Page 1

joint API group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5)
N5-020700

Meeting #19, Montreal, CANADA, 8 – 12 July 2002

	CR-Form-v5

	CHANGE REQUEST

	

	(

	29.198-03
	CR
	CRNum
	(

rev
	-
	(

Current version:
	5.0.0
	(

	

	For HELP on using this form, see bottom of this page or look at the pop-up text over the (
 symbols.

	

	Proposed change affects:
(

	(U)SIM
	
	ME/UE
	
	Radio Access Network
	
	Core Network
	X

	

	Title:
(

	Add Negotiation of Authentication Mechanism for OSA level Authentication

	
	

	Source:
(

	Chelo Abarca, Alcatel
Ultan Mulligan, ETSI

	
	

	Work item code:
(

	OSA2
	
	Date: (

	12/07/2002

	
	
	
	
	

	Category:
(

	F
	
	Release: (

	REL-5

	
	Use one of the following categories:
F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
2
(GSM Phase 2)
R96
(Release 1996)
R97
(Release 1997)
R98
(Release 1998)
R99
(Release 1999)
REL-4
(Release 4)
REL-5
(Release 5)

	
	

	Reason for change:
(

	TS 29.198-3 relies on the use of a challenge-based mechanism (CHAP as per IETF RFC 1994) for authentication of the client application by the framework, and vice-versa. CHAP is chosen as the authentication scheme when the authentication type in the initiateAuthenticate() method is set to P_OSA_AUTHENTICATION.

CHAP requires the support of the MD5 hashing algorithm, as a minimum, with an allowance for support of other algorithms, but no other algorithm is specifically referred to in RFC 1994.

However, since RFC 1994 has been issued, newer, more secure, hashing algorithms have been made available. A mechanism needs to be added to the API to permit negotiation of the hashing algorithm used, in order to take advantage of these newer algorithms.

This CR results in from a lengthy communication with SA3 and certain SA3 security experts, who were instrumental in developing the proposals contained in this CR.

	
	

	Summary of change:
(

	Add selectAuthenticationMechanism() to IpAPILevelAuthentication interface to permit the client to offer a choice of mechanisms to the Framework.
Add extensible types TpAuthMechanism and TpAuthMechanismList to contain the choice of authentication mechanisms.
Add an exception in case no acceptable mechanism is available to the Framework.

	
	

	Consequences if
(

not approved:
	OSA Authentication will be forced to rely on the old MD5 algorithm, which dates from 1992, when newer, more secure alternatives are available.

	
	

	Clauses affected:
(

	6.1.1, 6.3.1.5, 10.3, 11

	
	

	Other specs
(

	
	 Other core specifications
(

	

	affected:
	
	 Test specifications
	

	
	
	 O&M Specifications
	

	
	

	Other comments:
(

	

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at: http://www.3gpp.org/3G_Specs/CRs.htm. Below is a brief summary:

1)
Fill out the above form. The symbols above marked (
 contain pop-up help information about the field that they are closest to.

2)
Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3)
With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

6.1 Sequence Diagrams

6.1.1 Trust and Security Management Sequence Diagrams

6.1.1.1 Initial Access for trusted parties

The following figure shows a trusted party, typically within the same domain as the Framework, accessing the OSA Framework for the first time. Trusted parties do not need to be authenticated and after contacting the Initial interface the Framework will indicate that no further authentication is needed and that the application can immediately gain access to other framework interfaces and SCFs. This is done by invoking the requestAccess method.

[image: image1.wmf] : IpClientAPILevelAuthentication

Client

 : IpInitial

 :

IpAPILevelAuthentication

 : IpAccess

Framework

1: initiateAuthentication()

3: authenticationSucceeded()

4: requestAccess()

2: selectAuthenticationMechanism()

1:
The Client invokes initiateAuthentication on the Framework's "public" (initial contact) interface to initiate the authentication process. It provides in turn a reference to its own authentication interface. The Framework returns a reference to its authentication interface.

2:
Before authentication can begin, the client shall invoke selectAuthenticationMechanism. Although authentication will not take place this time, failure to invoke this method may prevent the Framework from ever re-authenticating the Client, if it wishes to at a later stage.
3:
Based on the domainID information that was supplied in the Initiate Authentication step, the Framework knows it deals with a trusted party and no further authentication is needed. Therefore the Framework provides the authentication succeeded indication.

4:
The Client invokes requestAccess on the Framework's API Level Authentication interface, providing in turn a reference to its own access interface. The Framework returns a reference to its access interface.

