc_AmData_conf,
 Reset_am,
 Reset_am_ack,
 AmdPduQueuedUp,
 StatusPdu,
 AmdPdu;

Virtual Process Type Acknowledged_link 1_Signals(69)

Am

(AcknowledgedLink_to_Am)(Am_to_AcknowledgedLink)

DtchDcch

(DtchDcch_to_AcknowledgedLink) (AcknowledgedLink_to_DtchDcch)

Cont

(AcknowledgedLink_to_Cont)(Cont_to_AcknowledgedLink)

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

;
SIGNALSET

Virtual Process Type Acknowledged_link 1_Declarations(69)

DCL

 /*SDU, PDU, and PU declarations:_______________________________*/

 sdu OctetType,
 /*The sdu data from the upper layer protocol.*/

 amd_pdu AmPdu,
 /*A representation of data contained within an AmPdu.*/

 amd_pu AmPuStructType,
 /*A representation of a local am_pu*/

 status_pdu, tx_status_pdu StatPdu,
 /*A representation of data contained within an StatPdu.*/

 /*SDU, PDU, and PU array declarations:___________________________*/

 sdus OctetArrayType,
 /*An array containing SDUs.*/

 pdus AmPduArrayType,
 /*An array containing AMD PDUs created by segmenting a SDU.*/

 pus AmPuArrayType,
 /*An array containing PUs.*/

 rem_pus AmPuArrayType,
 /*An array containing PDUs to be removed from queues.*/

 status_pdus StatusPduArrayType,
 /*An array containing several STATUS PDUs.*/

 /*Queue declarations:___________________________________*/

 receiver_queue Queue,
 /*A queue used for storing PDUs as they arrive.*/

 retransmission_queue Queue,
 /*A queue used for PDUs that are to be retransmitted.*/

 assembly_queue Queue,
 /*A queue used for reassembly of received PDUs into an SDU.*/

 transmitted_queue Queue,
 /*A queue used for PDUs that have been transmitted.*/

 amd_queue Queue,
 /*A queue used for PDUs to be transmitted.*/

 mui_queue Queue;
 /*A queue used to store mui numbers for which confirmation
 has been requested.*/

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

;
SIGNALSET

Virtual Process Type Acknowledged_link 2_Declarations(69)

DCL

/*Indicator declarations:__*/

 epc_active IndicatorType,
 /*An indicator used to store whether the Timer_EPC is active or not.*/

 poll_periodic_active IndicatorType,
 /*An indicator used to store whether the Timer_Poll_Periodic is active or not.*/

 poll_prohibit_active IndicatorType,
 /*An indicator used to store whether the Timer_Poll_Prohibit is active or not.*/

 rst_active IndicatorType,
 /*An indicator used to store whether the Timer_RST is active or not.*/

 status_periodic_active IndicatorType,
 /*An indicator used to store whether the Timer_Status_Periodic is active or not.*/

 status_prohibit_active IndicatorType,
 /*An indicator used to store whether the Timer_Status_Prohibit is active or not.*/

 empty IndicatorType,
 /*An Indicator used to determine whether a queue is empty or not.*/

 exists IndicatorType,
 /*An indicator used to determine whether a particular pdu exists
 within a queue or not.*/

 complete IndicatorType,
 /*An indicator used to determine whether an SDU has been
 completely reassembled.*/

 cnf IndicatorType,
 /*An indicator used to determine whether an SDU requires
 confirmation.*/

 possible IndicatorType,
 /*An indicator used to indicate whether status piggyback is
 possible or not.*/

 create_status IndicatorType,
 /*An indicator used to store whether a status report should be created or not.*/

 poll_triggered IndicatorType,
 /*This variable is used to record if a poll is to be transmitted or not.*/

 status_triggered IndicatorType,
 /*This variable is used to indicate whether a status report should be transmitted
 or not.*/

 piggyback IndicatorType;
 /*This variable indicates whether a piggybacked status report is included
 in the PDU or not.*/

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

;
SIGNALSET

Virtual Process Type Acknowledged_link 3_Declarations(69)

DCL

/*Indicator declarations:___*/

 MRW_active IndicatorType,
 /*An indicator used to store whether the Timer_MRW is active or not.*/

 poll_active IndicatorType,
 /*An indicator used to keep track of whether the Poll_Timer is active or not.*/

 contains, mrw_ans IndicatorType,
 /*These indicators are used when checking the contents of a received
 status Pdu.*/

 poll_answer IndicatorType,
 /*This indicator stores whether a status report is sent as an answer to a poll
 or not.*/

 missing_pu_detected IndicatorType;
 /*This indicator is used to store whether he receive side has detected missing
 PUs.*/

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

;
SIGNALSET

Virtual Process Type Acknowledged_link 4_Declarations(69)

DCL

/*Parameter declarations:____________________________________*/

 e_r ERParameterType,
 /*The parameter indicating the desired end state.*/

 poll_triggers PollTriggArrType,
 /*a configuration parameter dealing with when to issue poll requests.*/

 protocol_parameters ProtocolParametersStructType,
 /*A struct variable containing the protocol parameters set.*/

 status_triggers StatusTriggArrType,
 /*A configuraion parameter dealing with when to issue Status reports.*/

 timer_durations TimerDurationsStructType,
 /*A struct containing the various timer durations.*/

 discard DiscardArrayType,
 /*A configuration parameter identifying discard conditions.*/

 ciphering_mode CipheringModeType,
 /*The ciphering mode.*/

 ciphering_key CipheringKeyType,
 /*The ciphering key.*/

 ciphering_sequence_number CipheringSequenceNumberType,
 /*The ciphering sequence number.*/

 pdu_size OctetType,
 /*The size in octets of an AMD PDU.*/

 pu_size OctetType,
 /*The size in octets of a PU.*/

 /*Sequence number variables:__________________________________*/

 n, sn_ack, sq SequenceNumberType,
 /*A local sequence number.*/

 poll_window SequenceNumberType,
 /*The size of the poll_window.*/

 receive_window SequenceNumberType,
 /*The receive window size.*/

 transmit_window SequenceNumberType,
 /*The transmit window size.*/

 polled_sn SequenceNumberType,
 /*This variable stores a sequence number associated with the PDU that contained
 a poll request.*/

 sn_mrw SequenceNumberType;
 /*This variable stores the sequence number associated with a MRW request.*/

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

;
SIGNALSET

Virtual Process Type Acknowledged_link 5_Declarations(69)

DCL

 /*Local variables declarations:____________________________________*/

 logical_channel LogicalChannelType,
 /*The logical channel associated with transmissions.*/

 i, j INTEGER,
 /*A local counter.*/

 mui MuiType,
 /*The message uit identifier associated with a message to be transmitted.*/

 muis MuiArrayType,
 /*An array used to store message unit identifiers.*/

 tot_mui, k, tot_rem,
 n_sq PduIndexType,
 /*Counters used to manage the amount of PUs and SDUs received.*/

 tot_list PduIndexType,
 /*A local variable for maintaining knowledge of the total number of
 (SNi, Li)-pairs in a list super field.*/

 tot_bitmap, tot_rlist PduIndexType,
 /*A local variable for maintaining knowledge of the total length of a bitmap or codewords.*/

 n_sdu PduIndexType,
 /*A local variable for maintaining knowledge of the number of SDUs reassembled PUs.*/

 n_pdu PduIndexType,
 /*A local variable for maintaining knowledge of the number of AMD PDUs created from a SDU.*/

 n_pu PduIndexType,
 /*A local variable for maintaining knowledge of the number of PUs included in a AMD PDU.*/

 n_status PduIndexType,
 /*A local variable for maintaining knowledge of the number of STATUS PDUs
 which have been created.*/

 n_pu_per_tti PduIndexType,
 /*A local variable for maintaining knowledge of the number of PUs received within a TTI.*/

 end_state EndStateType,
 /*A variable used to ensure correct timer reset.*/

 poll_win REAL,
 /*A local variable used to store the current transmit window usage.*/

 bitmap IndicatorArrayType,
 /*This array of boolean values indicates losses experienced by the
 receiver.*/

 codewords IndicatorArrayType;
 /*This array is used to store the codewords in the rlsit super field.*/

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

;
SIGNALSET

Virtual Process Type Acknowledged_link 6_Declarations(69)

DCL
 /*State variable declarations:___*/

vt_s SequenceNumberType,
 /*Send state variable: The sequence number of the next pu to be transmitted for the first time (i.e
 excluding retransmissions). It is updated after transmission of a PDU which includes not earlier
 transmitted PUs. The initial value of this variable is 0.*/

 vt_a SequenceNumberType,
 /*Acknowledge state variable: The sequence number of the next in-sequence PU expected to
 be acknowledged, thus forming the lower edge of the window of acceptable acknowledgements.
 The variable vt_a is updated based on receipt of a STATUS PDU including an ACK super-field.
 The initial value of this variable is 0.*/

 vt_ms SequenceNumberType,
 /*Maximum send state variable: The sequence number of the first PU not allowed by the peer
 receiver (i.e. the receiver will allow up t o vt_ms-1) vt_ms=vt_a+ window size. This value
 represents the upper edge of the transmit window. The transmitter shall not transmit a
 new PU if vt_s >= vt_ms. The variable vt_ms is updated based on receipt of a STATUS PDU
 incluiding an ACK and/or WINDOW super-field.*/

 vt_pu SequenceNumberType,
 /*This state variable is used when the poll every Poll_PU PU function is used. It is incremented with
 1 for each PU that is transmitted. It should be incremented for both new and retransmitted PUs.
 When it reaches Poll_PU a new poll is transmitted and the state variable is set to zero. The initial
 value of this variable is 0.*/

 vt_sdu SequenceNumberType,
 /*This state variable is used when the poll every Poll_SDU SDU function is used. It is incremented
 with 1 for each SDU that is transmitted. When it reaches Poll_SDU a new poll is transmitted and
 the state variable is set to zero. The poll bit should be set in the PU that contains the last segment
 of the SDU. The initial value of this variable is 0.*/

 vt_rst SequenceNumberType,
 /*Reset state variable: This variable is used to count the number of times a RESET PDU is transmit-
 ted. It is incremented with 1 each time a RESET PDU is transmitted. It is reset upon reception of
 a RESET ACK PDU. The initial value of this variable is 0.*/

 vr_r SequenceNumberType,
 /*Receive state variable: The sequence number of the next in sequence PU expected to be received.
 It is updated upon receipt of the next in-sequence pdu. The initial value of this variable is 0.*/

 vr_h SequenceNumberType,
 /*Highest expected state variable: The sequence number of the next highest expected pdu. The vari-
 able is updated whenever a new pdu is received with SN>=vr_h. The initial value of this variable is 0.*/

 vr_mr SequenceNumberType,
 /*Maximum acceptable receive state variable: The sequence number of the first pdu not allowed
 by the receiver (i.e. the receiver will allow up to vr_mr-1), vr_mr=vr_r+window size. The receiver
 shall discard PUs with SN>=vr_mr, (in one case, such a PU may cause the transmission of an
 unsolicited STATUS PDU).*/

 vr_ep SequenceNumberType;
 /*Estimated PDU counter state variable: The number of PUs that should be received yet as
 a consequence of the transmission of the latest STATUS PDU. In acknowledged mode,
 this state variable is updated at the end of each transmission time interval. It is decremented
 by the number of PUs that should have been received during the transmission time interval. If
 VR(EP) is equal to zero, then check if all PUs requested for retransmission in the latest STATUS
 PDU have been received. */

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

;
SIGNALSET
 Crlc_amconfig_req,

Virtual Process Type Acknowledged_link 7_Declarations(69)

DCL
 /*State variable declarations:___*/

 vt_dat SequenceNumberType,
 /*This is a local variable that stores the highest value associated with any
 PU within the PDU formed from the retransmission queue.*/

 vt_mrw SequenceNumberType;
 /*A variable used to keep track of the number of transmissions of MRW that has
 occurred.*/

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

;
SIGNALSET

Virtual Process Type Acknowledged_link 8_Declarations(69)

TIMER

 Timer_Poll,
 /*This timer is only used when the poll timer trigger is used. It is started when the transmitting side sends a
 poll to the peer entity. The timer is stopped when receiving a STATUS PDU that contains an acknowled-
 gement or negative acknowledgement of the AMD PDU that triggered the timer. The value
 of the timer is signalled by RRC. If the timer expires and no STATUS PDU containing an acknowledgement
 or negative acknowledgement of the AMD PDU that triggered the timer has been received, the receiver is
 polled once more (either by the transmission of a PDU which was not yet sent, or by a retransmission) and
 the timer is restarted. If a new poll is sent when the timer is running it is restarted. */

 Timer_Poll_Prohibit,
 /*This timer is only used when the poll prohibit function is used. It is used to prohibit transmission of polls
 within a certain period. A poll shall be delayed until the timer expires if a poll is triggered when the timer
 is active. Only one poll shall be transmitted when the timer expires even if several polls were triggered when
 the timer was active. This timer will not be stopped by a STATUS PDU. The value of the timer is signalled
 by RRC. */

 Timer_EPC,
 /*This timer is only used when the EPC function is used and it accounts for the roundtrip delay, i.e. the time
 when the first retransmitted PU should be received after a STATUS has been sent. The timer is started when
 a STATUS report is transmitted and when it expires EPC can start decrease (see section 9.7.3). The value of the
 timer is signalled by RRC*/

 Timer_EPC_check,
 /*This timer is used to count down the state variable vr_ep at acertain interval.*/

 Timer_Discard(MuiType),
 /*This timer is used for the SDU discard function. In the transmitter, the timer is activated upon reception of a SDU
 from higher layer. If the SDU has not been acknowledged when the timer expires, the SDU is discarded and a
 Move Receiving Window request is sent to the receiver. If the SDU discard function does not use the Move
 Receiving Window request, the timer is also used in the receiver, where it is activated once a PDU is detected
 as outstanding, i.e. there is a gap between sequence numbers of received PDUs. The value of the timer is
 signalled by RRC.*/

 Timer_Poll_Periodic,
 /*This timer is only used when the timer based polling is used. The timer is started when the RLC entity is
 created. Each time the timer expires a poll is transmitted and the timer is restarted. The value of the timer
 is signalled by RRC.*/

 Timer_Status_Prohibit,
 /*This timer is only used when the STATUS PDU prohibit function is used. It prohibits the receiving side
 from sending STATUS PDUs. The timer is started when a STATUS PDU is transmitted and no new STATUS
 PDU can be transmitted before the timer has expired. The value of the timer is signalled by RRC.*/

 Timer_Status_Periodic,
 /*This timer is only used when timer based STATUS PDU sending is used. The timer is started when the RLC
 entity is created. Each time the timer expires a STATUS PDU is transmitted and the timer is restarted. The
 value of the timer is signalled by RRC.*/

 Timer_MRW,
 /*This timer is used to keep track of the response to the MRW sufi type.*/

 Timer_RST;
 /*It is used to detect the loss of RESET ACK PDU from the peer RLC entity. This timer is set when the RESET
 PDU is transmitted. And it will be stopped upon reception of RESET ACK PDU. If it expires, RESET PDU
 will be retransmitted.*/

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

;
SIGNALSET

Virtual Process Type Acknowledged_link 1_LocalProcedures(69)

Sdu_am_segmentation
This procedure manages segmentation and concatenation of
sdus. If the poll_trigger EVERY_POLL_SDU is used, poll bit is
set in accordance with the value POLL_SDU. In case a SDU is
smaller than a PU and waiting next SDU, n_pdu=0 is returned.

FPAR

 IN/OUT sdu OctetType,

 IN cfn IndicatorType,

 IN/OUT np SequenceNumberType,

 IN/OUT pdus AmPduArrayType,

 IN/OUT qu Queue,

 IN poll_trigg PollTriggArrType,

 IN prtcl_parmeter ProtocolParameterStructType,

 IN/OUT vt_sdu SequenceNumberType,

 IN cip_m CipheringModeType,

 IN cip_k CipheringKeyType,

 IN cip_s CipheringSequenceNumberType,

 IN/OUT mui MuiType,

 IN pdu_s OctetType,

 IN pu_s OctetType;

Set_sequence_number
This procedure sets the sequence numbers within an AmPdu.

