Joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5)
N5-030550

Meeting #25, Bangkok, THAILAND, 27 - 31 October 2003

Source:
Musa Unmehopa (Lucent Technologies, unmehopa@lucent.com)
Title:
Comments and feedback to GMS Re-architecture proposal

Agenda Item:

Document for:
Decision, Discussion
Introduction

Lucent Technologies has had the opportunity to review the proposal for Generic Messaging Service re-architecture and re-design, “N5-030xxx Rel-x CR ES202195-09 GMS Corrections”, as distributed by IBM on the 14th of August to the CN5_JointAPI exploder. This document contained a numbered list of 18 issues, which we’ve addressed in this paper. Generally Lucent believe this proposal is a significant step in the right direction and we strongly support the initiative. In fact, we agree outright with 12 out of the 18 issues. For the remaining 6 issues we either have additional questions for clarification (4) or we do not support (2). Lucent Technologies would like to kindly request the meeting to review and discuss the feedback provided in this paper.

We acknowledge the possibility that some of the feedback raised in this paper may have already been addressed in the later updates N5-030545/N5-030546. We’d be happy to withdraw any issue for which this is the case.

Excerpts from the original IBM contribution

This section provides excerpts (i.e. copy-paste) from “N5-030xxx Rel-x CR ES202195-09 GMS Corrections” for ease of reference.

Reason for Change

The Generic Messaging Service provides generalized message mailbox support for multimedia messages. There are a number of problems that have been identified, and this change request will attempt to integrate solutions to each of them.

1) The TpMessageFormat type defines a set of formats that the message can be in, some of which are binary in nature, and others are strings in nature.

The binary types are:

P_MESSAGING_MESSAGE_FORMAT_UNDEFINED,

P_MESSAGING_MESSAGE_FORMAT_BINARY,

P_MESSAGING_MESSAGE_FORMAT_MIME,

P_MESSAGING_MESSAGE_FORMAT_WAVE,

P_MESSAGING_MESSAGE_FORMAT_AU

TpString types undergo character set conversion during transmission when using CORBA. The binary types should not. Even the MIME type, which defines a header that consists of strings, may contain a body that is binary data, so therefore character set conversion is inappropriate. There is no conventional way to string encode WAVE or AU files.

Character set conversion on a binary string could cause corruption in the data.

The TpMessage datatype that describes the message content is currently defined as a TpLongString. In the CORBA idl it is simply a ‘string’. This type is not appropriate for representing multimedia datatypes of the formats described in TpMessageFormat.

2) Additionally, putMessage() and putMessageReq() should return a message ID.

3) Additionally, GMS currently defines several values for TpMessageStatus that describes the lifecycle of the message (what has occurred related to the message), however some of the current status values indicate that a particular notification was delivered, however there are no associated notifications defined. Additional notifications are needed. Also the various status values are incompatible (not mutually exclusive) because the datatype is an enum, a clarification is necessary.

4) Additionally, the message properties currently in GMS are not quite sufficient to support the MMS protocols, such as scheduled delivery and validity time, and so therefore the implementation of GMS using MMS is inadequate.

5) There is confusion on the method for obtaining a list of messages in the folder, a clarification is necessary.

6) The GMS messaging interface is designed to be used generically for multiple types of messaging (email and voice mail are cited as examples in the current specification), however, the service does not have any service, mailbox, folder or message properties that describe how the service is implemented, that would allow the client to determine which implementation or transport to select.

7) The GMS interfaces are all synchronous, and the usage patterns for particular methods require asynchrous methods so that a larger mailbox folders can be handled without consuming a thread for a long period of time, thereby restricting scalability.

8) The messaging system is frequently used with MIME oriented messages which have headers and body parts, however the current GMS specification does not adequately provide for handling the body parts independently and therefore there may be unnecessary performance overhead when dealing with many large messages.

9) Some properties are intended to describe the object, and are not intended to be updated by the application, which is sometimes possible with setInfoProperties, and which can lead to inconsistencies (incoherencies).