6.1.1.2 Initial Access

The following figure shows a client accessing the OSA Framework for the first time.

Before being authorized to use the OSA SCFs, the client must first of all authenticate itself with the Framework. For this purpose the client needs a reference to the Initial Contact interfaces for the Framework; this may be obtained through a URL, a Naming or Trading Service or an equivalent service, a stringified object reference, etc. At this stage, the client has no guarantee that this is a Framework interface reference, but it to initiate the authentication process with the Framework. The Initial Contact interface supports only the initiateAuthentication method to allow the authentication process to take place.

Once the client has authenticated with the Framework, it can gain access to other framework interfaces and SCFs. This is done by invoking the requestAccess method, by which the client requests a certain type of access SCF.

[image: image3.wmf]Client

 : IpInitial

 : IpAPILevelAuthentication

Framework

 : IpAccess

 :

IpClientAPILevelAuthentication

1: initiateAuthentication()

2: selectEncryptionMethod()

4: authenticate()

8: requestAccess()

6: authenticate()

9: obtainInterface()

5: authenticationSucceeded()

7: authenticationSucceeded()

3: selectAuthenticationMechanism()

1:
Initiate Authentication

The client invokes initiateAuthentication on the Framework's "public" (initial contact) interface to initiate the authentication process. It provides in turn a reference to its own authentication interface. The Framework returns a reference to its authentication interface.

2:
Select Encryption Method

The client invokes selectEncryptionMethod on the Framework's API Level Authentication interface, identifying the encryption methods it supports. The Framework prescribes the method to be used.

3:
Select Authentication Mechanism
The client invokes selectAuthenticationMechanism on the Framework's API Level Authentication interface, identifying the authentication algorithm it supports for use with CHAP authentication. The Framework prescribes the method to be used.
4:
Authenticate

5:
The client provides an indication if authentication succeeded.

6:
The client and Framework authenticate each other. The sequence diagram illustrates one of a series of one or more invocations of the authenticate method on the Framework's API Level Authentication interface. In each invocation, the client supplies a challenge and the Framework returns the correct response. Alternatively or additionally the Framework may issue its own challenges to the client using the authenticate method on the client's API Level Authentication interface.

7:
The Framework provides an indication if authentication succeeded.

8:
Request Access

Upon successful (mutual) authentication, the client invokes requestAccess on the Framework's API Level Authentication interface, providing in turn a reference to its own access interface. The Framework returns a reference to its access interface.

9:
The client invokes obtainInterface on the framework's Access interface to obtain a reference to its service discovery interface.

6.1.1.3 Authentication

This sequence diagram illustrates the two-way mechanism by which the client and the framework mutually authenticate one another using an underlying distribution technology mechanism.

[image: image5.wmf]Client

 : IpInitial

Framework

 : IpAuthentication

 : IpAccess

1: initiateAuthentication()

2: requestAccess()

3: obtainInterface()

Underlying Distribution

Technology Mechanism is used

for application identification and

authentication.

1:
The client calls initiateAuthentication on the OSA Framework Initial interface. This allows the client to specify the type of authentication process. In this case, the client selects to use the underlying distribution technology mechanism for identification and authentication.

2:
The client invokes the requestAccess method on the Framework's Authentication interface. The Framework now uses the underlying distribution technology mechanism for identification and authentication of the client.

3:
If the authentication was successful, the client can now invoke obtainInterface on the framework's Access interface to obtain a reference to its service discovery interface.

6.1.1.4 API Level Authentication

This sequence diagram illustrates the two-way mechanism by which the client and the framework mutually authenticate one another.

The OSA API supports multiple authentication techniques. The procedure used to select an appropriate technique for a given situation is described below. The authentication mechanisms may be supported by cryptographic processes to provide confidentiality, and by digital signatures to ensure integrity. The inclusion of cryptographic processes and digital signatures in the authentication procedure depends on the type of authentication technique selected. In some cases strong authentication may need to be enforced by the Framework to prevent misuse of resources. In addition it may be necessary to define the minimum encryption key length that can be used to ensure a high degree of confidentiality.

The client must authenticate with the Framework before it is able to use any of the other interfaces supported by the Framework. Invocations on other interfaces will fail until authentication has been successfully completed.

1)
The client calls initiateAuthentication on the OSA Framework Initial interface. This allows the client to specify the type of authentication process. This authentication process may be specific to the provider, or the implementation technology used. The initiateAuthentication method can be used to specify the specific process, (e.g. CORBA security). OSA defines a generic authentication interface (API Level Authentication), which can be used to perform the authentication process. The initiateAuthentication method allows the client to pass a reference to its own authentication interface to the Framework, and receive a reference to the authentication interface preferred by the client, in return. In this case the API Level Authentication interface.