FPAR

 IN/OUT pdu AmPdu,

 IN vt_s SequenceNumberType;

Read_pdu
This procedure retrieves a copy of the first entry in the queue
indicated as parameter to the procedure.

FPAR

 IN/OUT qu Queue,

 IN/OUT am_pdu AmPdu;

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

;
SIGNALSET

Virtual Process Type Acknowledged_link 2_LocalProcedures(69)

Place_several_in_queue
This procedure places several pus in the indicated queue.

FPAR

 IN/OUT qu Queue,

 IN/OUT tot PduIndexType,

 IN/OUT pus AmPuArrayStructType;

Place_in_queue
This procedure places the indicated pdu within the queue
given as parameter to the procedure.

FPAR

 IN/OUT qu Queue,

 IN/OUT pdu AmPdu;

Place_piggyback_in_queue
This procedure places a piggybacked STATUS PDU onto the
first AMD PDU within a queue.

FPAR

 IN/OUT qu Queue,

 IN/OUT re_qu Queue,

 IN/OUT stat_pdu StatPdu,

 IN pa IndicatorType,

IN/OUT pos IndicatorType;

Place_in_mui_queue
This procedure places a message identifier in the sdu queue.

FPAR

IN/OUT qu Queue,

IN mui MuiType;

Place_in_transmitted_queue
This procedure stores the individual pu:s within the transmitted
queue.

FPAR

 IN/OUT qu Queue,

 IN/OUT pdu AmPdu;

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

;
SIGNALSET
 Crlc_amconfig_req

Virtual Process Type Acknowledged_link 3_LocalProcedures(69)

Place_in_receive_side_queue
This procedure places a PU in one of the receive side queues.

FPAR

 IN/OUT qu Queue,

 IN/OUT pu AmPuStructType;

Place_in_retransmission_queue
This procedure places a PU in the retransmission queue.

FPAR

 IN/OUT qu Queue,

 IN/OUT pu AmPuStructType;

Remove_from_retransmission_queue
This procedure retrieves an AMD PDU from the retransmission
queue.

FPAR

 IN/OUT qu Queue,

 IN/OUT pdu AmPdu,

 IN pdu_s OctetType,

 IN pu_s OctetType,

 IN/OUT n_pu PduIndexType;

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

;
SIGNALSET

Virtual Process Type Acknowledged_link 4_LocalProcedures(69)

Remove_from_queue
This procedure removes the first PDU in the queue and
returns the number of PUs within the removed PDU.

FPAR

 IN/OUT qu Queue,

 IN/OUT pdu AmPdu,

 IN pdu_size OctetType,

 IN pu_sze OctetType,

 IN/OUT n_pu PduIndexType;

Remove_identified_from_queue
This procedure removes a pu with a given sequence number
from the queue identified.

FPAR

 IN/OUT qu Queue,

 IN sn SequenceNumberType,

 IN/OUT pu AmPuStructType;

Remove_acks_and_get_muis
This procedure removes all pus that have been acknowledged
from the indicated queue and stores the muis that are removed
from the queue in a special array.

FPAR

 IN/OUT tx_qu Queue,

 IN re_qu Queue,

 IN sn SequenceNumberType,

 IN/OUT tot PduIndexType,

 IN/OUT muis MuiArrayType,

 IN/OUT poll_tot PduIndexType,

 IN/OUT rem_poll SequenceNumberArrayType;

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

;
SIGNALSET

Virtual Process Type Acknowledged_link 5_LocalProcedures(69)

Remove_list_from_queue
This procedure checks whether each sequence number of missing PU
informed by LIST SUFI is within the value between vt_a and vt_s, and
removes a list of pdus indicated by sequence numbersfrom the
 transmission queue and retransmission_queue.

FPAR

 IN/OUT qu Queue,

 IN/OUT re_qu Queue,

 IN sq SequenceNumberType,

 IN/OUT no PduIndexType,

 IN/OUT tot PduIndexType,

 IN/OUT pus AmPuArrayStructType;

Remove_bitmap_from_queue
This procedure checks whether each sequence number of missing PU
informed by LIST SUFI is within the value between vt_a and vt_s, and
removes a list of pdus in accordance with a bitmap from the
transmission queue and retranmission queue.

FPAR

 IN/OUT qu Queue,

 IN/OUT re_qu Queue,

 IN sq SequenceNumberType,

 IN/OUT no PduIndexType,

 IN/OUT bitmap IndicatorArrayType,

 IN/OUT tot PduIndexType,

 IN/OUT pus AmPuArrayStructType;

Remove_mui_from_queue
This procedure removes all PUs associated with a given mui
from the transmitted_queue.

FPAR

 IN/OUT mui MuiType,

 IN/OUT tx_qu Queue,

 IN/OUT retx_qu Queue;

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

;
SIGNALSET

Virtual Process Type Acknowledged_link 6_LocalProcedures(69)

Remove_rlist_from_queue
This procedure checks whether each sequence number of missing PU
informed by LIST SUFI is within the value between vt_a and vt_s, and
removes a list of pdus in accordance with a codewords from the
transmission queue and retranmission queue.

FPAR

 IN/OUT qu Queue,

 IN/OUT re_qu Queue,

 IN sq SequenceNumberType,

 IN/OUT no PduIndexType,

 IN/OUT codewords IndicatorArrayType,

 IN/OUT tot PduIndexType,

 IN/OUT pus AmPuArrayType,

 IN/OUT poss IndicatorType;

Remove_all_below_mrw_from_queue
This procedure removes all PUs below the move receiving window
from all receiver queues.

FPAR

 IN/OUT r_qu Queue,

 IN/OUT a_qu Queue,

 IN/OUT sn SequenceNumberType;

Remove_identified_from_mui_queue
This procedure removes a specific mui from the mui
queue used to keep track of Timer_Discard instances.

FPAR
 IN/OUT sdu_queue Queue,
 IN mui MuiType;

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

;
SIGNALSET

Virtual Process Type Acknowledged_link 7_LocalProcedures(69)

Virtual
Transmit_amd_pdu

This procedure manages transmission of an AMD PDU across the
proper SAP.

FPAR

IN pdu AmPdu,

IN ch LogicalChannelType;

Virtual
Transmit_reset

This procedure transmits a RESET PDU on the correct logical channel.

FPAR

IN ch LogicalChannelType;

Virtual
Transmit_reset_ack

This procedure transmits a RESET ACK PDU on the correct
logical channel.

FPAR

IN ch LogicalChannelType;

Virtual
Transmit_status

This procedure transmits a STATUS PDU on the correct logical
channel.

FPAR

IN pdu StatPdu,

IN ch LogicalChannelType;

Reassemble_am_pu
This procedure reassembles Rlc pdu contents into Sdu:s as
they arrive.

FPAR

 IN/OUT qu Queue,

 IN/OUT comp IndicatorType,

 IN/OUT sdus OctetArrayType,

 IN/OUT n_sdu PduIndexType;

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

;
SIGNALSET

Virtual Process Type Acknowledged_link 8_LocalProcedures(69)

Extract_status_from_pdu
This procedure extracts piggybacked status information from
the received PDU.

FPAR

IN/OUT pdu AmPdu,
IN/OUT st_pdu StatPdu;

Extract_pus
This procedure places the pus in the received AMD PDU in an array
in order to make them available for processing one by one and checks
the number of PUs in the AMD PDU.

FPAR
 IN/OUT pdu AmPdu,
 IN/OUT pus AmPuArrayType,
 IN/OUT n_pu PduIndexType;

Initialise_state_variables
This procedure ssets the state variables appropriately.

FPAR
 IN/OUT vt_s, vt_ms, vt_sdu, vt_pu, vt_a,
 vr_r, vr_h, vr_mr SequenceNumberType;

Initialise_vtDAT
This procedure initialises the retransmission counters
associated with the PUs within the PDU.

FPAR

IN/OUT pdu AmPdu;

Increment_vtDAT
This procedure increments the retransmission counters
associated with the PUs within the PDU.

FPAR

IN/OUT pdu AmPdu;

Queue_initialisations
This procedure initialises all queues needed within the
process.

FPAR

IN/OUT a_qu, t_qu, retx_qu, rx_qu,
 as_qu, sdu_qu Queue;

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

;
SIGNALSET

Virtual Process Type Acknowledged_link 9_LocalProcedures(69)

Create_status
This procedure creates a status report based on available information.
The information can be split into several STATUS PDUs if it can not be
mapped onto one STATUS PDU. At the same time, vr_ep is set equal to
the number of requested PUs.

FPAR

 IN vr_r SequenceNumberType,

 IN vr_h SequenceNumberType,

 IN rx_win SequenceNumberType,

 IN pdu_size OctetType,

 IN rx_qu Queue,

 IN/OUT stat_pdus StatusPduArrayType,

 IN/OUT vr_ep SequenceNumberType,

 IN/OUT n_stat PduIndexType,

 IN sn_mrw SequenceNumberType;

Exists_in_receiver_queue
This procedure checks if an identified pu exists within the
receiver queue.

FPAR

 IN n SequenceNumberType,

 IN/OUT qu Queue,

 IN/OUT exists IndicatorType;

Estimate_number_of_pus
This procedure estimates the number of PUs that have been received
within aTTI.

FPAR
 IN/OUT n_pu_tti PduIndexType;

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

;
SIGNALSET

Virtual Process Type Acknowledged_link 10_LocalProcedures(69)

Check_status_creation
This procedure checks if a status report should be generated.

FPAR

 IN vr_r SequenceNumberType,

 IN vr_h SequenceNumberType,

 IN qu Queue,

 IN/OUT status IndicatorType;

Check_if_queue_empty
This procedure checks if there are any PDUs remaining in the
queue given as parameter to the procedure.

FPAR

 IN qu Queue,

 IN/OUT empty IndicatorType;

Check_and_delete_timer_discards
This procedure checks if any timer polls are active and
returns the first message identifier associated with the
discard. If the queue is empty, empty=YES is returned.

FPAR

IN/OUT qu Queue,

IN mui MuiType,

IN/OUT empty IndicatorType;

Check_if_piggyback
This procedure checks if the current AMD PDU to be transmitted
contains a piggybacked STATUS PDU or not

FPAR
 IN pdu AmPdu,
 IN/OUT piggyback IndicatorType;

Check_if_MRW_answer
This procedure checks if the peer has responded to a MRW command.

FPAR

 IN sn_mrw SequenceNumberType,

 IN status_pdu StatPdu,

 IN/OUT mrw_ans IndicatorType;

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

;
SIGNALSET

Virtual Process Type Acknowledged_link 11_LocalProcedures(69)

Update_state_variables
This procedure updates the state variables vt_a and vt_s.

FPAR

 IN/OUT vt_a SequenceNumberType,

 IN/OUT vt_ms SequenceNumberType,

 IN/OUT tx_win SequenceNumberType,

 IN am_qu Queue,

 IN/OUT tx_qu Queue,

 IN/OUT retx_qu Queue;

Set_poll_bit_in_queue
This procedure ensures that a poll bit is set in the amd_queue

FPAR
IN/OUT qu Queue;

Contains_polledSN
This procedure checks if the sequence number associated with
a poll request has been acknowledged in the status pdu.

FPAR

 IN polled_sn SequenceNumberType,

 IN status_pdu StatPdu,

 IN/OUT contains IndicatorType;

Calculate_polling_window
This procedure calculates the current usage of the transmit window.

FPAR

IN/OUT pdu AmPdu,

IN/OUT poll_win Real,

IN vt_ms SequenceNumberType,

IN tx_win SequenceNumberType;

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

;
SIGNALSET

Virtual Process Type Acknowledged_link 1_ProcessTypeStart(69)

Queue_initialisations(amd_queue, transmitted_queue,
retransmission_queue, receiver_queue,
assembly_queue, mui_queue)

Initialise_state_variables(vt_s, vt_ms, vt_sdu, vt_pu,
vt_a, vt_rst, vt_mrw, vr_r, vr_h, vr_mr, vr_ep)

end_state:=NULL

1_TimerInit

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

;
SIGNALSET

Virtual Process Type Acknowledged_link 1_TimerInit(69)

1_TimerInit

status_periodic_active

Reset(Timer_Status_Periodic)

status_periodic_active:=NO

poll_periodic_active

Reset(Timer_Poll_Periodic)

poll_periodic_active:=NO

epc_active

Reset(Timer_EPC)

epc_active:=NO

poll_prohibit_active

Reset(Timer_Poll_Prohibit)

poll_prohibit_active:=NO

2_TimerInit

YES

YES

YES

YES
NO

NO

NO

NO

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

;
SIGNALSET

Virtual Process Type Acknowledged_link 2_TimerInit(69)

2_TimerInit

Check_and_delete_timer_discards
(mui_queue, mui, empty)

empty

Reset(Timer_Discard(mui))

MRW_active

Reset(Timer_MRW)

MRW_active:=NO

poll_active

Reset(Timer_Poll)

poll_active:=NO,
polled_sn:=0

3_TimerInit

NOYES

YES
NO

YESNO

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

;
SIGNALSET

Virtual Process Type Acknowledged_link 3_TimerInit(69)

3_TimerInit

status_prohibit_active

Reset(Timer_Status_Prohibit)

status_prohibit_active:=NO

rst_active

Reset(Timer_RST)

rst_active:=NO

end_state

Set(NOW+timer_durations!rst,
Timer_RST)

rst_active:=YES

Reset_pendingAcknowledged_data_transfer_ready Null

YES

YES

RST
ACK NULL

NO

NO

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

;
SIGNALSET

Virtual Process Type Acknowledged_link 1_Null(69)

Null

Crlc_amconfig_req(e_r, logical_channel,
poll_triggers, status_triggers, timer_durations,
protocol_parameters, discard, ciphering_mode,
ciphering_key, ciphering_sequence_number,
pdu_size, pu_size)

e_r

The receive window can be updated dynamically
according to the status of the receiver.

transmit_window:=protocol_parameters!window_size,
receive_window:=protocol_parameters!window_size

vt_ms:=vt_s+transmit_window,
vr_mr:=vr_r+receive_window

poll_triggers(TIMER_BASED)

Set(NOW+timer_durations!poll_periodic,
Timer_Poll_Periodic)

poll_periodic_active:=YES

status_triggers(TIMER_BASED)

Set(NOW+timer_durations!status_periodic,
Timer_Status_Periodic)

status_periodic_active:=YES

Acknowledged_data_transfer_ready-

ESTABLISH

YES

YES
NO

NO

RELEASE

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

;
SIGNALSET

Virtual Process Type Acknowledged_link 1_AcknowledgedDataTransferReady(69)

1_AckDataTransferReady Acknowledged_data_transfer_ready

Crlc_amconfig_req(e_r, logical_channel,
poll_triggers, status_triggers, timer_durations,
protocol_parameters, discard, ciphering_mode,
ciphering_key, ciphering_sequence_number,
pdu_size, pu_size)

e_r

Queue_initialisations(amd_queue, transmitted_queue,
retransmission_queue, receiver_queue,
assembly_queue, mui_queue)

Initialise_state_variables(vt_s, vt_ms, vt_sdu, vt_pu,
vt_a, vt_rst, vt_mrw, vr_r, vr_h, vr_mr, vr_ep)

end_state
:=NULL

- 1_TimerInit

RELEASE

ESTABLISH

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

;
SIGNALSET

Virtual Process Type Acknowledged_link 2_AcknowledgedDataTransferReady(69)

Acknowledged_data_transfer_ready

Reset_am Reset_am_ack

Queue_initialisations(amd_queue, transmitted_queue,
retransmission_queue, receiver_queue,
assembly_queue, mui_queue)

