joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5)
N5-030347
Meeting #24, San Francisco, CA, USA, 14 - 18 July 2003

Source:
Gareth Carroll (Open API Solutions)
Title:
Rel 4 29.198-04 – Update incorrect MMCC method references
Agenda Item:

OSA1 (3GPP Rel-4 / Parlay 3 / ETSI OSA 1)

Document for:
Decision
Reason for Change:

There are a number of incorrect method references in the Multi-media call control specification. Sequence diagram 4.4 references routeReq which no longer exists on IpMultiPartyCall, and routeRes, which no longer exists on IpAppMultiPartyCall.
Summary of Change:

We propose to correct the incorrect method references.

Consequences if not Approved:

Failure to correct these method references can lead to confusion and, potentially, incorrect and non-interoperable implementations.
4.3 Barring for media, simple

This sequence illustrates how an application can block the establishment of video streams for a certain user.

[image: image1.wmf] : (Logical

View::IpAppLogic)

 :

IpAppMultiMediaCallControlManager

 :

IpMultiMediaCallControlMan...

 :

IpMultiMediaCall

 :

IpMultiMediaCallLeg

1: new()

2: createMediaNotification()

3: reportMediaNotification()

4: "forward event"

6: deassignCall()

5: mediaStreamAllow()

1:
The application starts a new AppMultiMediaCallControlManager interface for reception of callbacks.

2:
The application expresses interest in all calls from or to subscriber A that use video. The just created App interface is given as the callback interface.

3:
Subscriber A makes a call with the SIP INVITE with SDP media stream indicating video.

4:
The message is forwarded to the application.

5:
The application indicates that the setup of the media stream is not allowed by not including the media stream in the allowed list. This has the effect of suppressing the video capabilities in the setup.

6:
The application is no longer interested in the call.

New attempts to open video streams will again be indicated with a reportMediaNotification.

4.4 Call Volume charging supervision

This sequence illustrates how an application may supervise a call based on the number of bytes that are exchanged.

[image: image2]

Note: In the sequence diagram above, a single box represents both an IpAppCall and an IpAppCallLeg for space reasons.

1:
The application creates a new interface to receive callbacks on the call control manager.

2:
The created interface is set as the callback interface for the call control manager.

3:
The application creates a new interface to receive callback on the call.

4:
The application requests the creation of a call.

5:
The application initiates the call by routing to the origination. This will implicitly create a call leg. The application requests a notification when the party answers.

6:
When the A party answers the application is notified.

7:
The message is forwarded to the logic.

8:
The application also routes the call to the destination. This implicitly creates a call leg. The application requests to be notified on answer of the B-party.

9:
When the B-party answers the application is notified.

10:
The message is forwarded to the logic.

11:
The application requests to supervise the call. In the request the application specifies a limit on the amount of bytes that may be transferred. The application specifies that if the limit is reached the application should be notified.

12:
When the limit is reached a notification is send to the application.

13:
The message is forwarded to the logic.

15:
The application plays an announcement to the user, asking whether the user wants to end the call or continue the call.

16:
When the user answers whether the call should continue.

17:
The message is forwarded to the logic.

18:
The UIcall is released, since no further announcements are needed.

19:
In case the user answers that the call should continue, the supervision is reset with a new maximum number of allowed bytes. (note that this might have charging consequences, not shown)

20:
If the user answered that the call should not continue, the call is released.

6.1.3 Method changeMediaNotification()

This method is used by the application to change the event criteria introduced with createMediaNotification. Any stored criteria associated with the specified assignmentID will be replaced with the specified criteria.

Parameters

assignmentID : in TpAssignmentID

Specifies the ID assigned by the multi-media call control manager interface for the media stream notification. If two callbacks have been registered under this assignment ID both of them will be changed.
notificationMediaRequest : in TpNotificationMediaRequest

Specifies the new set of event specific criteria used by the application to define the event required. Only events that meet these criteria are reported.
Raises

TpCommonExceptions, P_INVALID_ASSIGNMENT_ID, P_INVALID_CRITERIA, P_INVALID_EVENT_TYPE
 :

IpMultiMediaCallControlMan...

 :

IpAppMultiMediaCall, IpAppCallLeg

 : (Logical

View::IpAppLogic)

 :

IpMultiMediaCall

 : IpUICall

: IpUIManager

 :

IpAppMultiMediaCallControlManager

 : IpAppUICall

4: createCall()

3: new()

5: createAndCallRouteLegReq()

8: createAndCallRouteLegReq ()

9: eventReportRes()

10: "forward event"

6: eventReportRes()

7: "forward event"

12: superviseVolumeRes()

13: "forward event"

15: sendInfoAndCollectReq()

16: sendInfoAndCollectRes()

17: "forward event"

19: superviseVolumeReq()

20: release()

11: superviseVolumeReq()

18: release()

14: createUICall()

1: new()

2: setCallback()

 : IpCallLeg

new()

new()