2)
The client invokes the selectEncryptionMethod on the Framework's API Level Authentication interface. This includes the encryption capabilities of the client. The framework then chooses an encryption method based on the encryption capabilities of the client and the Framework. If the client is capable of handling more than one encryption method, then the Framework chooses one option, defined in the prescribedMethod parameter. In some instances, the encryption capability of the client may not fulfil the demands of the Framework, in which case, the authentication will fail.

3)
The client invokes the selectAuthenticationMechanism on the Framework's API Level Authentication interface. This includes the authentication algorithms supported by the client. The framework then chooses a mechanism based on the capabilities of the client and the Framework. If the client is capable of handling more than one mechanism, then the Framework chooses one option, defined in the prescribedMethod parameter. In some instances, the authentication mechanism of the client may not fulfil the demands of the Framework, in which case, the authentication will fail.

4)
The application and Framework interact to authenticate each other. For an authentication method of P_OSA_AUTHENTICATION, this procedure consists of a number of challenge/ response exchanges. This authentication protocol is performed using the authenticate method on the API Level Authentication interface. P_OSA_AUTHENTICATION is based on CHAP, which is primarily a one-way protocol. Mutual authentication is achieved by the framework invoking the authenticate method on the client's APILevelAuthentication interface.

Note that at any point during the access session, either side can request re-authentication. Re-authentication does not have to be mutual.

[image: image6.wmf] : IpClientAPILevelAuthentication

Client

 : IpInitial

Framework

 : IpAPILevelAuthentication

1: initiateAuthentication()

2: selectEncryptionMethod()

4: authenticate()

5: authenticate()

6: authenticate()

7: authenticate()

IpClientAPILevelAuthentication

reference is passed to framework

and IpAPILevelAuthentication

reference is returned.

This is an example of the

sequence of

authentication

operations. Different

authentication protocols

may have different

requirements on the

order of operations.

IpClientAccess reference is

passed to Framework, and

IpAccess reference is

returned.

8: requestAccess()

3: selectAuthenticationMechanism()

6.3.1.5 Interface Class IpAPILevelAuthentication

Inherits from: IpAuthentication.
The API Level Authentication Framework interface is used by client to perform its part of the mutual authentication process with the Framework necessary to be allowed to use any of the other interfaces supported by the Framework.

	<<Interface>>

IpAPILevelAuthentication

	

	selectEncryptionMethod (encryptionCaps : in TpEncryptionCapabilityList) : TpEncryptionCapability

authenticate (challenge : in TpOctetSet) : TpOctetSet

abortAuthentication () : void

authenticationSucceeded () : void
<<new>> selectAuthenticationMechanism (authMechanismList : in TpAuthMechanismList) : TpAuthMechanism

Method

selectEncryptionMethod()

The client uses this method to initiate the authentication process. The framework returns its preferred mechanism. This should be within capability of the client. If a mechanism that is acceptable to the framework within the capability of the client cannot be found, the framework throws the P_NO_ACCEPTABLE_ENCRYPTION_CAPABILITY exception. Once the framework has returned its preferred mechanism, it will wait for a predefined unit of time before invoking the client's authenticate() method (the wait is to ensure that the client can initialise any resources necessary to use the prescribed encryption method).

Returns <prescribedMethod> : This is returned by the framework to indicate the mechanism preferred by the framework for the encryption process. If the value of the prescribedMethod returned by the framework is not understood by the client, it is considered a catastrophic error and the client must abort.

Parameters

encryptionCaps : in TpEncryptionCapabilityList
This is the means by which the encryption mechanisms supported by the client are conveyed to the framework.
Returns

TpEncryptionCapability
Raises

TpCommonExceptions, P_ACCESS_DENIED, P_NO_ACCEPTABLE_ENCRYPTION_CAPABILITY
Method

authenticate()

This method is used by the client to authenticate the framework. The challenge will be encrypted using the mechanism prescribed by selectEncryptionMethod. The framework must respond with the correct responses to the challenges presented by the client. The domainID received in the initiateAuthentication() can be used by the framework to reference the correct public key for the client (the key management system is currently outside of the scope of the OSA APIs). The number of exchanges is dependent on the policies of each side. The whole authentication process is deemed successful when the authenticationSucceeded method is invoked. The invocation of this method may be interleaved with authenticate() calls by the framework on the client's APILevelAuthentication interface.