Initialise_state_variables(vt_s, vt_ms, vt_sdu, vt_pu,
vt_a, vt_rst, vt_mrw, vr_r, vr_h, vr_mr, vr_ep)

Transmit_reset_ack(logical_channel)

Crlc_status_ind(EVC)
VIA Cont

end_state
:=ACK

1_TimerInit -

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

;
SIGNALSET

Virtual Process Type Acknowledged_link 1_RlcAmDataReq(69)

Acknowledged_data_transfer_ready

Rlc_AmData_req(sdu, cnf, mui)

discard(TIMER_BASED)

Set(NOW+timer_durations!discard,
Timer_Discard(mui))

Place_in_mui_queue(mui_queue, mui)

Sdu_am_segmentation(sdu, cnf, n_pdu, pdus,
amd_queue, poll_triggers, protocol_parameters, vt_sdu,
ciphering_mode, ciphering_key,
ciphering_sequence_number, mui, pdu_size, pu_size)

n_pdu=0

2_RlcAmDataReq -

YES
NO

YES
NO

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

;
SIGNALSET

Virtual Process Type Acknowledged_link 2_RlcAmDataReq(69)

2_RlcAmDataReq

n:=1

amd_pdu:=pdus(n)

Set_sequence_number(amd_pdu,
vt_s)

Place_in_queue(
amd_queue, amd_pdu)

AmdPduQueuedUp
TO SELF

n<n_pdu

n:=n+1 -

YES NO

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

;
SIGNALSET

Virtual Process Type Acknowledged_link 1_AmdPduQueuedUp(69)

Acknowledged_data_transfer_ready

AmdPduQueuedUp

Check_if_queue_empty(retransmission_queue,
empty)

empty

Check_if_queue_empty(
amd_queue, empty)

empty

Read_pdu(amd_queue, amd_pdu)

amd_pdu!sn<vt_ms

AmdPduQueuedUp
TO SELF

-

Calculate_polling_window(
amd_pdu, poll_win, vt_ms,
transmit_window)

Remove_from_queue(
amd_queue, amd_pdu,
pdu_size, pu_size, n_pu)

vt_pu:=
vt_pu+n_pu

2_AmdPduQueuedUp 5_AmdPduQueuedUp

YES

NO

NO YES

YES

NO

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

;
SIGNALSET

Virtual Process Type Acknowledged_link 2_AmdPduQueuedUp(69)

2_AmdPduQueuedUp

Check_if_piggyback(amd_pdu, piggyback)

piggyback

status_triggers(STATUS_PROHIBIT)

Set(NOW+
timer_durations!status_prohibit,
Timer_Status_Prohibit)

status_prohibit_active:=YES

status_triggers(EPC)

Set(NOW+timer_durations!epc,
Timer_EPC)

epc_active:=YES

3_AmdPduQueuedUp

YES

YES

YES
NO

NO

NO

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

;
SIGNALSET

Virtual Process Type Acknowledged_link 3_AmdPduQueuedUp(69)

3_AmdPduQueuedUp

amd_pdu!p

poll_triggers(LAST_PU_IN_BUFFER)

Check_if_queue_empty(amd_queue, empty)

empty

poll_triggers(POLLING_WINDOW)

poll_win>=
protocol_parameters!poll_window

poll_triggers(EVERY_POLL_PU)

vt_pu>=protocol_parameters!poll_pu

vt_pu:=0

amd_pdu!p
:=YES

Initialise_vtDAT(amd_pdu)

4_AmdPduQueuedUp

NO

YES
YES

NO

NO

YES

YES
NO

NO

YES

YES

NO

YES
NO

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

;
SIGNALSET

Virtual Process Type Acknowledged_link 4_AmdPduQueuedUp(69)

4_AmdPduQueuedUp

amd_pdu!p

poll_triggers(POLL_PROHIBIT)

poll_prohibit_active

poll_triggered
:=YES

Set(NOW+timer_durations!poll_prohibit,
Timer_poll_prohibit)

poll_prohibit_active:=YES

Set(NOW+timer_durations!poll, Timer_Poll)

poll_active:=YES,
polled_sn:=amd_pdu!sn

Transmit_amd_pdu(amd_pdu, logical_channel)

amd_pdu!p:=NO,
vt_s:=vt_s+n_pu

Place_in_transmitted_queue(
transmitted_queue, amd_pdu)

-

YES
NO

YES
NO

YES
NO

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

;
SIGNALSET

Virtual Process Type Acknowledged_link 5_AmdPduQueuedUp(69)

5_AmdPduQueuedUp

Remove_from_retransmission_queue(
retransmission_queue, amd_pdu,
pdu_size, pu_size, n_pu)

vt_pu:=
vt_pu+n_pu

discard(TIMER_BASED)

amd_pdu!vt_dat<protocol_parameters!maxDat

discard(MAXDAT)

1_TransmitRST 1_TimerDiscard6_AmdPduQueuedUp

YES

NO

NO
YES

YES

YES

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

;
SIGNALSET

Virtual Process Type Acknowledged_link 6_AmdPduQueuedUp(69)

6_AmdPduQueuedUp

Check_if_piggyback(amd_pdu, piggyback)

piggyback

status_triggers(STATUS_PROHIBIT)

Set(NOW+
timer_durations!status_prohibit,
Timer_Status_Prohibit)

status_prohibit_active:=YES

status_triggers(EPC)

Set(NOW+timer_durations!epc,
Timer_EPC)

epc_active
:=YES

7_AmdPduQueuedUp

YES

YES

YES NO

NO

NO

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

;
SIGNALSET

Virtual Process Type Acknowledged_link 7_AmdPduQueuedUp(69)

7_AmdPduQueuedUp

amd_pdu!p

poll_triggers(LAST_PU_IN_RETRANSBUFFER)

check_if_queue_empty(
retransmission_queue, empty)

empty

poll_triggers(EVERY_POLL_PU)

vt_pu>=protocol_parameters!poll_pu

vt_pu:=0

amd_pdu!p
:=YES

Increment_vtDAT(amd_pdu)

4_AmdPduQueuedUp

NO

YES

YES

NO

NO
YES

YES

NO

YES

NO

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

;
SIGNALSET
 Crlc_amconfig_req,

Virtual Process Type Acknowledged_link 1_TransmitRST(69)

1_TransmitRST

Queue_initialisations(amd_queue,
transmitted_queue, retransmission_queue,
receiver_queue, assembly_queue, mui_queue)

Initialise_state_variables(vt_s, vt_ms,
vt_sdu, vt_pu, vt_a, vt_rst, vt_mrw,
vr_r, vr_h, vr_mr, vr_ep)

vt_rst:=1

Transmit_reset(logical_channel)

Crlc_status_ind(EVC)
VIA Cont

end_state
:=RST

1_TimerInit

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

;
SIGNALSET

Virtual Process Type Acknowledged_link 1_StatusPdu(69)

Acknowledged_data_transfer_ready

StatusPdu(status_pdu)

poll_active

Contains_polledSN(polled_sn,
status_pdu, contains)

contains

Reset
(Timer_Poll)

poll_active
:=NO

i:=1,
sn_ack:=0

mrw_active

Check_if_MRW_answer(sn_mrw,
status_pdu, mrw_ans)

mrw_ans

Reset
(Timer_MRW)

mrw_active
:=NO

2_StatusPdu

YES

YES

YES

YES

NO

NO

NO

NO

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

;
SIGNALSET

Virtual Process Type Acknowledged_link 2_StatusPdu(69)

2_StatusPdu

status_pdu!sufis(i)!typ

1_Window 1_List 1_Mrw 1_Bitmap 1_Ack 1_Rlist 3_StatusPdu

WINDOW LIST MRW BITMAP ACK RLIST NO_MORE

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

;
SIGNALSET

Virtual Process Type Acknowledged_link 1_StatusPduList(69)

1_List

tot_list:=status_pdu!sufis(i)!length

k:=1

sq:=status_pdu!sufis(i)!lst(k)!sn,
n_sq:=status_pdu!sufis(i)!lst(k)!l

Remove_list_from_queue(
transmitted_queue, retransmission_queue,
sq, n_sq, tot_rem, rem_pus, possible)

possible

Place_several_in_queue(
retransmission_queue,
tot_rem, rem_pus)

k=tot_list

i:=i+1 k:=k+1

AmdPduQueuedUp
TO SELF

1_TransmitRST 2_StatusPdu

YES

NO

YES
NO

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

;
SIGNALSET

Virtual Process Type Acknowledged_link 1_StatusPduBitmap(69)

1_Bitmap

tot_bitmap:=status_pdu!sufis(i)!length,
sq:=status_pdu!sufis(i)!fsn,
bitmap:=status_pdu!sufis(i)!bitmap

Remove_bitmap_from_queue(
transmitted_queue, retransmission_queue,
sq, tot_bitmap, bitmap, tot_rem, rem_pus, possible)

possible

i:=i+1

Place_several_in_queue(
retransmission_queue,
tot_rem, rem_pus)

AmdPduQueuedUp
TO SELF

1_TransmitRST 2_StatusPdu

YES
NO

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

;
SIGNALSET

Virtual Process Type Acknowledged_link 1_StatusPduRlist(69)

1_Rlist

tot_bitmap:=status_pdu!sufis(i)!length,
sq:=status_pdu!sufis(i)!fsn,
codewords:=status_pdu!sufis(i)!cw

Remove_rlist_from_queue(
transmitted_queue, retransmission_queue,
sq, tot_rlist, codewords, tot_rem, rem_pus, possible)

possible

i:=i+1

Place_several_in_queue(
retransmission_queue,
tot_rem, rem_pus)

AmdPduQueuedUp
TO SELF

1_TransmitRST 2_StatusPdu

YES
NO

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

;
SIGNALSET

Virtual Process Type Acknowledged_link 1_StatusPduAck(69)

1_Ack

sn_ack:=status_pdu!sufis(i)!lsn

vt_a<=sn_ack AND sn_ack<=vt_s

i:=i+1

3_StatusPdu1_TransmitRST

YES
NO

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

;
SIGNALSET

Virtual Process Type Acknowledged_link 1_StatusPduWindow(69)

1_Window

transmit_window:=status_pdu!sufis(i)!wsn

vt_ms:=vt_a+transmit_window

i:=i+1

2_StatusPdu

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

;
SIGNALSET

Virtual Process Type Acknowledged_link 1_StatusPduMrw(69)

1_Mrw

vr_r:=status_pdu!sufis(i)!sn_mrw

vr_h<vr_r

vr_mr:=vr_r+receive_window

Remove_all_below_mrw_from_queue(
receiver_queue, assembly_queue, vr_r)

i:=i+1

2_Mrw

vr_h:=vr_r,
vr_mr:=vr_r+receive_window

NO
YES

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

;
SIGNALSET

Virtual Process Type Acknowledged_link 2_StatusPduMrw(69)

2_Mrw

epc_active

status_triggered:=YES

2_StatusPdu

Create_status(vr_r, vr_h,
receive_window, pdu_size,
receiver_queue, status_pdus,
vr_ep, n_status, sn_mrw)

j:=1

tx_status_pdu:=status_pdus(j)

poll_answer:=NO

Place_piggyback_in_queue(amd_queue,
retransmission_queue, tx_status_pdu,
poll_answer, possible)

3_Mrw

2A_Mrw

YES
NO

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

;
SIGNALSET

Virtual Process Type Acknowledged_link 3_StatusPduMrw(69)

3_Mrw

possible

j=n_status

j:=j+1

2A_Mrw2_StatusPdu

tx_status_pdu!pa:=poll_answer

Transmit_status(tx_status_pdu, logical_channel)

j=n_status

status_triggers(EPC)

Set(NOW+timer_durations!epc, Timer_EPC)

epc_active:=YES

status_triggers(STATUS_PROHIBIT)

Set(NOW+timer_durations!status_prohibit,
Timer_Status_prohibit)

status_prohibit_active:=YES

2_StatusPdu

YES

NOYES

NO

NO

YES

YES

YES
NO

NO

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

;
SIGNALSET

Virtual Process Type Acknowledged_link 3_StatusPdu(69)

3_StatusPdu

sn_ack=0

Remove_acks_and_get_muis(
transmitted_queue,retransmission_queue,
sn_ack, tot_mui, muis)

tot_mui=0

j:=1

muis(j)!cnf

Rlc_AmData_conf(muis(j)!mui)
VIA Am

Reset(Timer_Discard(muis(j)!mui))

j=tot_mui

j:=j+1

Update_state_variables(vt_a, vt_ms,
transmit_window, amd_queue,
transmitted_queue, retransmission_queue)

-

NO
YES

NO
YES

YES
NO

NO
YES

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

;
SIGNALSET

Virtual Process Type Acknowledged_link 1_TimerPoll(69)

Acknowledged_data_transfer_ready

Timer_Poll

poll_prohibit_active

poll_triggered:=NO,
poll_active:=NO

Check_if_queue_empty(retransmission_queue,
empty)

empty

Check_if_queue_empty(
amd_queue, empty)

empty

Set_poll_bit_in_queue(
amd_queue)

- 2_TimerPoll

Set_poll_bit_in_queue(
retransmission_queue)

poll_triggered:=YES,
poll_active:=NO

-

1_TimerPoll

NO

YES

NO

YES

NO

YES

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

;
SIGNALSET

Virtual Process Type Acknowledged_link 2_TimerPoll(69)

2_TimerPoll

Check_if_queue_empty(transmitted_queue,
empty)

empty

Remove_identified_from_queue(
transmitted_queue, polled_sn,
amd_pu)

amd_pu!p:=YES

Place_in_retransmission_queue(
retransmission_queue, amd_pu)

AmdPduQueuedUp
TO SELF

-

NOYES

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

;
SIGNALSET

Virtual Process Type Acknowledged_link 1_TimerPollProhibit(69)

Acknowledged_data_transfer_ready

Timer_Poll_Prohibit

poll_prohibit_active:=NO

poll_triggered

1_TimerPoll -

YES NO

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

;
SIGNALSET

Virtual Process Type Acknowledged_link 1_TimerStatusProhibit(69)

Acknowledged_data_transfer_ready

Timer_Status_Prohibit

status_prohibit_active:=NO

-

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

;
SIGNALSET

Virtual Process Type Acknowledged_link 1_TimerStatusPeriodic(69)

Acknowledged_data_transfer_ready

Timer_Status_Periodic

Set(NOW+timer_durations!status_periodic,
Timer_Status_Periodic)

status_prohibit_active

epc_active

status_triggered:=
YES

-

poll_answer
:=NO

1_TimerStatus

NO

YES NO

YES

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

;
SIGNALSET

Virtual Process Type Acknowledged_link 1_TimerEpc(69)

Acknowledged_data_transfer_ready

Timer_EPC

epc_active
:=NO

Estimate_number_of_pus(n_pu_per_tti)

vr_ep:=vr_ep-n_pu_per_tti

vr_ep<=0

Set(NOW+timer_durations!epc_check,
Timer_EPC_check)

2_TimerEPC -

NO
YES

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

;
SIGNALSET

Virtual Process Type Acknowledged_link 1_TimerEpcCheck(69)

2_TimerEPC

status_triggered

Check_status_creation(
vr_r, vr_h, receiver_queue,
create_status)

create_status

1_TimerStatus -

Acknowledged_data_transfer_ready

Timer_EPC_check

Estimate_number_of_pus(n_pu_per_tti)

vr_ep:=vr_ep-n_pu_per_tti

vr_ep<=0

Set(NOW+timer_durations!epc_check,
Timer_EPC_check)

NO

YES

NO

YES

YES NO

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

;
SIGNALSET

Virtual Process Type Acknowledged_link 1_TimerStatus(69)

1A_TimerStatus

tx_status_pdu:=status_pdus(j)

Place_piggyback_in_queue(amd_queue,
retransmission_queue, tx_status_pdu,
poll_answer, possible)

