Error! No text of specified style in document.
1
Error! No text of specified style in document.

joint API group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5)
N5-020739

Meeting #19, Montreal, CANADA, 8 – 12 July 2002

CR-Form-v5

CHANGE REQUEST

(

29.198-01
CR
CRNum
(

rev
-
(

Current version:
4.3.0
(

For HELP on using this form, see bottom of this page or look at the pop-up text over the (
 symbols.

Proposed change affects:
(

(U)SIM

ME/UE

Radio Access Network

Core Network
X

Title:
(

Add general introduction to the OSA APIs in Part 1

Source:
(

Koen Schilders (Ericsson, Koen.Schilders@eln.ericsson.se)

Work item code:
(

OSA2

Date: (

12/07/2002

Category:
(

F

Release: (

REL-5

Use one of the following categories:
F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
Use one of the following releases:
2
(GSM Phase 2)
R96
(Release 1996)
R97
(Release 1997)
R98
(Release 1998)
R99
(Release 1999)
REL-4
(Release 4)
REL-5
(Release 5)

Reason for change:
(

An introduction into the OSA APIs is missing in the specification.

Summary of change:
(

Introduction to OSA APIs added to Part 1.

Consequences if
(

not approved:
Interoperability problems because application developers might not fully understand how to program against the OSA APIs.

Clauses affected:
(

7

Other specs
(

 Other core specifications
(

affected:

 Test specifications

 O&M Specifications

Other comments:
(

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at: http://www.3gpp.org/3G_Specs/CRs.htm. Below is a brief summary:

1)
Fill out the above form. The symbols above marked (
 contain pop-up help information about the field that they are closest to.

2)
Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3)
With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

7.
Introduction to Parlay/OSA APIs
This section contains the general rules that were followed by the design of the Parlay/OSA APIs and advice for how to use them. Note however that exceptions to these “rules” may exist and that examples are not exhaustive.
7.1
Interface Types

In the Parlay/OSA specifications different types of interfaces are distinguished:

· Application side (callback) interfaces. This type of interface needs to be implemented by an application (client) and the name of such an interface is prefixed with “IpApp”.

· Interfaces of an SCF that are used by the Framework. The name of this type of server interface is prefixed with “IpSvc”.

· Application side interfaces and SCF interfaces that are shared. The name of this type of interface is prefixed with “IpClient”

· Interfaces of the Framework that are used by an SCF. The name of this type of server interface is prefixed with “IpFw”.
The name of all other interfaces of the Framework and SCFs that are used by an application, is prefixed with “Ip”.

7.2
Service Factory

For each application that uses an SCF, a separate object is created to handle all communication to the application. This object is referred to as the Service Manager. The pattern used is often referred to as the Factory Pattern. The Service Manager creates any new objects in the SCF. The Service Manager and all the objects created by it are referred to as “service instance”.

Once an application is granted access to an SCF, the Framework requests the SCF to create a new Service Manager. The reference to this Service Manager is provided to the application. From this moment onwards the application can start using the SCF.
7.3
Use of Sessions

A session is a series of interactions between two communication end points that occur during the span of a single connection. An example is all operations to set-up, control, and tear down a (multi-party) call. A session is identified by a Session ID. This ID is unique within the scope of a service instance and can be related to session numbers used in the network.
7.4
Interfaces and Sessions

Some interfaces have a one-to-one relation with a session. For every session there is a separate interface instance. In this case, this instance of an interface represents the session. All methods invoked on such an interface operate on the same session. These interfaces make no use of Session IDs.
Other interfaces can represent multiple sessions. The underlying implementation can then either create an instance per session or it can handle multiple sessions per instance (e.g., to combat extensive resource usage). When a method on such an interface is invoked it requires a Session ID to uniquely identify the session to which it applies.

7.5
Callback Interfaces

Some Parlay/OSA interfaces require an application to register a callback interface. This interface resides on the client (application) side and is used by the server (service) to report events, results, and errors. An application shall register its callback interface as soon as the corresponding server side interface is created.

7.6
Setting Callbacks

Two methods are available in every service interface that can be used for setting the callback interface: setCallback() and setCallbackWithSessionID(). Interfaces that do not use sessions shall (obviously) only implement setCallback(). An invocation of setCallbackWithSessionID() on such interfaces shall result in an exception (P_TASK_REFUSED).

Interfaces that use sessions shall only implement setCallbackWithSessionID(). An invocation of setCallback() on such interfaces shall result in an exception (P_TASK_REFUSED). This regardless of whether an interface instance actually implements multiple sessions or not.