Returns <response> : This is the response of the framework to the challenge of the client in the current sequence. The response will be based on the challenge data, decrypted with the mechanism prescribed by selectEncryptionMethod().

Parameters

challenge : in TpOctetSet
The challenge presented by the client to be responded to by the framework. The challenge mechanism used will be in accordance with the IETF PPP Authentication Protocols - Challenge Handshake Authentication Protocol [RFC 1994, August1996]. The challenge will be encrypted with the mechanism prescribed by selectEncryptionMethod().
Returns

TpOctetSet
Raises

TpCommonExceptions, P_ACCESS_DENIED
Method

abortAuthentication()

The client uses this method to abort the authentication process. This method is invoked if the client no longer wishes to continue the authentication process, (unless the client responded incorrectly to a challenge in which case no further communication with the client should occur.) If this method has been invoked, calls to the requestAccess operation on IpAPILevelAuthentication will return an error code (P_ACCESS_DENIED), until the client has been properly authenticated.

Parameters

No Parameters were identified for this method

Raises

TpCommonExceptions,P_ACCESS_DENIED
Method

authenticationSucceeded()

The client uses this method to inform the framework of the success of the authentication attempt.

Parameters

No Parameters were identified for this method

Raises

TpCommonExceptions, P_ACCESS_DENIED
Method

selectAuthenticationMechanism()
The client uses this method to inform the Framework of the different authentication mechanisms it supports as part of API level Authentication. The Framework will select one of the suggested authentication mechanisms and that mechanism shall be used for authentication by both Framework and Client. This method shall be invoked by the client when it receives the interface reference to IpAPILevelAuthentication from the Framework, since until this method is invoked, authentication challenges by the Framework or the client might not be possible. The authentication mechanism chosen as a result of the response to this method remains valid for an instance of IpAPILevelAuthentication and until this method is re-invoked by the client. If a mechanism that is acceptable to the framework within the capability of the client cannot be found, the framework throws the P_NO_ACCEPTABLE_AUTHENTICATION_MECHANISM exception.
Returns: selectedMechanism. This is the authentication mechanism chosen by the Framework. The chosen mechanism shall be taken from the list of mechanisms proposed by the Client.
Parameters

authMechanismList : in TpAuthMechanismList
The list of authentication mechanisms supported by the client.

Returns
TpAuthMechanism
Raises

TpCommonExceptions, P_ACCESS_DENIED, P_NO_ACCEPTABLE_AUTHENTICATION_MECHANISM
10.3 Trust and Security Management Data Definitions

10.3.1 TpAccessType

This data type is identical to a TpString. This identifies the type of access interface requested by the client application. If they request P_OSA_ACCESS, then a reference to the IpAccess interface is returned. (Network operators can define their own access interfaces to satisfy client requirements for different types of access. These can be selected using the TpAccessType, but should be preceded by the string "SP_". The following value is defined:

	String Value
	Description

	P_OSA_ACCESS
	Access using the OSA Access Interfaces: IpAccess and IpClientAccess

10.3.2 TpAuthType

This data type is identical to a TpString. It identifies the type of authentication mechanism requested by the client. It provides Network operators and clients with the opportunity to use an alternative to the OSA API Level Authentication interface. This can for example be an implementation specific authentication mechanism, e.g. CORBA Security, or a proprietary Authentication interface supported by the Network Operator. OSA API Level Authentication is the default authentication method. Other Network operator specific capabilities may also be used, but should be preceded by the string “SP_”. The following values are defined:

	String Value
	Description

	P_OSA_AUTHENTICATION
	Authenticate using the OSA API Level Authentication Interfaces: IpAPILevelAuthentication and IpClientAPILevelAuthentication

	P_AUTHENTICATION
	Authenticate using the implementation specific authentication mechanism, e.g. CORBA Security.

10.3.3 TpEncryptionCapability

This data type is identical to a TpString, and is defined as a string of characters that identify the encryption capabilities that could be supported by the framework. Other Network operator specific capabilities may also be used, but should be preceded by the string "SP_". Capabilities may be concatenated, using commas (,) as the separation character. The following values are defined.

	String Value
	Description

	NULL
	An empty (NULL) string indicates no client capabilities.

	P_DES_56
	A simple transfer of secret information that is shared between the client application and the Framework with protection against interception on the link provided by the DES algorithm with a 56-bit shared secret key.