2_TimerStatus

1_TimerStatus

Create_status(vr_r, vr_h, receive_window,
pdu_size, receiver_queue, status_pdus,
vr_ep, n_status, sn_mrw)

j:=1

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

;
SIGNALSET

Virtual Process Type Acknowledged_link 2_TimerStatus(69)

2_TimerStatus

possible

j=n_status

j:=j+1

1A_TimerStatus-

tx_status_pdu!pa:=poll_answer

Transmit_status(tx_status_pdu, logical_channel)

j=n_status

status_triggers(EPC)

Set(NOW+timer_durations!epc, Timer_EPC)

epc_active:=YES

status_triggers(STATUS_PROHIBIT)

Set(NOW+timer_durations!status_prohibit,
Timer_Status_prohibit)

status_prohibit_active:=YES

-

YES

NOYES

NO

NO

YES

YES

YES

NO

NO

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

;
SIGNALSET

Virtual Process Type Acknowledged_link 1_TimerPollPeriodic(69)

Acknowledged_data_transfer_ready

Timer_Poll_Periodic

poll_triggered:=YES

Set(NOW+timer_durations!poll_periodic,
Timer_Poll_Periodic)

1_TimerPoll

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

;
SIGNALSET

Virtual Process Type Acknowledged_link 1_TimerDiscard(69)

Acknowledged_data_transfer_ready 1_TimerDiscard

Timer_Discard(mui)

Remove_mui_from_queue(mui, amd_queue,
transmitted_queue, retransmission_queue)

Update_state_variables(vt_a, vt_ms,
transmit_window, amd_queue,
transmitted_queue, retransmission_queue)

Remove_identified_from_mui_queue(
mui_queue, mui)

discard(EXPLICIT)

epc_active

Set(NOW+timer_durations!mrw, Timer_MRW)

sn_mrw:=vt_a,
vt_mrw:=1,
poll_answer:=NO

- 1_TimerStatus

YESNO

NO
YES

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

;
SIGNALSET

Virtual Process Type Acknowledged_link 1_TimerMRW(69)

Acknowledged_data_transfer_ready

Timer_MRW

vt_mrw:=
vt_mrw+1

vt_mrw<protocol_parameters!maxMRW

Transmit_status(tx_status_pdu,
logical_channel)

Set(NOW+timer_durations!mrw,
Timer_MRW)

- 1_TransmitRST

YES

NO

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

;
SIGNALSET

Virtual Process Type Acknowledged_link 1_AmdPdu(69)

Acknowledged_data_transfer_ready

AmdPdu(amd_pdu)

amd_pdu!length=PIGGYBACKED

Extract_status_from_pdu(amd_pdu, status_pdu)

StatusPdu(status_pdu)
TO SELF

Extract_pus(amd_pdu, pus, n_pu)

i:=1

i>n_pu

i:=i+1

amd_pu:=pus(i)

2_AmdPdu6_AmdPdu

1_AmdPdu

YES

NO
YES

NO

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

;
SIGNALSET

Virtual Process Type Acknowledged_link 2_AmdPdu(69)

2_AmdPdu

amd_pu!sn<vr_mr

amd_pu!sn=vr_r

amd_pu!sn=vr_h

Place_in_receive_side_queue(
assembly_queue, amd_pu)

Reassemble_am_pu(
assembly_queue, complete,
sdus, n_sdu)

complete

j:=1

sdu:=sdus(j)

Rlc_AmData_ind(sdu)
VIA Am

j=n_sdu

j:=j+1

vr_r:=amd_pu!sn+1,
vr_h:=amd_pu!sn+1,
vr_mr:=vr_r+receive_window

5_AmdPdu 1_AmdPdu 3_AmdPdu 4_AmdPdu

YESNO

YES
NO

YES NO

YES
NO

NO
YES

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

;
SIGNALSET

Virtual Process Type Acknowledged_link 3_AmdPdu(69)

3_AmdPdu

Place_in_receive_side_queue(
assembly_queue, amd_pu)

Reassemble_am_pu(
assembly_queue, complete, sdus, n_sdu)

complete

j:=1

sdu:=sdus(j)

Rlc_AmData_ind(sdu)
VIA Am

j=n_sdu

j:=j+1
vr_r:=vr_r+1,
vr_mr:=vr_r+receive_window

Exists_in_receiver_queue(
vr_r, receiver_queue, exists)

exists

Remove_identified_from_queue(
receiver_queue, vr_r, amd_pu)

1_AmdPdu

YES

NO YES

YESNO

NO

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

;
SIGNALSET

Virtual Process Type Acknowledged_link 4_AmdPdu(69)

4_AmdPdu

amd_pu!sn<vr_r

amd_pu!sn=vr_h

Place_in_receive_side_queue(
receiver_queue, amd_pu) vr_h<amd_pu!sn

vr_h:=vr_h+1 Place_in_receive_side_queue(
receiver_queue, amd_pu)

vr_h:=amd_pu!sn+1

missing_pu_detected:=YES

Exists_in_receiver_queue(amd_pu!sn,
receiver_queue, exists)

exists

Place_in_receive_side_queue(
receiver_queue, amd_pu)

1_AmdPdu 1_AmdPdu 1_AmdPdu 1_AmdPdu

NO
YES

YES
NO

YES
NO

NO
YES

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

;
SIGNALSET

Virtual Process Type Acknowledged_link 5_AmdPdu(69)

5_AmdPdu

vr_h<vr_mr

missing_pu_detected:=YES

vr_h:=vr_mr

1_AmdPdu

YES NO

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

;
SIGNALSET

Virtual Process Type Acknowledged_link 6_AmdPdu(69)

6_AmdPdu

amd_pdu!p

status_prohibit_active

epc_active

status_triggered:=
YES

-

poll_answer
:=YES

1_TimerStatus -7_AmdPdu

YES

NO

YES
NO

YES

NO

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

;
SIGNALSET

Virtual Process Type Acknowledged_link 7_AmdPdu(69)

7_AmdPdu

missing_pu_detected

status_triggers(DETECT_MISSING_PU)

missing_pu_detected
:=NO

-

status_prohibit_active

epc_active

status_triggered:=
YES

poll_answer:=NO,
missing_pu_detected:=NO

1_TimerStatus -

YES

NO
YES

NO

YES NO

YES

NO

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

;
SIGNALSET

Virtual Process Type Acknowledged_link 1_ResetPending(69)

Reset_pending

Reset_am_ack

vt_rst:=0

Reset(Timer_RST)

rst_active:=
NO

Acknowledged_data_transfer_ready

Reset_am

Transmit_reset_ack(
logical_channel)

Crlc_amconfig_req(e_r,
logical_channel, poll_triggers,
status_triggers, timer_durations,
protocol_parameters, discard,
ciphering_mode, ciphering_key,
ciphering_sequence_number,
pdu_size, pu_size)

1_AckDataTransferReady

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

;
SIGNALSET

Virtual Process Type Acknowledged_link 2_ResetPending(69)

Reset_pending

Timer_RST

rst_active:=NO

vt_rst:=vt_rst+1

vt_rst<protocol_parameters!maxRst

Transmit_reset(logical_channel)

Set(NOW+timer_durations!rst,
Timer_RST)

Crlc_status_ind(EVC)
VIA Cont rst_active:=YES

- -

YES
NO

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

;

Virtual Process Type Acknowledged_connection 1_Declarations(44)

DCL

 am_pdu, tmp, pdu AmPdu,
 /*A representation of data contained within a AmPdu.*/

 stat_pdu, rx_stat_pdu StatPdu,
 /*A representation of data contained within a StatPdu.*/

 pdus, rem_pdus AmPduArrayType,
 /*The initally segmented sdu.*/

 receiver_queue Queue,
 /*A queue used for storing PDUs as they arrive.*/

 retransmission_queue Queue,
 /*A queue used for PDUs that are to be retransmitted.*/

 assembly_queue Queue,
 /*A queue used for reassembly of received PDUs into an SDU.*/

 transmitted_queue Queue,
 /*A queue used for PDUs that have been transmitted.*/

 am_queue Queue,
 /*A queue used for PDUs to be transmitted.*/

 stat_queue Queue,
 /* Queues used for PDUs associated with STATUS Pdus to be transmitted.*/

 prohibit , rx_prohibit, epc_active IndicatorType,
 /*An indicator used to determine whether the timer_PROHIBIT
 is running or not.*/

 empty, no_tx, no_retx IndicatorType,
 /*An indicator used to determine whether a queue is empty or not.*/

 exists IndicatorType,
 /*An indicator used to determine whether a particular pdu exists
 within a queue or not.*/

 poll_triggers PollTriggArrType,
 /*a configuration parameter dealing with when to issue poll requests.*/

 status_triggers StatusTriggArrType,
 /*A configuraion parameter dealing with when to issue Status reports.*/

 rx_period DURATION,
 /*The duration of a periodic Statut report generation timer.*/

 rx_prohibdur, epc_dur DURATION,
 /*The duration of a prohibit retransmission of status report timer.*/

 discard DiscardArrayType,
 /*A configuration parameter identifying discard conditions.*/

 complete, cnf IndicatorType;
 /*An indicator used to determine whether an SDU has been
 completely reassembled or whether an SDU requires confirmation.*/

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

;

Virtual Process Type Acknowledged_connection 2_Declarations(44)

DCL
 period DURATION,
 /*The duration of a periodic Polling generation timer.*/

 retransmission IndicatorType,
 /*An indicator used to determine whether the received PDU is a retransmission.*/

 logical_channel LogicalChannelType,
 /*The logical channel associated with transmissions.*/

 i INTEGER,
 /*A local counter.*/

 mui MuiType,
 /*The message uit identifier associated with a message to be transmitted.*/

 muis MuiArrayType,
 /*An array used to store message unit identifiers.*/

 no_sdu, no_pu, xpu, xsdu,tx_win, rx_win, no_of_pu_per_tti,
 rx_pu, rx_sdu, muis_tot, tot, k, no_of_sq, tot_rem, l, no_s PduIndexType,
 /*Counters used to manage the amount of PUs and SDUs received.*/

 percent, rx_percent REAL,
 /*Percentages of the transmit and receive window.*/

 sdu OctetType,
 /*The sdu data from the higher protocol layer.*/

 sdus OctetArrayType,
 /*A set of octets.*/

 seq, n, np, sn_ack, sq, sn SequenceNumberType,
 /*A local sequence number.*/

 vt_s SequenceNumberType,
 /*Send state variable: The sequence number of the next PU to be transmitted for the first time.
 It is incremented after transmission of a PU for the first time (i.e. excluding retransmissions).*/

 vt_a SequenceNumberType,
 /*Acknowledge state variable: The sequence number of the next in-sequence PU expected to
 be acknowledged, thus forming the lower edge of the window of acceptable acknowledgements.
 The variable vt_a is updated upon acknowledgement of in-sequence PUs.*/

 vt_dat SequenceNumberType,
 /*This variable is used to count the retransmission number of each PU. It is incremented by a
 PU transmission.*/

 vt_ms SequenceNumberType;
 /*Maximum send state variable: This is the sequence number of the first PU not allowed by the
 receiver. It thus represents the upper edge of the transmit window. If vt_s is equal to vt_ms, now
 new PU should be transmitted. The variable is updated based on receipt of STATUS PDU.*/

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

;

Virtual Process Type Acknowledged_connection 3_Declarations(44)

DCL

 vr_r SequenceNumberType,
 /*Receive state variable: The sequence number of the next in sequence PU expected to be received.
 It is incremented upon receipt of the next in-sequence PU.*/

 vr_h SequenceNumberType,
 /*Highest expected state variable: The sequence number of the next highest expected PU. The variable
 is updated whenever a new PU is received.*/

 vr_mr SequenceNumberType,
 /*Maximum acceptable receive state variable: The sequence number of the first PU not allowed by the
 receiver, thus the receiver shall discard PUs with an n_s=vr_mr. Updating of vr_mr is implementation
 dependent but should not be set to a value less than vr_h.*/

 rx_sufi_tot PduIndexType,
 /*Local variable for maintaining knowledge of the number of super fields.*/

 tx_sufi SufiStructType,
 /*The contents of one superfield.*/

 rx_sufis, sufis, tx_sufis SufiArrayStructType,
 /*The set of superfields associated with a status report.*/

 flip, possible, status, rx_flip, polling_answer IndicatorType,
 /*An indicator used in or to determine whether the highest sequence number value has been passed or not.
 THe second is used to indicate whether status pigyyback is possible or not.*/

 retransmissions_requested IndicatorType,
 /*An indicator used to keep track whether a generated status report contains retransmission requests or not.*/

 status_timer_active, start_am IndicatorType,
 /*This indicator keeps track of whether the timer_STATUS timer is running or not.*/

 per REAL,
 /*Local storage of a percentage value.*/

 rx_ongoing, tx_ongoing IndicatorType,
 /*These indicators are used to maintain information about whether something is in the process of being
 transmitted or received.*/

 bitmap IndicatorArrayType,
 /*This array ofboolean values indicates losses experienced by the receiver.*/

 vr_ep SequenceNumberType;
 /*Estimated PDU counter state variable: The number of PUs that should have been received after the latest
 STATU PDU was sent. In acknowledged mode, this state variable is updated at the end of each transmission
 time interval. If vr_ep is equal to the number of requested PUs in the latest STATUS PDU it should be checked
 if all PUs requested for retransmission have been received.*/

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

;

Virtual Process Type Acknowledged_connection 4_Declarations(44)

TIMER

 timer_AM,
 /*This timer is used to sequence transmissions.*/

 timer_EPC,
 /*This timer accounts for the round trip delay, i.e. the time when the first retransmitted PU should have been
 received after a status report has been sent. The value of timer is heavily based on the transmission time
 interval (layer 1 interleaving depth). When changing the transmission time interval, the value of the EPC
 timer also needs to be changed.*/

 timer_STATUS,
 /*This timer is used to detect the loss of response from the receiver side. The timer is set when a transmitted AmPdu
 requests a status report and it will be stopped when the transmitter receives acknowledgement of the pdu within StatPdu
 (positive) or UstatPdu (negative). When the timer expires, the pdus of the oldest unconfirmed pdus should be
 retransmitted together with a status report request and the timer set again. If polling takes place when this timer
 is active, it should be reset an then se again.*/

 timer_DISCARD(MuiType),
 /*This timer is used for the SDU discard function. In the transmitter, the timer is activated upon reception of an
 SDU from a higher layer. If the SDU has not been acknowledged when the timer expires, the SDU is discarded
 and a move receiving window request is sent to the receiver. If the SDU discard function does not use the move
 receiving window request, the timer is also used in the receiver, where it is activated once a PDU is detected as
 outstanding, i.e. there is a gap betweensequencembers of received PDUs.*/

 timer_PERIOD,
 /*A timer used for the periodic creation of polls.*/

 timer_RXPERIOD,
 /*A timer used for the periodic creation of status reports.*/

 timer_RXPROHIBIT,
 /*A timer used on the receive side to limit STATUS transmissions.*/

 timer_PROHIBIT;
 /*It is used to prohibit transmission of polling messages within a certain period. If polling takes place while the timer is
 active, it will be reset and then set again. No action other than indicating that the timer is not active is needed
 when it expires.*/

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

;

Virtual Process Type Acknowledged_connection 1_Procedures(44)

Sdu_am_segmentation
This procedure manages segmentation and concatenation of
sdus. It applies pollingin accorance with the toolset functions
applied by the higher layer protocols.

Virtual
Transmit_am_pdu

This procedure manages transmission of RLC PDUs across the
proper SAP.

Check_if_queue_empty This procedure checks if there are any PDUs remaining in the
queue given as parameter to the procedure.

Remove_from_queue This procedure removes the first PDU in the queue given as
parameter to the procedure.

Place_in_queue This procedure places the indicated pdu within the queue
given as parameter to the procedure

Update_sequence_number This procedure increments the sequence number
properly based on the maximum allowed.

Read_pdu This procedure retrieves a copy of the first entry in
the queue indicated as parameter to the procedure.