10) The enumeration of folders in a mailbox is unclear, its either all folders or only top-level folders.

11) Contradictions exist in how folder IDs are fully qualified, and where.

12) Some methods erroneously allow a locked mailbox to be updated without exception.

13) The description of the firstProperty parameter of getInfoProperties() in all interfaces, is misleading and confusing, because it is not clear whether it is the property ID or the ordinal position of the property, and whether properties are ordered or not.

14) Its not clear when messages are sent out of the mailbox.

15) The method of synchronously locking is not ideal, and causes the application to poll waiting for a lock.

16) The mailbox remove() method should not be included in this API set (at this time), since the mailbox can not be created through this API set. Also it requires authentication Information of the super user.

17) The placement of the remove methods for folders and mailboxes is confusion, and inconsistently uses privlege levels to enforce access.

18) The getMessage() method is misleading and appears to return an reference to a particular message, however it is stateless and all methods in the IpMessage interface require a folderSessionID and a messageID. Therefore, the IpMessage interface is really a logical extension to the IpMailboxFolder interface that has message-oriented methods segregated. The method parameters need to be fixed.

Summary of Change

1) In order to maintain binary compatibility for the TpMessage type, which could be implemented as the proposed TpMessageInfo union, additional methods are proposed.

The TpMessageInfo format should be a union of types.

The putMessageReq() and the getMessageContentReq() methods are proposed to enable the full range of formats defined by TpMessageFormat. In this way the support for TpMessageFormat is corrected.

2) Correct the putMessage() method to include the appropriate messageID as a return value. The putMessage() and putMessageReq() methods now include the appropriate messageID as a return value.

3) Correct the event types to include support for the current message status values, and in particular, the notification of the delivery of a message and reading of a message are important to supporting the MMS protocols. Also, correct the description of the property list to clarify that it may contain multiple message status values.

4) Correct the message properties to include the necessary properties, by including scheduled delivery, validity time and billing properties..

5) A clarification is made to IpMailboxFolder.getInfoProperties() to indicate how the messages of the folder are itemized.

6) Correct service properties to describe the capabilities of the service, and message properties to describe the specific transport used for a specific message, this allows a unified messaging approach that would show email, voicemail, instant message and MMS in the same INBOX.

7) Asynchronous methods have been added for methods that deal with larger amounts of data or that take more time.

8) Additional methods are provided to enable listing the headers and body part descriptions, and addressing specific body parts, and copy/move messages, as well as moving folders (for convenience). Copy of folders was not implemented because its redundant function and perhaps an error prone process.

9) All properties should be marked as readonly or read/write, and clarifications are made to avoid property incoherency.

10) The enumeration of folders in the mailbox is clarified to indicate only top-level folders. The enumeration of folder properties is included to only immediate sub folders and messages. In this way, an consistent object oriented view of the mailbox is implemented. The enumeration of the mailbox shows the contents root folder, which can contain folders, but not messages.

11) The definition of a fully qualified folder ID is clarified to describe that it is relative to the mailbox, but does not include the mailbox ID, and the scope of messageIDs are clarified to be unique within the mailbox.

12) All methods updating a mailbox are updated to report exception or error if its locked by another session.

13) Clarificiations are made in the getInfoProperties() method to clarify the (firstProperty) property positioning and ordering. The firstProperty refers to the current iterator offset. The setInfoProperties() method is updated to ignored the firstProperty parameter.

14) Clarfications are made to specify when a message is sent out of the OUTBOX mailbox, to avoid the need for a redundant sendMessageReq() method.

15) An asynchronous lockReq() method is introduced to allow the application to request a lock and wait for the lock to be granted.

16) The mailbox remove() method should not be included in this API set (at this time), since the mailbox can not be created through this API set. Also it requires authentication Information of the super user. Deprecate the method.

17) The mailbox remove method is deprecated since it is not possible to create the mailbox through the API, it shouldn’t be possible to remove it. Another administration interface would be needed anyway. Also the remove of a folder was deprecated from the IpMailboxFolder interface, and added to the IpMailbox interface so that creating and removing a folder a consistent. Authentication is now needed only for monitoring new arrival events and opening a mailbox. Privilege exceptions removed except for openMailbox() and enableMessagingNotification().