	P_DES_128
	A simple transfer of secret information that is shared between the client entity and the Framework with protection against interception on the link provided by the DES algorithm with a 128-bit shared secret key.

	P_RSA_512
	A public-key cryptography system providing authentication without prior exchange of secrets using 512-bit keys.

	P_RSA_1024
	A public-key cryptography system providing authentication without prior exchange of secrets using 1 024-bit keys.

10.3.4 TpEncryptionCapabilityList

This data type is identical to a TpString. It is a string of multiple TpEncryptionCapability concatenated using a comma (,)as the separation character.

10.3.5 TpEndAccessProperties

This data type is of type TpPropertyList. It identifies the actions that the Framework should perform when an application or service capability feature entity ends its access session (e.g. existing service capability or application sessions may be stopped, or left running).

10.3.6 TpAuthDomain

This is Sequence of Data Elements containing all the data necessary to identify a domain: the domain identifier, and a reference to the authentication interface of the domain

	Sequence Element

Name
	Sequence Element

Type
	Description

	DomainID
	TpDomainID
	Identifies the domain for authentication. This identifier is assigned to the domain during the initial contractual agreements, and is valid during the lifetime of the contract.

	AuthInterface
	IpInterfaceRef
	Identifies the authentication interface of the specific entity. This data element has the same lifetime as the domain authentication process, i.e. in principle a new interface reference can be provided each time a domain intends to access another.

10.3.7 TpInterfaceName

This data type is identical to a TpString, and is defined as a string of characters that identify the names of the Framework SCFs that are to be supported by the OSA API. Other Network operator specific SCFs may also be used, but should be preceded by the string "SP_". The following values are defined.

	Character String Value
	Description

	P_DISCOVERY
	The name for the Discovery interface.

	P_EVENT_NOTIFICATION
	The name for the Event Notification interface.

	P_OAM
	The name for the OA&M interface.

	P_LOAD_MANAGER
	The name for the Load Manager interface.

	P_FAULT_MANAGER
	The name for the Fault Manager interface.

	P_HEARTBEAT_MANAGEMENT
	The name for the Heartbeat Management interface.

	P_SERVICE_AGREEMENT_MANAGEMENT
	The name of the Service Agreement Management interface.

	P_REGISTRATION
	The name for the Service Registration interface.

	P_ENT_OP_ACCOUNT_MANAGEMENT
	The name for the Service Subscription: Enterprise Operator Account Management interface.

	P_ENT_OP_ACCOUNT_INFO_QUERY
	The name for the Service Subscription: Enterprise Operator Account Information Query interface.

	P_SVC_CONTRACT_MANAGEMENT
	The name for the Service Subscription: Service Contract Management interface.

	P_SVC_CONTRACT_INFO_QUERY
	The name for the Service Subscription: Service Contract Information Query interface.

	P_CLIENT_APP_MANAGEMENT
	The name for the Service Subscription: Client Application Management interface.

	P_CLIENT_APP_INFO_QUERY
	The name for the Service Subscription: Client Application Information Query interface.

	P_SVC_PROFILE_MANAGEMENT
	The name for the Service Subscription: Service Profile Management interface.

	P_SVC_PROFILE_INFO_QUERY
	The name for the Service Subscription: Service Profile Information Query interface.

10.3.8 TpInterfaceNameList

This data type defines a Numbered Set of Data Elements of type TpInterfaceName.

10.3.9 TpServiceToken

This data type is identical to a TpString, and identifies a selected SCF. This is a free format text token returned by the Framework, which can be signed as part of a service agreement. This will contain Network operator specific information relating to the service level agreement. The serviceToken has a limited lifetime, which is the same as the lifetime of the service agreement in normal conditions. If something goes wrong the serviceToken expires, and any method accepting the serviceToken will return an error code (P_INVALID_SERVICE_TOKEN). Service Tokens will automatically expire if the client or Framework invokes the endAccess method on the other's corresponding access interface.

10.3.10 TpSignatureAndServiceMgr

This is a Sequence of Data Elements containing the digital signature of the Framework for the service agreement, and a reference to the SCF manager interface of the SCF.

	Sequence Element

Name
	Sequence Element

Type

	DigitalSignature
	TpOctetSet

	ServiceMgrInterface
	IpServiceRef

The digitalSignature is the signed version of a hash of the service token and agreement text given by the client application.

The ServiceMgrInterface is a reference to the SCF manager interface for the selected SCF.