Remove_identified_from_queue This procedure removes a pdu with a given sequence number
from the queue identified.

Remove_acks_get_muis
This procedure removes all pdus that have been acknowledged
from the indicated queue and stores the muis that are removed
from the queue in a special array.

Complete_muis
This procedure checks if any of the muis identified still exists
'within the retransmission queue and updates the list of muis
that should be confirmed accordingly.

Remove_list_from_transmitted_queue This procedure removes a list of pdus indicated by sequence numbers
from the transmitted queue.

Remove_bitmap_from_transmitted_queue This procedure removes a list of pdus in accordance
with a bitmap from the transmitted queue.

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

;

Virtual Process Type Acknowledged_connection 2_Procedures(44)

Place_several_in_queue This procedure places several pdus in the indicated queue.

Update_state_variables This procedure updates the state variables vt_a and vt_ms
after a STATUS PDU has been received and processed.

Place_first_in_queue
This procedure places an AM_PDU with polling=YES first in
the retransmission queue after its associated STATUS timer
'has expired.

Reassemble_am_pdu This procedure reassembles Rlc pdu contents into Sdu:s as
they arrive.

Virtual
Transmit_ack

This procedure transmits a reset acknowledgement on the correct
logical channel.

Virtual
Transmit_reset This procedure transmits a reset on the correct logical channel.

Virtual
Transmit_stat

This procedure transmits status signal on the correct logical
channel.

Place_piggyback_in_queue This procedure places a sufi containing a move receive window
piggybacked onto a pdu within a queue.

Exists_in_receiver_queue This procedure checks if an identified pdu exists within the
receiver queue.

Create_status This procedure creates a status report based on available information.

Check_status_creation This procedure checks if a status report should be generated.

Place_in_stat_queue This procedure places a STAT_PDU in a queue waiting for transmission.

Remove_from_stat_queue This procedure removes a STAT-PDU from the STAT queue.

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

;

Virtual Process Type Acknowledged_connection 3_Procedures(44)

Remove_mui_from_queues This procedure removes all pdus associated with a given mui
from the transmitted_queue.

Remove_all_below_from_queues This procedure removes all pdus below an identified sequence
number from all receiver queues.

Set_polling_flag This procedure causes the polling flag to be set in the first PDU
within a defined queue

Count_epc This procedure counts the received PDUs.

Exists_in_stat_await_queue This procedure checks whether the STATUS PDU includes ACK
or NACK for the AMD PDU which triggered timer_STATUS.

Replace_am_pdu
This procedure places the AMD PDU which triggered timer_STATUS in
the STAT_await queue. If other AMD PDU has alredy been existing
in the queue, the old one will be replaced with the new one.

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

;

Virtual Process Type Acknowledged_connection 1_ProcessTypeStart(44)

vt_s:=0, vr_r:=0, no_sdu:=0,
no_pu:=0, vt_a:=0, vr_h:=0,
status_timer_active:=NO

Queue_initialisation(receiver_queue)

Queue_initialisation(retransmission_queue)

Queue_initialisation(assembly_queue)

Queue_initialisation(am_queue)

Queue_initialisation(transmitted_queue)

Queue_initialisation(stat_queue)

Queue_initialisation(stat_await_queue)

seq:=0,
prohibit:=NO,
rx_prohibit:=NO,
epc_active:=NO,
retransmissions_requested:=NO,
start_am:=NO,
stat_triggered:=NO

Nul

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

;

Virtual Process Type Acknowledged_connection 1_Nul(44)

Nul

Crlc_amconfig.req(logical_channel, poll_triggers,
xpu, xsdu, percent, tx_win, period, discard,
no_of_pu_per_tti, status_triggers, rx_pu, rx_sdu,
rx_percent, rx_period, rx_prohibdur, epc_dur)

vt_ms:=vt_s+tx_win,
vr_mr:=vr_r+tx_win

no_pu:=0,
no_sdu:=0

poll_triggers(TIMERBASED)

Set(NOW+period, timer_PERIOD)

status_triggers(TIMERBASED)

Set(NOW+rx_period, timer_RXPERIOD)

Acknowledged_data_transfer_ready

YES
NO

YESNO

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

;

Virtual Process Type Acknowledged_connection 1_AcknowledgedDataTransferReady(44)

Acknowledged_data_transfer_ready

Crlc_amconfig.req()

vt_s:=0, vr_r:=0, no_sdu:=0,
no_pu:=0, vt_a:=0, vr_h:=0,
vt_ms:=vt_s+tx_win,
vr_mr:=vr_r+tx_win,
no_pu:=0, no_sdu:=0,
status_timer_active:=NO

Queue_initialisation(
receiver_queue)

Queue_initialisation(
retransmission_queue)

Queue_initialisation(
assembly_queue)

Queue_initialisation(
am_queue)

Queue_initialisation(
transmitted_queue)

Queue_initialisation(
stat_queue)

Queue_initialisation(
stat_await_queue)

seq:=0

prohibit:=NO,start_am:=NO,
rx_prohibit:=NO,
epc_active:=NO,
retransmissions_requested:=NO,
stat_triggered:=NO

Nul

Reset_am
vt_s:=0, vr_r:=0, no_sdu:=0,
no_pu:=0, vt_a:=0, vr_h:=0,
vt_ms:=vt_s+tx_win,
vr_mr:=vr_r+tx_win,
no_pu:=0, no_sdu:=0,
status_timer_active:=NO

Queue_initialisation(
receiver_queue)

Queue_initialisation(
retransmission_queue)

Queue_initialisation(
assembly_queue)

Queue_initialisation(
am_queue)

Queue_initialisation(
transmitted_queue)

Queue_initialisation(
stat_queue)

Queue_initialisation(
stat_await_queue)

seq:=0, start_am:=NO,
prohibit:=NO,
rx_prohibit:=NO,
epc_active:=NO,
retransmissions_requested:=NO,
stat_triggered:=NOTransmit_ack

()

Crlc_Status.ind(EVC)

-

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

;

Virtual Process Type Acknowledged_connection1_AcknowledgedDataTransferReady_RlcAmDataReq(44)

Acknowledged_data_transfer_ready

Rlc_AmData.req(sdu, cnf, mui)

Sdu_am_segmentation(sdu, np, pdus,
am_queue, poll_triggers, no_sdu, no_pu,
xpu, xsdu, cnf, mui)

np=0

n:=1

am_pdu:=pdus(n)

Update_sequence_number(flip, vt_s)

am_pdu!n_s:=vt_s

Place_in_queue(
am_queue, am_pdu)

n<np

n:=n+1 Set(NOW+AMDUR, timer_AM)

status_triggers(DISCARD)

Set(NOW+DISCARDDUR, timer_DISCARD(mui))

-

-

NO

YES NO

YES
NO

YES

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

;

Virtual Process Type Acknowledged_connection 1_AcknowledgedDataTransferReady_timerAm(44)

Acknowledged_data_transfer_ready

timer_AM

Check_if_queue_empty(stat_queue,
empty)

empty

3_timerAm Remove_from_stat_queue(stat_queue, stat_pdu)

status_triggers(STATUSPROHIBIT)

rx_prohibit=YES

Set(NOW+AMDUR,
timer_AM) Transmit_stat(stat_pdu, logical_channel)

- Set(NOW+rx_prohibdur, timer_RXPROHIBIT)

rx_prohibit:=YES

2_timerAm

YES NO

YES
NO

YES

NO

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

;

Virtual Process Type Acknowledged_connection 2_AcknowledgedDataTransferReady_timerAm(44)

2_timerAm

status_triggers(EPC)

Set(NOW+epc_dur, timer_EPC)

epc_active:=YES

-

YES

NO

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

;

Virtual Process Type Acknowledged_connection 3_AcknowledgedDataTransferReady_timerAm(44)

3_timerAm

Check_if_queue_empty(retransmission_queue,
empty)

empty

6_timerAm Check_if_queue_empty(am_queue, empty)

empty

- Read_pdu(am_queue, pdu)

pdu!n_s<=vt_ms

Set(NOW+AMDUR,
timer_AM)

per:=
Float((tx_win-(vt_ms-pdu!n_s))/tx_win)

- Remove_from_queue(am_queue, am_pdu)

4_timerAm

NO YES

YES
NO

NO
YES

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

;

Virtual Process Type Acknowledged_connection 4_AcknowledgedDataTransferReady_timerAm(44)

4_timerAm

poll_triggers
(LASTINTRANSQUEUE)

poll_triggers
(PERCENTOFTXWINDOW)

Check_if_queue_empty
(am_queue, empty)

per>=percent empty

poll_triggers
(EVERYPOLLPU)

no_pu=poll_pu

poll_triggers
(EVERYPOLLSDU) no_pu:=0

no_sdu=poll_sdu
poll_triggers
(POLLPROHIBIT)

no_sdu:=0 4_timerAmA

poll_triggers
(POLLPROHIBIT)

am_pdu!polling:=
YES

prohibit
am_pdu!polling:=

YES
Set(NOW+
PROHIBITDUR,
timer_PROHIBIT)

3_timerAmA
am_pdu!polling:=

NO prohibit:=YES

Set(NOW+AMDUR, timer_AM)

5_timerAm

NO

YES

YES
NO

NO

YES
NO

YES

YES
NO

NO

YES

YES
NO

YES
NO

YES

NO

YES

NO

NO

YES

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

;

Virtual Process Type Acknowledged_connection 5_AcknowledgedDataTransferReady_timerAm(44)

5_timerAm

Transmit_am_pdu(am_pdu)

am_pdu!vt_dat:=0

am_pdu!polling

status_timer_active

Reset(timer_STATUS) Set(NOW+STATUSDUR,
timer_STATUS)

Set(NOW+STATUSDUR,
timer_STATUS) status_timer_active:=YES

Replace_am_pdu(stat_await_queue, am_pdu)

am_pdu!polling:=NO

Place_in_queue(transmitted_queue,
am_pdu)

-

YES
NO

YES NO

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

;

Virtual Process Type Acknowledged_connection 6_AcknowledgedDataTransferReady_timerAm(44)

6_timerAm

Remove_from_queue(
retransmission_queue, am_pdu)

am_pdu!vt_dat:=am_pdu!vt_dat+1

am_pdu!vt_dat>MAXDAT

7_timerAm

Transmit_reset()

Crlc_Status.ind(EVC)

Reset_pending

NO
YES

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

;

Virtual Process Type Acknowledged_connection 7_AcknowledgedDataTransferReady_timerAm(44)

7_timerAm

poll_triggers(LASTINRETRANSQUEUE)

check_if_queue_empty(retransmission_queue, empty)

empty

am_pdu!polling:=YES

poll_triggers(POLLPROHIBIT)

Set(NOW+PROHIBITDUR,
timer_PROHIBIT)

status_timer_active

Reset(timer_STATUS)
Set(NOW+STATUSDUR,
timer_STATUS)

Set(NOW+STATUSDUR,
timer_STATUS) status_timer_active:=YES

Replace_am_pdu(stat_await_queue, am_pdu)

8_timerAm

YES

NO

YES

NO

YES
NO

YES NO

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

;

Virtual Process Type Acknowledged_connection 8_AcknowledgedDataTransferReady_timerAm(44)

8_timerAm

Transmit_am_pdu(am_pdu,
logical_channel)

am_pdu!polling:=NO

Place_in_queue(
transmitted_queue,
am_pdu)

Set(NOW+AMDUR, timer_AM)

-

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

;

Virtual Process Type Acknowledged_connection 1_AcknowledgedDataTransferReady_StatPdu(44)

Acknowledged_data_transfer_ready

StatPdu(stat_pdu)

stat_pdu!pa

4_StatPdu
Exists_in_stat_await_queue(
sufis, stat_await_queue, exists)

exists

Reset(timer_STATUS)

status_timer_active:=NO

Check_if_queue_empty(am_queue, no_tx)

Check_if_queue_empty(retransmission_queue, no_retx)

i:=1,
sn_ack:=0 1_StatPdu

stat_pdu!sufis(i)!tp

1_List 1_Mrw 1_Bitmap 1_Ack 2_StatPdu

NO
YES

YES
NO

LIST MOVERECEIVINGWINDOW

BITMAP

ACK
Else

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

;

Virtual Process Type Acknowledged_connection 2_AcknowledgedDataTransferReady_StatPdu(44)

2_StatPdu

Remove_acks_get_muis(transmitted_queue,
sn_ack, muis_tot, muis)

muis_tot=0

Complete_muis(retransmission_queue,
muis_tot, muis)

i:=1

muis(i)!m_i=0

Rlc_AmData.cnf(muis(i)!m_i)

Reset(timer_DISCARD(muis(i)!m_i))

i=muis_tot

i:=i+1 3_StatPdu

NO

NO

NO
YES

YES

YES

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

;

Virtual Process Type Acknowledged_connection 3_AcknowledgedDataTransferReady_StatPdu(44)

3_StatPdu

Update_state_variables(vt_a, vt_ms, tx_win,
transmitted_queue, retransmission_queue, flip)

no_tx

no_retx

Check_if_queue_empty(
retransmission_queue, empty)

empty

Set(NOW+AMDUR, timer_AM)

-

YESNO

YESNO

NO
YES

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

;

Virtual Process Type Acknowledged_connection 4_AcknowledgedDataTransferReady_StatPdu(44)

4_StatPdu

Check_if_queue_empty(am_queue, empty)

i:=1,
sn_ack:=0

stat_pdu!sufis(i)!tp

1_List 1_Mrw 1_Bitmap 1_Ack 2_StatPdu

LIST MOVERECEIVINGWINDOW

BITMAP

ACK
Else

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

;

Virtual Process Type Acknowledged_connection1_AcknowledgedDataTransferReady_StatPduList(44)

1_List

tot:=stat_pdu!sufis(i)!list_tot,
k:=1

sq:=stat_pdu!sufis(i)!list_str(k)!sn_i,
no_of_sq:=stat_pdu!sufis(i)!list_str(k)!l_i

Remove_list_from_transmission_queue(
transmitted_queue, sq, no_of_sq,
tot_rem, rem_pdus)

Place_several_in_queue(retransmission_queue,
tot_rem, rem_pdus)

k=tot

k:=k+1 i:=i+1

1_StatPdu

NO YES

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

_

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

_

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

_

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

_

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

_

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

_

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

_

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

_

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

_

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

_

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

_

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

_

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

_

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

_

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

_

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

_

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

_

3GPP

3G TS 25.322 version 3.0.0 (1999-10)

_

3GPP TSG-RAN Meeting #6 Document (R2-99k23)
Nice, France, 13-15 December 1999 e.g. for 3GPP use the format TP-99xxx

or for SMG, use the format P-99-xxx

CHANGE REQUEST Please see embedded help file at the bottom of this
page for instructions on how to fill in this form correctly.

Current Version: 3.0.025.322 CR 014
GSM (AA.BB) or 3G (AA.BBB) specification number ↑ ↑ CR number as allocated by MCC support team

For submission to: TSG-RAN#6 for approval X strategic (for SMG
list expected approval meeting # here

↑
for information non-strategic use only)

Form: CR cover sheet, version 2 for 3GPP and SMG The latest version of this form is available from: ftp://ftp.3gpp.org/Information/CR-Form-v2.doc

Proposed change affects: (U)SIM ME X UTRAN / Radio X Core Network
(at least one should be marked with an X)

Source: TSG-RAN WG2 Date: 03 Dec 1999

Subject: Editorial changes

Work item:

Category: F Correction Release: Phase 2
A Corresponds to a correction in an earlier release Release 96

(only one category B Addition of feature Release 97
shall be marked C Functional modification of feature Release 98
with an X) D Editorial modification X Release 99 X

Release 00

Reason for
change:

Development of suitable version for submission o RAN#6

Clauses affected: 5.2.2.1.1, 5.2.4

Other specs Other 3G core specifications → List of CRs:
affected: Other GSM core

specifications
→ List of CRs:

MS test specifications → List of CRs:
BSS test specifications → List of CRs:
O&M specifications → List of CRs:

Other
comments:

help.doc

 <--------- double-click here for help and instructions on how to create a CR.

