joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5)
N5-030352
Meeting #24, San Francisco, CA, USA, 14 - 18 July 2003

Source:
Gareth Carroll (Open API Solutions)
Title:
Remove unnecessary fields from CCC
Agenda Item:

OSA2 (Parlay 4 / ETSI OSA 2)

Document for:
Decision
Reason for Change:
The Conference Call Control specification specifies the TpJoinEventInfo type. This contains OriginalDestinationAddress and RedirectingAddress fields. The TpJoinEventInfo also contains a field of type TpCallAppInfoSet. TpCallAppInfoSet also contains these fields and is also used in Multi-Party Call Control. It is redundant and confusing to have these same fields in both the type and in a field it contains.

In addition the partyJoined method has some scoping symbols “::” in the parameter list.

The sequence diagram 9.1.2 also contains an error, prepending the word “OLD” to “createConference”.

We believe that Conference Call Control has not been defined as a mature specification and therefore there won’t be any backwards compatibility issues in removing fields from a structure. If this is incorrect then Open API Solutions can modify this contribution to place a note next to the type, specifying that the fields are redundant and should be ignored, with the corresponding fields in TpCallAppInfoSet being used instead.

Summary of Change:

We propose to remove the OriginalDestinationAddress and RedirectingAddress fields and also to remove the scoping symbols, which are not used anywhere else.

4.1.1 Non-add hoc add-on with subconferencing

This sequence illustrates a prearranged add-on conference. The end user that initiates the call, communicates with the conference application via a web interface (not shown). By dragging and dropping names from the addressbook, the end-users adds parties to the conference.
Also via the web-interface, the end-user can group parties in subconferences. Only parties in the same subconference can talk to each other.

[image: image1]

1:
The application creates a new interface to receive the callbacks from the conference call.

2:
The application initiates the conference. There has been no prior resource reservation, so there is a chance that no resources are available when parties are added to the conference.
The conferenceCall interface object is returned.

3:
Together with the conference a subconference is implicitly created.

However, the subconference is not returned as a result of the createConference, therefore the application uses this method to get the subconference.

4:
The application creates a new IpAppCallLeg interface

5:
The application adds the first party to the subconference. This process is repeated for all 4 parties. Note that in the following not all steps are shown.

6:
The gateway creates a new IpCallLeg interface.

7:
The application adds parties to the subconference.

8:
The application adds parties to the subconference.

9:
The application adds parties to the subconference.

10:
When a party A answers the application is notified.

We assume that all parties answer. This happens in the same way as for party A and is not shown in the following.

11:
The message is forwarded to the application.

12:
The application decides to split the conference. Party C&D are indicated in the message.

The gateway will create a new subconference and move party C and D to the new subconference.

The configuration is A&B are in speech, C&D are in speech. There is no bearer connection between the two subconferences.

13:
The application moves one of the legs from the second subconference back to the first. The configuration now is A,B&C are in speech configuration. D is alone in its own subconference.

14:
The second subconference is released. Since party D was in this subconference, this callleg is also released.

This leaves one subconference with A,B & C.

9.3.4 Interface Class IpAppConfCall

Inherits from: IpAppMultiMediaCall
The Conference Call application interface allows the application to handle call responses and state reports. Additionally it allows the application to handle parties entering and leaving the conference.
	<<Interface>>

IpAppConfCall

	

	partyJoined (conferenceSessionID : in TpSessionID, callLeg : in TpCallLegIdentifier, eventInfo : in TpJoinEventInfo) : IpAppCallLegRef

leaveMonitorRes (conferenceSessionID : in TpSessionID, callLeg : in TpSessionID) : void

Method

partyJoined()

This asynchronous method indicates that a new party (leg) has joined the conference. This can be used in, e.g., a meetme conference where the participants dial in to the conference using the address returned during reservation of the conference.

The Leg will be assigned to the default subconference object and will be in a detached state. The application may move the call Leg to a different subconference before attaching the media.

The method will only be called when joinAllowed is indicated in the conference policy.

Returns appCallLeg : Specifies the call back interface that should be used for callbacks from the new call Leg.

Parameters

conferenceSessionID : in TpSessionID
Specifies the session ID of the conference that the party wants to join.
callLeg : in TpCallLegIdentifier
Specifies the interface and sessionID of the call leg that joined the conference.
eventInfo : in TpJoinEventInfo
Specifies the address information of the party that wants to join the conference.
Returns

IpAppCallLegRef
Method

leaveMonitorRes()

This asynchronous method indicates that a party (leg) has left the conference.

Parameters

conferenceSessionID : in TpSessionID
Specifies the session ID of the conference that the party wants to leaves.
callLeg : in TpSessionID
Specifies the sessionID of the call leg that left the conference.
9.5.2.17 TpJoinEventInfo

Defines the Sequence of Data Elements that specify the information returned to the application in a Join event notification.

	Sequence Element Name
	Sequence Element Type

	DestinationAddress
	TpAddress

	OriginatingAddress
	TpAddress

	
	

	
	

	CallAppInfo
	TpCallAppInfoSet

6: new()

4: new()

11: "forward event"

10: eventReportRes()

14: release()

13: moveCallLeg()

9: createAndRouteCallLegReq()

12: splitSubConference()

8: createAndRouteCallLegReq()

7: createAndRouteCallLegReq()

5: createAndRouteCallLegReq()

3: getSubConferences()

1: new()

2: createConference ()

 : IpAppCallLeg

 : IpCallLeg

IpSubConfCall

second :

IpSubConfCall

first :

 : IpConfCall

View::IpAppLogic)

 : (Logical

IpAppConfCall

 :

IpConfCallControlManager

 :