18) The IpMailboxFolder.getMessage() method parameters are modified to reflect the that the sessionID and messageID are not state of the IpMessage interface, and therefore do not need to be passed in, however, the method remains to be necessary to retrieve an IpMessage object. The alternative is to merge the interfaces but that creates an even greater binary compatibility issue, and also causes method name conflicts. The IpMessage interface is preserved. getMessageAccess() is added to replace the deprecated getMessage() to address the situation.

Lucent Input to the GMS Re-architecture Initiative

This section contains our comments and feedback, based on the numbered list above.

Comments on the reasons for change

1.
While we agree with the suggested set of specified media types, a little more detail regarding why these specific types were chosen in preference to others would help the reader. Please provide more data here.

2.
The IpMailboxFolder::putMessage method is at once deprecated with a signature change. If the interface method is to be deprecated then its signature should not change. Do Not Approve.

3.
Approve
4.
GMS was not intended to support MMS specifically, the UI SCS should be used for that. GMS can be used indirectly for MMS if the MMS proxy lies in the delivery path of the MMS message. Lucent would like to request more clarification on how GMS and UI overlap would be dealt with. We specifically wish to avoid redundancy across SCFs. Do not approve.

5.
Approve

6.
Please provide clarification on why these details should be made transparent to the applications.

7.
Approve.

8.
Approve.

9.
Approve.

10.
Approve.

11.
Approve.

12.
Approve.

13.
Approve.

14.
Is this of concern when non-SMS, non-MMS types of services are supported? Is it not sufficient to indicate that the delivery characteristics are similar to those of email (for which this service was initially designed)? We would greatly appreciate clarification on what exactly has changed in the spec for this problem. It is often difficult to correlate the itemized list of problems with the spec changes.

15.
Although there may be issues with locking related semantics, Lucent is of the opinion that simply changing the locking mechanism from sync to async will not solve the underlying problems, though the change itself may be a step in the right direction.

16.
Approve.

17.
Approve.

18.
Approve.

19.
While it is awkward to have to open a folder to send a message, this newly proposed interface method (sendMessageReq) effectively duplicates existing functionality (putMessage and the proposed putMessageReq) with little added benefit. Moreover, there is a possible burden on both the SCS developer (if not the client developers) to support this extra functionality. There are also message delivery parameters defined which do not apply to traditional email. Do Not Approve.

Other comments on specific proposed fixes

1.
copyMessageReq()- what happens when the source and destination folders are the same?

2.
moveMessageReq()- any reason why this should be an async operation? (trying to account for large messages?)

3.
General: are copies shallow? i.e. clone message pointer, or deep? (Are all body parts also copied?) The contribution should specify this explicitly. Preference would be to not support complete copies.

4.
At the very end of the document P_TRIGGERING_ADDRESSES is defined. How is this expected to be used?

5.
Regarding mailbox locking: In general, we have no problem with the proposal though we see no need to change the lock method to asynchronous. In fact, because access to the mailbox is only allowed through authentication, is there really a need for mailbox locking? Who is the mailbox locked from?

6.
Section 8.1.2, Method enableMessagingNotification(): Text marked as changed reads “If the application does not have sufficient privilege to remove the mailbox…” The reference to removing the mailbox appears to be a copy and paste error. Please correct it.

7.
Regarding IpMessage::moveMessageReq() and IpMessage::copyMessageReq(): one of the input parameters is destinationFolderSessionID. This requires that the client open the destination folder prior to moving or copying it. This is not efficient and appears to be unnecessary. Imagine going through your Inbox and wanting to move messages to certain other folders as necessary, e.g. one for Personal, one for Work, one for ToDo, etc. The client would need to go open each of these folders before the messages could be moved there. It would be much easier for the client to simply specify the destinationFolderID by name. Therefore, we suggest changing the destinationFolderSessionID to destinationFolderID.