3GPP

Error! No text of specified style in document.2Error! No text of specified style in document.

1 Scope
The present document specifies the RLC protocol.

Release ’99 features:

- Transparent mode

- Unacknowledged mode

- Acknowledged mode

Features for future Releases:

- Hybrid ARQ

2 References

4 General

4.1 Objective

4.2 Overview on sublayer architecture
The model presented in this section is not for implementation purposes.

10 Handling of unknown, unforeseen and erroneous
protocol data

A preliminaryThe list of possible error cases is reported below:

a) Inconsistent state variables

If the RLC entity receives a PDU including "erroneous Sequence Number", state variables between peer entities may be
inconsistent. Following shows "erroneous Sequence Number" examples;

- Each Sequence Number of missing PU informed by SUFI LIST or BITMAP parameter is not within the value
between "Acknowledge state variable(VT(A))" and "Send state variable(VT(S))", and

- LSN of SUFI ACK is not within the value between "Acknowledge state variable(VT(A))" and "Send state
variable(VT(S))".

In case of error situations the following actions are foreseen:

1) RLC entity should use RESET procedure in case of an unrecoverable error

2) RLC entity should discard invalid PDU

3) RLC entity should notify upper layer of unrecoverable error occurrence in case of failed retransmission

3GPP

Error! No text of specified style in document.3Error! No text of specified style in document.

11 Elementary procedures

Annex A (informative):
SDL diagrams
This annex contains the SDL diagrams. For Release’99, it is meant for informative purposes only.

NOTE: All the section shall be reviewed when the protocol is defined;

NOTE: All the SDL diagrams presented are [FFS]

3GPP

Error! No text of specified style in document.4Error! No text of specified style in document.

;

Virtual Process Type Acknowledged_connection 1_Declarations(44)

DCL

 am_pdu, tmp, pdu AmPdu,
 /*A representation of data contained within a AmPdu.*/

 stat_pdu, rx_stat_pdu StatPdu,
 /*A representation of data contained within a StatPdu.*/

 pdus, rem_pdus AmPduArrayType,
 /*The initally segmented sdu.*/

 receiver_queue Queue,
 /*A queue used for storing PDUs as they arrive.*/

 retransmission_queue Queue,
 /*A queue used for PDUs that are to be retransmitted.*/

 assembly_queue Queue,
 /*A queue used for reassembly of received PDUs into an SDU.*/

 transmitted_queue Queue,
 /*A queue used for PDUs that have been transmitted.*/

 am_queue Queue,
 /*A queue used for PDUs to be transmitted.*/

 stat_queue Queue,
 /* Queues used for PDUs associated with STATUS Pdus to be transmitted.*/

 prohibit , rx_prohibit, epc_active IndicatorType,
 /*An indicator used to determine whether the timer_PROHIBIT
 is running or not.*/

 empty, no_tx, no_retx IndicatorType,
 /*An indicator used to determine whether a queue is empty or not.*/

 exists IndicatorType,
 /*An indicator used to determine whether a particular pdu exists
 within a queue or not.*/

 poll_triggers PollTriggArrType,
 /*a configuration parameter dealing with when to issue poll requests.*/

 status_triggers StatusTriggArrType,
 /*A configuraion parameter dealing with when to issue Status reports.*/

 rx_period DURATION,
 /*The duration of a periodic Statut report generation timer.*/

 rx_prohibdur, epc_dur DURATION,
 /*The duration of a prohibit retransmission of status report timer.*/

 discard DiscardArrayType,
 /*A configuration parameter identifying discard conditions.*/

 complete, cnf IndicatorType;
 /*An indicator used to determine whether an SDU has been
 completely reassembled or whether an SDU requires confirmation.*/

3GPP TSG-RAN Meeting #6 Document (R2-99k71)
Nice, France, 13-15 December 1999 e.g. for 3GPP use the format TP-99xxx

or for SMG, use the format P-99-xxx

CHANGE REQUEST Please see embedded help file at the bottom of this
page for instructions on how to fill in this form correctly.

Current Version: 3.0.025.322 CR 017r1
GSM (AA.BB) or 3G (AA.BBB) specification number ↑ ↑ CR number as allocated by MCC support team

For submission to: TSG-RAN#6 for approval X strategic (for SMG
list expected approval meeting # here ↑ for information non-strategic use only)

Form: CR cover sheet, version 2 for 3GPP and SMG The latest version of this form is available from: ftp://ftp.3gpp.org/Information/CR-Form-v2.doc

Proposed change affects: (U)SIM ME X UTRAN / Radio X Core Network
(at least one should be marked with an X)

Source: TSG-RAN WG2 Date: 29/11 1999

Subject: RLC Editorial corrections

Work item:

Category: F Correction Release: Phase 2
A Corresponds to a correction in an earlier release Release 96

(only one category B Addition of feature Release 97
shall be marked C Functional modification of feature Release 98
with an X) D Editorial modification X Release 99 X

Release 00

Reason for
change: Correction and clarification of the specification

Clauses affected: 5 / 9.2.1.1 / 9.2.1.2 / 9.2.1.3 / 9.2.1.4 / 9.2.1.5 / 9.2.1.6 / 9.2.2 / 9.2.2.4 / 9.2.2.9 /
9.2.2.12/ 9.2.2.12.6 / 9.7.5 /

Other specs Other 3G core specifications → List of CRs:
affected: Other GSM core specifications → List of CRs:

MS test specifications → List of CRs:
BSS test specifications → List of CRs:
O&M specifications → List of CRs:

Other
comments:

help.doc

 <--------- double-click here for help and instructions on how to create a CR.

3GPP

133G TS 25.322 version 3.0.0

5 Functions
The following functions are supported by RLC.For a detailed description of the following functions see [3].

- Connection Control;

- Segmentation and reassembly;

- Header compression;Multiple PU:s whithin a RLC PDU

- Concatenation;

- Padding;

- Transfer of user data;

- Error correction;

- In-sequence delivery of higher layer PDUs;

- Duplicate Detection;

- Flow control;

- Sequence number check (Unacknowledged data transfer mode);

- Protocol error detection and recovery.

- Ciphering;

The following potential function(s) are regarded as further study items (FFS):

- Suspend/resume function;

3GPP

173G TS 25.322 version 3.0.0

9 Elements for peer-to-peer communication

9.1 Protocol data units

9.1.1 Data PDUs

a) TrD PDU (Transparent Mode Data PDU)

The TrD PDU is used to convey RLC SDU data without adding any RLC overhead. The TrD PDU is used by
RLC when it is in transparent mode.

b) UMD PDU (Unacknowledged Mode Data PDU)

The UMD PDU is used to convey sequentially numbered PDUs containing RLC SDU data. It is used by RLC
when using unacknowledged data transfer.

c) AMD PDU (Acknowledged Mode Data PDU)

The AMD PDU is used to convey sequentially numbered PUs containing RLC SDU data. The AMD PDU is
used by RLC when it is in acknowledged mode.

9.1.2 Control PDUs

a) STATUS PDU and Piggybacked STATUS PDU

The STATUS PDU and the Piggybacked STATUS PDU are used:

- by the receiving entity to inform the transmitting entity about missing PUs at the receving entity;

- by the receiving entity to inform the transmitting entity about the size of the allowed transmission window;

- and by the transmitting entity to request the receiving entity to move the receiving window.

b) RESET (Reset)

The RESET PDU is used in acknowledged mode to reset all protocol states, protocol variables and protocol
timers of the peer RLC entity in order to synchronise the two peer entities.

c) RESET ACK (Reset Acknowledge)

The RESET ACK PDU is an acknowledgement to the RESET PDU.

Table 9-1: RLC PDU names and descriptions

 Data Transfer Mode PDU name Description
Transparent TrD Transparent mode data

Unacknowledged UMD Sequenced unacknowledged mode data
AMD Sequenced acknowledged mode data
STATUS Solicited or Unsolicited Status Report
Piggybacked
STATUS

Piggybacked Solicited or Unsolicited Status Report

RESET Reset Command

Acknowledged

RESET ACK Reset Acknowledgement

3GPP

183G TS 25.322 version 3.0.0

9.2 Formats and parameters

9.2.1 Formats

This section specifies the format of the RLC PDUs. The parameters of each PDU are explained in section 9.2.2.

9.2.1.1 TrD PDU

The TrD PDU transfers user data when RLC is operating in transparent mode. No overhead is added by RLC. The TrD
PDU is bit aligned

Data

Figure 9-1: TrD PDU

9.2.1.2 UMD PDU

The UMD PDU transfers user data when RLC is operating in unacknowledged mode. The UMD PDU is octet aligned.

Oct1

ELength Indicator

Data

PAD or a piggybacked STATUS PDU
OctN

ELength Indicator (Optional)

.

.

.

ESequence Number

(Optional)

(Optional)

Oct1
Oct2

OctN

Sequence Number E
ELength Indicator

Data

PAD

(Optional)

Figure 9-2: UMD PDU

9.2.1.3 AMD PDU

The AMD PDU transfers user data and piggybacked status information and requests status report by setting Poll bit
when RLC is operating in acknowledged mode. The AMD PDU is octet aligned

3GPP

193G TS 25.322 version 3.0.0

Sequence Number
Sequence Number

D/C

ELength Indicator

Data

PAD or a piggybacked STATUS PDU

Oct1
Oct2
Oct3

OctN

P
(Optional) (1)

HE

NOTE (1): The Length Indicator maybe 15bits.

Figure 9-3: AMD PDU

9.2.1.4 STATUS PDU

The STATUS PDU is used to report the status between two RLC AM entities. Both receiver and transmitter status
information may be included in the same STATUS PDU.

The format of the STATUS PDU is given in figure 9-4 below.

 SUFI1 Oct1

Oct2

Oct3

OctN

D/C PDU type PA

…

SUFIK

SUFI1

SUFI1

PAD

Figure 9-4: Status Information Control PDU (STATUS PDU)

Up to K different super-fields (SUFI1-SUFIK) can be included into one STATUS PDU. The size of a STATUS PDU is
variable and upper bounded by the maximum RLC PDU size used by an RLC entity. Padding shall be included to
exactly fit one of the PDU sizes used by the entity. The AMD PDU is octet aligned

9.2.1.5 Piggybacked STATUS PDU

The format of the piggybacked STATUS PDU is the same as the ordinary STATUS PDU except that the D/C field and
the PDU type field is omitted. This PDU can be used to piggyback STATUS PDU in a AMD PDU if the data does not
fill the complete AMD PDU. The STATUS PDU is octet aligned

 SUFI1 Oct1

Oct2

Oct3

OctN

PA

…

 SUFI1

 SUFI1

 SUFIK

PAD

Figure 9-5: Piggybacked STATUS PDU

3GPP

203G TS 25.322 version 3.0.0

9.2.1.6 RESET, RESET ACK PDU

The RESET, RESET ACK PDU:S ARE octet aligned

Oct1

OctN

D/C RPDU Type

PAD

Figure 9-6: RESET, RESET ACK PDU

9.2.2 Parameters

If not otherwise meantionedmentioned in the definition of each field then the bits in the parameters shall be interpreted
as follows: The left most bit string is the most significant and the right most bit is the least significant bit.

9.2.2.1 D/C field

Length: 1bit

The D/C field indicates the type of an acknowledged mode PDU. It can be either data or control PDU.

Bit Description
0 Control PDU
1 Acknowledged mode data PDU

9.2.2.2 PDU Type

Length: 3 bit

The PDU type field indicates the Control PDU type

Bit PDU Type
000 STATUS
001 RESET
010 RESET ACK

9.2.2.3 Sequence Number (SN)

This field indicates the sequence number of the payload unit. In a normal AMD-PDU the sequence number of the first
PU in the PDU is indicated. If the PUs are not in sequence, a sequence number is indicated separately for each PU in the
extended header.

PDU type Length Notes
AMD PDU 12 bits Used for retransmission and reassembly
UMD PDU 7 bits Used for reassembly

9.2.2.4 Polling bit (P)

Length: 1bit

3GPP

213G TS 25.322 version 3.0.0

This field is used to request a status report (STATUS PDU) from the receiver RLC.

Bit Description
0 - STATUS report not

requested
1 Request a status report

9.2.2.5 Extension bit (E)

Length: 1bit

This bit indicates if the next octet will be a length indicator and E bit.

Bit Description
0 The next field is data
1 The next field is Length Indicator and E bit

9.2.2.6 Reserved (R)

Length: 4 bits

This field is used to achieve octet alignment and for this purpose it is coded as 0000. Other functions of it are left for
future releases.

9.2.2.7 Header Extension Type (HE)

Length: 2 bits

This two-bit field indicates the format of the extended header.

Value Description
00 The succeeding octet contains data
01 The succeeding octet contains a 7bit length indicator

and E bit
10 The succeeding octet contains an extended header

field
11 The succeeding octet contains a 15bit length indicator

and E bit

9.2.2.7.1 AMD PDU Extended Header

The Extended Header is used when additional sequence numbers are needed to indicate PUs that are not sequential
within a PDU or when the rest of a PDU, which is not filled by PUs, is equal or larger than the size of a PU. A PDU that
includes more than one sequence number shall include sequence numbers for all PUs in the PDU. The nth sequence
number in the PDU indicates the sequence number of the nth PU in the PDU. The decision to use Extended Header is
made by the transmitting RLC.

First all the Extended Headers are listed. Then all Length Indicators are listed. Finally the PUs follow.

Sequence Number
Sequence Number

Oct1
Oct2HE

Figure 9-7: Format of the extended header

3GPP

223G TS 25.322 version 3.0.0

9.2.2.8 Length Indicator (LI)

This field is optional and is used if concatenation, padding or a piggybacked STATUS PDU takes place in a PU. It
indicates the end of the last segment of a SDU. It points out the end of a segment by giving the number of octets between
the end of the header fields (including the length indicator fields) and the end of the segment. The size of the Length
Indicator may be either 7bits or 15bits. If the last segment of a SDU do not completely fill a PU either padding or a
piggybacked STATUS PDU can be added. Predefined values of the length indicator are used to indicate this. The
padding/piggybacked STATUS PDU predefined length indicators shall be added after the length indicator that indicates
the end of the last SDU segment in the PU. The values that are reserved for special purposes are listed in the tables
below depending on the size of the Length Indicator.

If a length indicator that indicates padding/piggybacked STATUS PDU refers to the last PU in the PDU it implicitly
means that the rest of the PDU contains padding/piggybacked STATUS PDU. If the last PU in a PDU does not include
padding or piggybacked STATUS PDU, but the PDU includes padding or a piggybacked STATUS PDU, an extra
length indicator field shall be added as a normal length indicator to the last PU. This extra length indicator shall indicate
either padding or a piggybacked STATUS PDU and shall be placed as the last length indicator in the PDU. The space
needed for this length indicator shall not be taken from the data part in the PU, but from the padding or piggybacked
STATUS PDU in the PDU. The receiving entity shall discard this length indicator.

If RLC PDUs always carry only one PU, 7bit indicators are used in a particular RLC PDU if the address space is
sufficient to indicate all SDU segment borders. Otherwise 15bit Length Indicators are applied.

If RLC PDUs may carry more than one PUs the length of the Length Indicator only depends on the size of the largest
RLC PDU and the size of the Length Indicator is always the same for all PUs.

Only one size of Length Indicators is used in one RLC PDU.

Length: 7bit

Bit Description
0000000 The previous RLC PU was exactly filled with the last segment of a RLC SDU.
1111110 The rest part of the RLC PU includes a piggybacked STATUS PDU.
1111111 The rest part of the RLC PU is padding.

Length: 15bit

Bit Description
000000000000000 The previous RLC PU was exactly filled with the last segment of a RLC

SDU.
111111111111110 The rest part of the RLC PU includes a piggybacked STATUS PDU.
111111111111111 The rest part of the RLC PU is padding.