7.7
Synchronous versus Asynchronous Methods

Two types of methods exist in Parlay/OSA interfaces. When a method does not require the SCS to contact other nodes in the network it is implemented as a synchronous method. When the method returns, the result (if applicable) of the operation is provided to the application. When an error occurs, an exception is thrown. Examples of synchronous methods are methods to retrieve data that is available in the SCS and methods that create an object.

In other cases, a method requires the SCS to contact other nodes in the network. There can be a delay between the moment a message is sent into the network and the moment that the result is received or an error is detected. To prevent that the application is blocked or that an application has to “guess” whether there is a problem in the SCS, these types of methods are made asynchronous.

An asynchronous method of an interface can be recognized by the fact that its name ends with “Req” (from request) and that in the corresponding callback interface two methods are included with the same name but ending with “Res” (from result) and “Err” (from error) instead. When no error has occurred, the “Res” method will be invoked when the result is available. In case an error has been detected, the “Err” method is invoked. Problems that can be detected by the SCS itself (for instance illegal parameter values) will result in exceptions being thrown when the “Req” method is called. After a “Req” method has returned, only errors shall be reported.
Because it is possible that multiple requests can be done in parallel (invoking multiple times a “Req” method without having received a result or error) a mechanism is needed to link requests with responses. Therefore, the “Req” method returns an Assignment ID and the “Res” and “Err” methods have this Assignment ID as input parameter. For session based interfaces the Session ID can be used also.
Some “Req” methods can result in multiple “Res” methods being invoked. However, the corresponding “Err” method will never be invoked more than once.

Note that methods on client side interfaces shall never raise an exception unless this is explicitly described in the specification.
Some methods switch on/off reports (for instance triggered location reports). These methods are of a different kind and do not follow the pattern that is described in this section.
A deadlock is a potential danger when using asynchronous methods, especially in single threaded systems. It can occur that client and server are waiting for each other for a task to be completed. It is considered good practice to build in mechanisms to prevent dealock from occuring, for instance by using multiple threads or using time-outs on remote method calls.
7.8
Out Parameters

Methods used in Parlay/OSA interfaces only have input parameters. Any result can only be reported by a return value. If multiple values need to be returned, a datatype is required that consists of a sequence of values. A value of this datatype is then returned by a method. This approach has been chosen because not all middleware solutions are (or may be) capable of dealing with (multiple) output parameters.

7.9
Exception Hierarchy

Exceptions are organized in an exception hierarchy. For the general exceptions and for each service type an abstract exception class is defined. Advantage for an application programmer is that (s)he does not need to catch all the specific exceptions, but may catch only the abstract exceptions.

Note however that the exception hierarchy is only available when the applicable Parlay/OSA realisation supports this. Java does, but CORBA and WSDL/SOAP do not.

7.10
Common Exceptions

Exception TpCommonExceptions can be thrown by any method. It is an aggregate of a number of general problems. To prevent that each method’s signature requires all these exceptions they are all included in a single exception class.

The following rules apply on when what type of general exception shall be thrown:

· P_RESOURCES_UNAVAILABLE is thrown when a physical resource in the network is not available.

· P_INVALID_STATE is thrown when a method is called that is not allowed in the state that the Parlay/OSA state machines are in.

· P_TASK_CANCELLED is thrown in case of a temporary problem.

· P_TASK_NO_CALLBACK_ADDRESS_SET is thrown when no callback address has been set.

· P_METHOD_NOT_SUPPORTED is thrown when the application initiates methods that are either not according to the Service Level Agreement or not supported in the SCS.

· P_TASK_REFUSED is thrown in case of a problem that is not temporary and when none of the other common or dedicated exceptions apply.
Note that methods on application side callback interfaces shall never raise an exception unless explicitly stated in the specification.

7.11
Use of NULL

The Parlay/OSA specifications contain references to the NULL value to indicate the absence of a certain parameter. An example where this is used is for specifying NULL as a callback reference.

A parameter description for parameters of any datatype can indicate that NULL is a possible value. The realisation of NULL can differ per technology. A NULL value for a sequence in CORBA means that all its members shall be NULL while in Java the whole structure could be NULL.

Note that it always shall be stated in the specification when a NULL value can be expected.

7.12
Notification Handling

Several Parlay/OSA SCFs provide a mechanism for creating and receiving notifications. A notification is the reporting of an event occurring in the network or SCS. Examples of notifications are answer, busy, and on hook events.
This section describes the general mechanism of notification handling. Note that it might not apply (exactly) to every API.
There are two types of notifications. One that is created by an application and one that is controlled by the network. The first type normally is used when an ASP is responsible for service provisioning and has to create its own notifications in order to be able to serve subscribers. The second type is used when the network operator does service provisioning. The network operator creates the notifications and an application only needs to handle them.

Note that normally both mechanisms will not be used by one application. However, the Parlay/OSA interfaces do not prohibit this.

Another way to distinguish notifications is by monitor mode. Notifications can be requested in either NOTIFY or INTERRUPT mode. When requested in NOTIFY mode, the notifications is reported to the application but the SCS continues processing. For notifications requested in INTERRUPT mode, processing in the SCS is suspended when the notification is reported to the application. The application has to instruct the SCS explicitly (within a certain maximum time) how to proceed the processing. Note that not all SCFs support notifications in INTERRUPT mode.
When a notification is created and when an application registers for network controlled notifications a callback interface needs to be provided. This callback interface is used for reporting the notifications. There are however a few things that are worth mentioning here:

· Each time a (set of) notifications(s) is created, a callback is specified that is used for reporting the requested notifications. This callback interface may be the same, but may also differ. The assignment ID can be used to link a notification report to the creation of registration.

· Registering a callback for network controlled notifications needs to be done only once. The callback interface that is provided may be the same as the one used for creating a notification (note again that it is however not recommended to used both mechanisms in the same application).

· The callback specified when creating or registering for events overrules the callback set with setCallback() or setCallbackWithSessionID(). This means that this one will NOT be used for reporting notifications . It will however be used for all other methods that require the callback interface.

· Only if NULL is provided as callback interface reference, the callback interface that was set using setCallback() or setCallbackWithSessionID() is used for reporting notifications.

· It is possible to recreate a (set of) notification(s) or re-register for notifications. This is only useful when providing a different callback interface reference. In this case, the last provided interface is used for reporting notifications. The earlier provided callback interface is used as “backup” interface (this can be the one provided with setCallback() or setCallbackWithSessionID() if NULL was provided initially). Notifications are reported on this interface when calls to the most recent provided callback interface fail (object providing the interface is crashed or overloaded). When re-creating or re-registering, the same assignment ID is returned.

�PAGE \# "'Page: '#'�'" �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'" �� Enter the CR number here. This number is allocated by the 3GPP support team.

�PAGE \# "'Page: '#'�'" �� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'Page: '#'�'" �� Enter the version of the specification here. This number is the version of the specification to which the CR will be applied if it is approved. Make sure that the latest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��http://www.3gpp.org/3G_Specs/3G_Specs.htm�

�PAGE \# "'Page: '#'�'" �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'Page: '#'�'" �� Mark one or more of the boxes with an X.

�PAGE \# "'Page: '#'�'" �� Enter a concise description of the subject matter of the CR. It should be no longer than one line.

�PAGE \# "'Page: '#'�'" �� Enter the source of the CR. This is either (a) one or several companies or, (b) if a (sub)working group has already reviewed and agreed the CR, then list the group as the source.

�PAGE \# "'Page: '#'�'" �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, B & C CRs for release 4 and later. A list of work item acronyms can be found in the 3GPP work plan. See � HYPERLINK "http://www.3gpp.org/ftp/information/work_plan/" ��http://www.3gpp.org/ftp/information/work_plan/�

�PAGE \# "'Page: '#'�'" �� Enter the date on which the CR was last revised.

�PAGE \# "'Page: '#'�'" �� Enter a single letter corresponding to the most appropriate category listed below. For more detailed help on interpreting these categories, see the Technical Report � HYPERLINK "http://www.3gpp.org/ftp/Specs/archive/21_series/21.900/" ��21.900� "TSG working methods".

�PAGE \# "'Page: '#'�'" �� Enter a single release code from the list below.

�PAGE \# "'Page: '#'�'" �� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'" �� Enter here the consequences if this CR was to be rejected. It is necessary to complete this section only if the CR is of category "F" (i.e. correction).

�PAGE \# "'Page: '#'�'" �� Enter the number of each clause which contains changes.

�PAGE \# "'Page: '#'�'" �� Enter an X in the box if any other specifications are affected by this change.

�PAGE \# "'Page: '#'�'" �� List here the specifications which are affected or the CRs which are linked.

�PAGE \# "'Page: '#'�'" �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

�PAGE \# "'Page: '#'�'" �� This is an example of pop-up text.

3GPP