9.2.2.9 Data

RLC SDUs in transparent, unacknowledged and acknowledged mode are mapped to this field.

Transparent mode data:

The RLC SDUs might be segmented. If segmented, then the segmentation is performed according to a predefined
pattern. The allowed size for RLC SDUs and segments shall be known. The RLC PDU:s belonging to one RLC SDU
shall be sent in one transmission time interval. Only one RLC SDU is segmented in one transmission time interval.

Unacknowledged mode data and Acknowledged mode data

If a SDU is too large to fit into the data field it is segmented. If possible, the last segment of a SDU shall be
concatenated with the first segment of the next SDU in order to fill the data field completely and avoid unnecessary
padding. The length indicator field is used to point the borders between SDUs.

9.2.2.10 Padding (PAD)

Padding may have any value and the receiving entity shall disregard it.

3GPP

233G TS 25.322 version 3.0.0

9.2.2.11 Poll Answer (PA)

Length: 1bit

The PA (Poll Answer) field indicates whether the status report is the answer to a poll or not

Bit Description
0 The status report is not the answer to a polling request
1 The status report is the answer to a polling request

9.2.2.12 SUFI

Length: variable number of bits

The SUFI (Super-Field) includes three sub-fields: type information (type of super-field, e.g. list, bitmap,
acknowledgement, etc), length information (providing the length of a variable length field within the following value
field) and a value.

Figure 9-8 shows the structure of the super-field. The size of the type sub-field is non-zero but the size of the other sub-
fields may be zero.

Type
Length
Value

Figure 9-8: The Structure of a Super-Field

The length of the type field is 3 bits and it may have any of following values.

Bit Description
000 No More Data (NO_MORE)
001 Window Size (WINDOW)
010 Acknowledgement (ACK)
011 List (LIST)
100 Bitmap (BITMAP)
101 Relative list (Rlist)
110 Move Receiving Window (MRW)
111 Reserved for future super-field types(PDUs with this

coding will be discarded by this version of the protocol)

The length sub-field gives the length of the variable size part of the following value sub-field and the length of it
depends on the super-field type.The value sub-field includes the value of the super-field, e.g. the bitmap in case of a
BITMAP super-field, and the length is given by the length or the type sub-field.

9.2.2.12.1 The No More Data super-field

The ‘No More Data’ super-field indicates the end of the data part of a STATUS PDU and is shown in figure 9-9 below.
It shall always be placed as the last SUFI if it is included in a STATUS PDU. All data after this SUFI shall be regarded
as padding and shall be neglected.

Type=NO_MORE

Figure 9-9: NO_MORE field in a STATUS PDU

9.2.2.12.2 The Acknowledgement super-field

The ‘Acknowledgement’ super-field consists of a type identifier field (ACK) and a sequence number (LSN) as shown in
figure 9-10 below. The acknowledgement super-field is also indicating the end of the data part of a STATUS PDU.
Thus, no ‘NO_MORE’ super-field is needed in the STATUS PDU when the ‘ACK’ super-field is present. The ACK
SUFI shall always be placed as the last SUFI if it is included in a STATUS PDU. All data after this SUFI shall be

3GPP

243G TS 25.322 version 3.0.0

regarded as padding and shall be neglected.

Type = ACK
LSN

Figure 9-10: The ACK fields in a STATUS PDU

LSN

Length: 12 bits

Acknowledges the reception of all PUs with sequence numbers < LSN (Last Sequence Number) that are not indicated to
be erroneous in earlier parts of the STATUS PDU. The LSN should not be set to a value ≥ VR(H). This means that if
the LSN is set to a different value than VR(R) all erroneous PUs must be included in the same STATUS PDU and
VT(A) will be updated according to the first error indicated in the STATUS PDU.

9.2.2.12.3 The Window Size super-field

The ‘Window Size’ super-field consists of a type identifier (WINDOW) and a window size number (WSN) as shown in
figure 9-11 below. The receiver is always allowed to change the window size during a connection.

Type = WINDOW
WSN

Figure 9-11: The WINDOW fields in a STATUS PDU

WSN

Length: 12 bits

The allowed window size to be used by the transmitter. The range of the window size is [0, 212-1]. The Window_Size
parameter is set equal to WSN.

9.2.2.12.4 The List super-field

The List Super-Field consists of a type identifier field (LIST), a list length field (LENGTH) and a list of LENGTH
number of pairs as shown in figure 9-12 below:

Type = LIST
LENGTH
SN1

L1

SN2

L2

…
SNLENGTH

LLENGTH

Figure 9-12: The List fields in a STATUS PDU for a list

LENGTH

Length: 4 bits

The number of (SNi , Li)-pairs in the super-field of type LIST.

SNi

Length: 12 bits

Sequence number of PU which was not correctly received.

Li

3GPP

253G TS 25.322 version 3.0.0

Length: 4 bits

Number of consecutive PUs not correctly received following PU with sequence number SNi.

9.2.2.12.5 The Bitmap super-field

The Bitmap Super-Field consists of a type identifier field (BITMAP), a bitmap length field (LENGTH), a first sequence
number (FSN) and a bitmap as shown in figure 9-13 below:

Type = BITMAP
LENGTH
FSN
Bitmap

Figure 9-13: The Bitmap fields in a STATUS PDU

LENGTH

Length: 4 bits

The size of the bitmap in octets (maximum bitmap size: 24*8=128 bits).

FSN

Length: 12 bits

The sequence number for the first bit in the bitmap.

Bitmap

Length: Variable number of octets given by the LENGTH field.

Status of the SNs in the interval [FSN, FSN + LENGTH*8 - 1] indicated in the bitmap where each position (from left to
right) can have two different values (0 and 1) with the following meaning (bit_position∈ [0,LENGTH*8 - 1]):

1: SN = (FSN + bit_position) has been correctly received

0: SN = (FSN + bit_position) has not been correctly received

9.2.2.12.6 The Relative List super-field

The Relative List super-field consists of a type identifier field (RLIST), a list length field (LENGTH), the first sequence
number (FSN) and a list of LENGTH number of codewords (CW) as shown in figure 9-14 below.

Type = RLIST
LENGTH
FSN
CW1

CW2

…
CWLENGTH

Figure 9-14: The RList fields in a STATUS PDU

LENGTH

Length: 4 bits

The number of codewords (CW) in the super-field of type RLIST.

FSN

Length: 12 bits

The sequence number for the first erroneous PU in the RLIST.

3GPP

263G TS 25.322 version 3.0.0

CW

Length: 4 bits

The CW consists of 4 bits where the three first bits are part of a number and the last bit is a status indicator and it shall
be interpreted as follows.

Code Word Description
X1X2X3 0 Next 3 bits of the number are X1X2X3 and the number continues in the next

CW. The most significant bit within this CW is X1.
X1X2X3 1 Next 3 bits of the number are X1X2X3 and the number is terminated. The

most significant bit within this CW is X1. This is the most significant CW
within the number.

By default, the number given by the CWs represents a distance frombetween the previous indicated erroneous PU up to
and including the next erroneous PU.

One special value of CW is defined:

000 1 ‘Error burst indicator’

The error burst indicator means that the next CW:s will represent the number of subsequent erroneous PU:s (not
counting the already indicated error position). After the number of errors in a burst is terminated with XXX 1, the next
codeword will again by default be the least significant bits (LSB) of the distance to the next error.

9.2.2.12.7 The Move Receiving Window super-field

The ‘Move Receiving Window’ super-field is used to request the RLC receiver to move its receiving window, as a result
of a SDU discard in the RLC transmitter. The format is given in the figure below.

Type = MRW
SN

Figure 9-15: The MRW fields in a STATUS PDU

SN

Length: 12 bits

Requests the RLC receiver to discard all PUs with sequence number < SN, and to move the receiving window
accordingly.

9.3 Protocol states

9.3.1 State model for transparent mode entities

Figure 9-16 illustrates the state model for transparent mode RLC entities (both transmitting and receiving). A transparent
mode entity can be in one of following states.

9.3.1.1 Null State

In the null state the RLC entity does not exist and therefore it is not possible to transfer any data through it.

Upon reception of an CRLC-CONFIG-Req from higher layer the RLC entity is created and transparent data transfer
ready state is entered.

9.3.1.2 Transparent Data Transfer Ready State

In the transparent data transfer ready, transparent mode data can be exchanged between the entities. Upon reception of
an CRLC-CONFIG-Req from higher layer the RLC entity is terminated and the null state is entered.

3GPP

273G TS 25.322 version 3.0.0

2.
Transparent

Data Transfer
Ready

1.
Null

CRLC-CONFIG-Req

Received signal
Sent signalCRLC-CONFIG-Req

Figure 9-16: The state model for transparent mode entities

9.3.2 State model for unacknowledged mode entities

Figure 9-17 illustrates the state model for unacknowledged mode RLC entities (both transmitting and receiving). An
unacknowledged mode entity can be in one of following states.

9.3.2.1 Null State

In the null state the RLC entity does not exist and therefore it is not possible to transfer any data through it.

Upon reception of an CRLC-CONFIG-Req from higher layer the RLC entity is created and unacknowledged data
transfer ready state is entered.

9.3.2.2 Unacknowledged Data Transfer Ready State

In the unacknowledged data transfer ready, unacknowledged mode data can be exchanged between the entities. Upon
reception of an CRLC-CONFIG-Req from higher layer the RLC entity is terminated and the null state is entered.

2.
Unack.

Data Transfer
Ready

1.
Null

CRLC-CONFIG-Req

CRLC-CONFIG-Req

Received signal
Sent signal

Figure 9-17: The state model for unacknoledged mode entities

9.3.3 State model for acknowledged mode entities

Figure 9-18 illustrates the state model for the acknowledged mode RLC entity (both transmitting and receiving). An
acknowledged mode entity can be in one of following states.

9.3.3.1 Null State

In the null state the RLC entity does not exist and therefore it is not possible to transfer any data through it.

Upon reception of an CRLC-CONFIG-Req from higher layer the RLC entity is created and acknowledged data transfer
ready state is entered.

3GPP

283G TS 25.322 version 3.0.0

9.3.3.2 Acknowledged Data Transfer Ready State

In the acknowledged data transfer ready state, acknowledged mode data can be exchanged between the entities. Upon
reception of a CRLC-CONFIG-Req from higher layer the RLC entity is terminated and the null state is entered.

Upon errors in the protocol, the RLC entity sends a RESET PDU to its peer and enters the reset pending state.

Upon reception of a RESET PDU, the RLC entity resets the protocol and responds to the peer entity with a RESET
ACK PDU.

Upon reception of a RESET ACK PDU, the RLC takes no action.

9.3.3.3 Reset Pending State

In the reset pending state the entity waits for a response from its peer entity and no data can be exchanged between the
entities. Upon reception of CRLC-CONFIG-Req from higher layer the RLC entity is terminated and the null state is
entered.

Upon reception of a RESET ACK PDU, the RLC entity resets the protocol and enters the acknowledged data transfer
ready state.

Upon reception of a RESET PDU, the RLC entity resets the protocol, send a RESET ACK PDU and enters the
acknowledged data tranfer ready state.

2.
Ack.

Data Transfer
Ready

1.
Null

CRLC-CONFIG-Req

CRLC-CONFIG-Req
3.

Reset.
Pending

RESET

RESET ACK

]RESET
RESET ACK

CRLC-CONFIG-Req

Received signal
Sent signal

RESET
RESET ACK

RESET ACK

Figure 9-18: The state model for the acknoledged mode entities

9.4 State variables
This sub-clause describes the state variables used in the specification of the peer-to-peer protocol. PUs are sequentially
and independently numbered and may have the value 0 through n minus 1 (where n is the modulus of the sequence

numbers). The modulus equals 212 for AM and 27 for UM; the sequence numbers cycle through the entire range: 0

through 212 – 1 for AM and 0 through 27 – 1 for UM. All arithmetic operations on the following state variables and
sequence numbers contained in this specification are affected by the modulus: VT(S), VT(A), VT(MS), VR(R), VR(H),
VR(MR), VT(US) and VR(US). When performing arithmetic comparisons of transmitter variables, VT(A) is assumed to
be the base. When performing arithmetic comparisons of receiver variables, VR(R) is assumed to be the base.

The RLC maintains the following state variables at the transmitter.

a) VT(S) - Send state variable

3GPP

293G TS 25.322 version 3.0.0

The sequence number of the next PU to be transmitted for the first time (i.e. excluding retransmission). It is
updated after transmission of a PDU which includes not earlier transmitted PUs. The initial value of this variable
is 0.

b) VT(A) - Acknowledge state variable

The sequence number of the next in-sequence PU expected to be acknowledged, which forms the lower edge of
the window of acceptable acknowledgments. VT(A) is updated based on receipt of a STATUS PDU including an
ACK super-field. The initial value of this variable is 0.

c) VT(DAT)

This state variable counts the number of times a PU has been transmitted. There is one VT(DAT) for each PU
and it is incremented each time the PU is transmitted. The initial value of this variable is 0.

d) VT(MS) - Maximum Send state variable

The sequence number of the first PU not allowed by the peer receiver [i.e. the receiver will allow up to VT(MS)
– 1], VT(MS) = VT(A) + Window_Size. This value represents the upper edge of the transmit window. The
transmitter shall not transmit a new PU if VT(S) ≥ VT(MS). VT(MS) is updated based on receipt of a STATUS
PDU including an ACK and/or a WINDOW super-field.

e) VT(US) – UM data state variable

This state variable gives the sequence number of the next UMD PDU to be transmitted. It is updated each time a
UMD PDU is transmitted. The initial value of this variable is 0.

f) VT(PU)

This state variable is used when the poll every Poll_PU PU function is used. It is incremented with 1 for each PU
that is transmitted. It should be incremented for both new and retransmitted PUs. When it reaches Poll_PU a new
poll is transmitted and the state variable is set to zero. The initial value of this variable is 0.

g) VT(SDU)

This state variable is used when the poll every Poll_SDU SDU function is used. It is incremented with 1 for each
SDU that is transmitted. When it reaches Poll_SDU a new poll is transmitted and the state variable is set to zero.
The poll bit should be set in the PU that contains the last segment of the SDU. The initial value of this variable is
0.

h) VT(RST) - Reset state variable

It is used to count the number of times a RESET PDU is transmitted. VT(RST) is incremented with 1 each time a
RESET PDU is transmitted. VT(RST) is reset upon the reception of a RESET ACK PDU. The initial value of
this variable is 0.

The RLC maintains the following state variables at the receiver:

a) VR(R) - Receive state variable

The sequence number of the next in-sequence PU expected to be received. It is updated upon receipt of the next
in-sequence PU. The initial value of this variable is 0.

b) VR(H) - Highest expected state variable

The sequence number of the highest expected PU. This state variable is updated when a new PU is received with
SN≥VR(H). The initial value of this variable is 0.

c) VR(MR) - Maximum acceptable Receive state variable

The sequence number of the first PU not allowed by the receiver [i.e. the receiver will allow up to VR(MR) – 1],
VR(MR) = VR(R) + Window_Size. The receiver shall discard PUs with SN ≥ VR(MR), (in one case, such a PU
may cause the transmission of an unsolicited STATUS PDU).

d) VR(US) - Receiver Send Sequence state variable

3GPP

303G TS 25.322 version 3.0.0

The sequence number of the next PDU to be received. It shall set equal to SN + 1 upon reception of a PDU. The
initial value of this variable is 0.

e) VR(EP) – Estimated PDU Counter state variable

The number of PUs that should be received yet as a consequence of the transmission of the latest STATUS PDU.
In acknowledged mode, this state variable is updated at the end of each transmission time interval. It is
decremented by the number of PUs that should have been received during the transmission time interval. If
VR(EP) is equal to zero, then check if all PUs requested for retransmission in the latest STATUS PDU have been
received.

9.5 Timers
a) Timer_Poll

This timer is only used when the poll timer trigger is used. It is started when the transmitting side sends a poll to
the peer entity. The timer is stopped when receiving a STATUS PDU that contains an acknowledgement or
negative acknowledgement of the AMD PDU that triggered the timer. The value of the timer is signalled by
RRC.

If the timer expires and no STATUS PDU containing an acknowledgement or negative acknowledgement of the
AMD PDU that triggered the timer has been received, the receiver is polled once more (either by the
transmission of a PDU which was not yet sent, or by a retransmission) and the timer is restarted.

If a new poll is sent when the timer is running it is restarted.

b) Timer_Poll_Prohibit

This timer is only used when the poll prohibit function is used. It is used to prohibit transmission of polls within a
certain period. A poll shall be delayed until the timer expires if a poll is triggered when the timer is activeOnly
one poll shall be transmitted when the timer expires even if several polls were triggered when the timer was
active. This timer will not be stopped by a STATUS PDU. The value of the timer is signalled by RRC.

c) Timer_EPC

This timer is only used when the EPC function is used and it accounts for the roundtrip delay, i.e. the time when
the first retransmitted PU should be received after a STATUS has been sent. The timer is started when a
STATUS report is transmitted and when it expires EPC can start decrease (see section 9.7.3). The value of the
timer is signalled by RRC.

d) Timer_Discard

This timer is used for the SDU discard function. In the transmitter, the timer is activated upon reception of a SDU
from higher layer. If the SDU has not been acknowledged when the timer expires, the SDU is discarded and a
Move Receiving Window request is sent to the receiver. If the SDU discard function does not use the Move
Receiving Window request, the timer is also used in the receiver, where it is activated once a PDU is detected as
outstanding, i.e. there is a gap between sequence numbers of received PDUs. The value of the timer is signalled
by RRC.

e) Timer_Poll_Periodic

This timer is only used when the timer based polling is used. The timer is started when the RLC entity is created.
Each time the timer expires a poll is transmitted and the timer is restarted. The value of the timer is signalled by
RRC.

f) Timer_Status_Prohibit

This timer is only used when the STATUS PDU prohibit function is used. It prohibits the receiving side from
sending STATUS PDUs. The timer is started when a STATUS PDU is transmitted and no new STATUS PDU
can be transmitted before the timer has expired. The value of the timer is signalled by RRC.

g) Timer_Status_Periodic

3GPP

313G TS 25.322 version 3.0.0

This timer is only used when timer based STATUS PDU sending is used. The timer is started when the RLC
entity is created. Each time the timer expires a STATUS PDU is transmitted and the timer is restarted. The value
of the timer is signalled by RRC.

h) Timer_RST

It is used to detect the loss of RESET ACK PDU from the peer RLC entity. This timer is set when the RESET
PDU is transmitted. And it will be stopped upon reception of RESET ACK PDU. If it expires, RESET PDU will
be retransmitted.

9.6 Protocol Parameters
a) MaxDAT

It is the maximum value for the number of retransmissions of a PU. This parameter is an upper limit of counter
VT(DAT). When the value of VT(DAT) comes to MaxDAT, error recovery procedure will be performed.

b) Poll_PU

This parameter indicates how often the transmitter should poll the receiver in case of polling every Poll_PU PU.
This is an upper limit for the VT(PU) state variable, when VT(PU) reaches Poll_PU a poll is transmitted to the
peer entity.

c) Poll_SDU

This parameter indicates how often the transmitter should poll the receiver in case of polling every Poll_SDU
SDU. This is an upper limit for the VT(SDU) state variable, when VT(SDU) reaches Poll_SDU a poll is
transmitted to the peer entity.

d) Poll_Window

This parameter indicates when the transmitter should poll the receiver in case of performing window based
polling. A poll is transmitted when:

WindowPoll
SizeWindow

SizeWindowSVTMSVTSizeWindow
_

_

mod))()((
1 >−+− .

e) MaxRST

It is the maximum value for the number of retransmission of RESET PDU. This parameter is an upper limit of
counter VT(RST). When the value of VT(RST) comes to MaxRST, the higher layer (RRC) is notified.

f) Window_Size

The maximum allowed transmitter window size.

9.7 Specific functions

9.7.1 Polling function for acknowledged mode transfer

The transmitter of AMD PDUs may poll the receiver for a STATUS PDU. The Polling bit in the AMD PDU indicates
the poll request. There are several triggers for setting the polling bit. The network (RRC) controls which triggers should
be used for each RLC entity. Following triggers are possible:

1) Last PU in buffer

The sender transmits a poll when the last PU available for transmission is transmitted.

2) Last PU in retransmission buffer

The sender transmits a poll when the last PU to be retransmitted is transmitted.

3GPP

323G TS 25.322 version 3.0.0

3) Poll timer

The timer Timer_Poll is started when a poll is transmitted to the receiver and if no STATUS PDU has been
received before the timer Timer_Poll expires a new poll is transmitted to the receiver.

4) Every Poll_PU PU

The sender polls the receiver every Poll_PU PU. Both retransmitted and new Pus shall be counted.

5) Every Poll_SDU SDU

The sender polls the receiver every Poll_SDU SDU.

6) Poll_Window% of transmission window

The sender polls the receiver when it has reached Poll_Window% of the transmission window.

7) Timer based

The sender polls the receiver periodically.

The network also controls if the poll prohibit function shall be used. The poll bit shall be set to 0 if the poll prohibit
function is used and the timer Timer_Poll_Prohibit is active. This function has higher priority than any of the above
mentioned triggers.

9.7.2 STATUS PDU transmission for acknowledged mode

The receiver of AMD PDUs transmits STATUS PDUs to the sender in order to inform about which PUs that have been
received and not received. There are several triggers for sending a STATUS PDU. The network (RRC) controls which
triggers should be used for each RLC entity, except for one, which is always present. The receiver shall always send a
STATUS PDU when receiving a poll request. Except for that trigger following triggers are configurable:

1) Detection of missing PU(s).

If the receiver detects one or several missing PUs it shall send a STATUS PDU to the sender.

2) Timer based STATUS PDU transfer

The receiver transmits a STATUS PDU periodically to the sender. The time period is controlled by the timer
Timer_Status_Periodic.

3) The EPC mechanism

The EPC is started when a STATUS PDU is transmitted to the peer entity. If not all PUs requested for
retransmission have been received before the EPC has expired a new STATUS PDU is transmitted to the peer
entity. A more detailed description of the EPC mechanism is given in section 9.7.2.

There are two functions that can prohibit the receiver from sending a STATUS PDU. The network (RRC) controls
which functions should be used for each RLC entity. If any of the following functions is used the sending of the
STATUS PDU shall be delayed, even if any of the conditions above are fulfilled:

1) STATUS PDU prohibit

The Timer_Status_Prohibit is started when a STATUS PDU is transmitted to the peer entity. As long as the timer
is running the receiving side is not allowed to send a STATUS PDUs to the peer entity. The STATUS PDU is
transmitted after the timer has expired. The receiver shall only send information about a PU once, even if there
are several triggers when the timer running.

2) The EPC mechanism

If the EPC mechanism is active and the sending of a STATUS PDU is triggered it shall be delayed until the EPC
mechanism has ended. The receiver shall only send information about a PU once, even if there are several
triggers when the timer is active or the counter is counting down.

3GPP

333G TS 25.322 version 3.0.0

9.7.3 SDU discard function

The SDU discard function allows to discharge RLC PDU from the buffer on the transmitter side, when the transmission
of the RLC PDU does not success for a long time.The SDU discard function allows to avoid buffer overflow, in the case
of non-transparent transmission mode. There will be several alternative operation modes of the RLC SDU discard
function, and which discard function to use will be given by the QoS requirements of the Radio Access Bearer.

The following is a list of operation modes for the RLC SDU discard function.

Table 9-2: List of criteria’s that control when to perform SDU discard

Operation mode Presence
Timer based discard, with explicit signalling Network controlled
Timer based discard, without explicit signalling Network controlled
SDU discard after MaxDAT number of retransmissions Network controlled

9.7.3.1 Timer based discard, with explicit signalling

This alternative uses a timer based triggering of SDU discard (Timer_Discard). This makes the SDU discard function
insensitive to variations in the channel rate and provides means for exact definition of maximum delay. However, the
SDU loss rate of the connection is increased as SDUs are discarded.

For every SDU received from a higher layer, timer monitoring of the transmission time of the SDU is started. If the
transmission time exceeds a predefined value for a SDU in acknowledged mode RLC, this SDU is discarded in the
transmitter and a Move Receiving Window (MRW) command is sent to the receiver so that AMD PDUs carrying that
SDU are discarded in the receiver and the receiver window is updated accordingly. Note that when the concatenation
function is active, PDUs carrying segments of other SDUs that have not timed out shall not be discarded.

The MRW command is defined as a super-field in the RLC STATUS PDU (see section 9.2), and piggy backed to status
information of transmissions in the opposite direction. Therefore, SDU discard variants requiring peer-to-peer signalling
are only possible for full duplex connections.

9.7.3.2 Timer based discard, without explicit signalling

This alternative uses the same timer based trigger for SDU discard (Timer_Discard) as the one described in the
section 9.7.3.1. The difference is that this discard method does not use any peer-to-peer signalling. For unacknowledged
mode RLC, peer-to-peer signalling is never needed. The SDUs are simply discarded in the transmitter, once the
transmission time is exceeded. For acknowledged mode RLC, peer-to-peer signalling can be avoided as long as SDU
discard is always performed in the transmitter before it is performed in the receiver. As long as the corresponding SDU
is eventually discarded in the receiver too, possible retransmission requests of PDU of discarded SDUs can be ignored
by the transmitter. The bigger the time difference is between the triggering of the discard condition at the transmitter and
the receiver, the bigger the unnecessary buffering need is at the receiver and the more bandwidth is lost on the reverse
link due to unnecessary retransmission requests. On the other hand, forward link bandwidth is saved, as no explicit SDU
discard signalling is needed.

9.7.3.3 SDU discard after MaxDAT number of retransmissions

This alternative uses the number of retransmissions as a trigger for SDU discard, and is therefore only applicable for
acknowledged mode RLC. This makes the SDU discard function dependent of the channel rate. Also, this variant of the
SDU discard function strives to keep the SDU loss rate constant for the connection, on the cost of a variable delay. SDU
discard is triggered at the transmitter, and a MRW command is necessary to convey the discard information to the
receiver, like in the timer based discard with explicit signalling.

9.7.4 The Estimated PDU Counter

The Estimated PDU Counter is a mechanism used for scheduling the retransmission of status reports in the receiver side.
With this mechanism, the receiver will send a new Status PDU in which it requests for PUs not yet received. The time
between two subsequent status report retransmissions is not fixed, but it is controlled by the Estimated PDU Counter
(EPC), which adapt this time to the current bit rate, indicated in the TFI, in order to minimise the delay of the status

3GPP

343G TS 25.322 version 3.0.0

report retransmission.

The EPC is a counter, which is decremented every transmission time interval with the estimated number of PUs that
should have been transmitted during that transmission time interval. When the receiver detects that PDUs are missing it
generates and sends a Status PDU to the transmitter and sets the EPC equal to the number of requested PUs.

A special timer, called EPC timer, controls the maximum time that the EPC needs to wait before it will start counting
down. This timer starts immediately after a transmission of a retransmission request from the receiver (Status PDU). The
EPC timer typically depends on the roundtrip delay, which consists of the propagation delay, processing time in the
transmitter and receiver and the frame structure. This timer can also be implemented as a counter, which counts the
number of 10 ms radio frames that could be expected to elapse before the first requested AMD PDU is received.

When the EPC is equal to zero and not all of these requested PUs have been received correctly, a new Status PDU will
be transmitted and the EPC will be reset accordingly. The EPC timer will be started once more.

The EPC is based on the estimation of the number of PUs that should have been received during a transmission time
interval. To estimate this number is easiest done by means of the TFI bits. However, if these bits are lost due to some
reason or another, this estimation must be based on something else. A straightforward solution is to base the estimation
on the number done in the previous transmission time interval. Only if the rate has changed this estimation is incorrect.
Another method of estimating the number of PUs is based on the maximum allowable rate. The consequence of this is
that if the estimation is incorrect, the Status PDU is sent too early. Alternatively, the estimation can be based on the
lowest possible transmission rate. In this case, if the estimation is incorrect, the Status PDU will most likely be
transmitted too late.

9.7.5 Multiple payload units in a RLC PDU and header compression

The possibility to include multiple payload units (PU) into one RLC AMD PDU provides a way to support variable bit
rate services with lower overhead. The method is to be a part of the service capabilities of a UE capable to support user
plane traffic in acknowledged mode. For Release 99, there shall be only one PU per AMD PDU.

A semi-static sized payload unit is the smallest unit that can be separately addressed for retransmission and is of fixed
size, containing data and optionally, length indicators and/or padding. The padding space of a PU can be used to
piggyback STATUS PDUs. The segmentation and concatenation of SDUs into the RLC transmitter buffer is always
performed as if there would be only one PU in each AMD PDU. However one AMD PDU may contain also multiple
PUs. The header compression is applied to incorporate several PUs effectively into the AMD PDU and it takes place
when the transport block size for the next transmission time interval indicated by MAC can accommodate several PUs.
The concept of having multiple PUs in one AMD PDU does not remove the need to still have several transport blocks
(RLC PDUs) in the transport block set.

Determination of tThe configuration of PU and PDU sizes is determined based on by the needed transmission rates. The
size of the PU is set by the RRC. is derived directly from the lowest common block size that can be used to compose all
the applicable data rates. To support faster transmission rates more payload units are combined into one AMD PDU
with header compression function as long as the size of the PDU reaches the optimum. When higher transmission rates
are used, several transport blocks (RLC PDUs) are delivered within one transport block set keeping the amount of PUs
the same in one AMD PDU. The AMD PDU Extended Header is needed when several PU:s out-of-sequence is included
into one RLC PDU. When multiple PU:s in one RLC PDU is used then the RLC is able to construct PDU:s of variable
size.

The method of multiple PUs in one PDU combined with the header compression is especially useful when the lowest
needed transmission bit rate cannot be effectively supported with PDUs optimized for the highest transmission bit rate.
Figure 3-1 presents a few examples illustrating the applicability of the method. To illustrate the method, figure 9-19
shows some examples where the RLC AMD PDU size has been set to 320 bits.

3GPP

353G TS 25.322 version 3.0.0

P U

P U P U P U P U

H C

H C

P U P U P U P UH C P U P U P U P UH C

8 kbps

32 kbps

64 kbps

P UH C

P UH C P UH C

32 kbps

64 kbps

8 kbps N/A

A)

B)

P UH C

P UH C P UH C P UH C P UH C

P UH C P UH C P UH C P UH C P UH C P UH C P UH C P UH C

8 kbps

32 kbps

64 kbps

C)

Figure 9-19: Example cases of payload units and PDUs at different transmission rates

Assuming there is a service having a need for variable transmission rate with the maximum above 32 kbps (e.g. 64 kbps)
and the minimum of e.g. 8 kbps. With the PU size of 80 bits the flexibility for transmission rates of 8 kbps, 16 kbps or
32 kbps can be achieved by adjusting simply the amount of PUs in one RLC PDU. This also affects on the size of the
RLC PDU. While having the optimum sized PDU at 32 kbps, faster transmission rates are constructed by sending
several PDUs, each of them containing four PUs (case A).

In case B no data rates below 32 kbps are in the transport format set and the size of the PU is the same as the size of the
payload in the RLC PDU. To support transmission bit rates above 32 kbps several PDUs (transport blocks) are sent
within one transport block set.

Without the capability to append several PU:s in the PDU the overhead becomes rather high if several transport blocks
are sent within one transport block set without header compression at a higher transmission rate (case C).

	RP-99641
	cr_001_r2-99f04.doc
	cr_002_r2-99i00.doc
	cr_007_r2-99i01.doc
	cr_014_r2-99k23.doc
	cr_017_r2-99k71.doc