10.3.11 TpSigningAlgorithm

This data type is identical to a TpString, and is defined as a string of characters that identify the signing algorithm that shall be used. Other Network operator specific capabilities may also be used, but should be preceded by the string "SP_". The following values are defined.

	String Value
	Description

	NULL
	An empty (NULL) string indicates no signing algorithm is required

	P_MD5_RSA_512
	MD5 takes an input message of arbitrary length and produces as output a 128-bit message digest of the input. This is then encrypted with the private key under the RSA public-key cryptography system using a 512-bit key.

	P_MD5_RSA_1024
	MD5 takes an input message of arbitrary length and produces as output a 128-bit message digest of the input. This is then encrypted with the private key under the RSA public- key cryptography system using a 1 024-bit key

10.3.12 TpAuthMechanism
This data type is identical to a TpString. It identifies an authentication mechanism to be used for API Level Authentication. The following values are defined:

	String Value
	Description

	P_OSA_MD5
	Authentication is based on the use of MD5 (RFC 1321) hashing algorithm to generate a response based on a shared secret and a challenge received via authenticate() method. The capability to use this algorithm is required to be supported when using CHAP (RFC 1994) but its use is not recommended.

	P_OSA_HMAC_SHA1_96
	Authentication is based on the use of HMAC-SHA1 (RFC 2404) hashing algorithm to generate a response based on a shared secret and a challenge received via authenticate() method.

	P_OSA_HMAC_MD5_96
	Authentication is based on the use of HMAC-MD5 (RFC 2403) hashing algorithm to generate a response based on a shared secret and a challenge received via authenticate() method.

10.3.13 TpAuthMechanismList

This data type is identical to a TpString. It is a string of multiple TpAuthMechanism concatenated using a comma (,)as the separation character.

11 Exception Classes

The following are the list of exception classes which are used in this interface of the API.

	Name
	Description

	P_ACCESS_DENIED
	The client is not currently authenticated with the framework

	P_APPLICATION_NOT_ACTIVATED
	An application is unauthorised to access information and request services with regards to users that have deactivated that particular application.

	P_DUPLICATE_PROPERTY_NAME
	A duplicate property name has been received

	P_ILLEGAL_SERVICE_ID
	Illegal Service ID

	P_ILLEGAL_SERVICE_TYPE
	Illegal Service Type

	P_INVALID_ACCESS_TYPE
	The framework does not support the type of access interface requested by the client.

	P_INVALID_ACTIVITY_TEST_ID
	ID does not correspond to a valid activity test request

	P_INVALID_AGREEMENT_TEXT
	Invalid agreement text

	P_INVALID_ENCRYPTION_CAPABILITY
	Invalid encryption capability

	P_INVALID_AUTH_TYPE
	Invalid type of authentication mechanism

	P_INVALID_CLIENT_APP_ID
	Invalid Client Application ID

	P_INVALID_DOMAIN_ID
	Invalid client ID

	P_INVALID_ENT_OP_ID
	Invalid Enterprise Operator ID

	P_INVALID_PROPERTY
	The framework does not recognise the property supplied by the client

	P_INVALID_SAG_ID
	Invalid Subscription Assignment Group ID

	P_INVALID_SERVICE_CONTRACT_ID
	Invalid Service Contract ID

	P_INVALID_SERVICE_ID
	Invalid service ID

	P_INVALID_SERVICE_PROFILE_ID
	Invalid service profile ID

	P_INVALID_SERVICE_TOKEN
	The service token has not been issued, or it has expired.

	P_INVALID_SERVICE_TYPE
	Invalid Service Type

	P_INVALID_SIGNATURE
	Invalid digital signature

	P_INVALID_SIGNING_ALGORITHM
	Invalid signing algorithm

	P_MISSING_MANDATORY_PROPERTY
	Mandatory Property Missing

	P_NO_ACCEPTABLE_ENCRYPTION_CAPABILITY
	No encryption mechanism, which is acceptable to the framework, is supported by the client

	P_NO_ACCEPTABLE_AUTHENTICATION_MECHANISM
	No authentication mechanism, which is acceptable to the framework, is supported by the client

	P_PROPERTY_TYPE_MISMATCH
	Property Type Mismatch

	P_SERVICE_ACCESS_DENIED
	The client application is not allowed to access this service.

	P_SERVICE_NOT_ENABLED
	The service ID does not correspond to a service that has been enabled

	P_SERVICE_TYPE_UNAVAILABLE
	The service type is not available according to the Framework.

	P_UNKNOWN_SERVICE_ID
	Unknown Service ID

	P_UNKNOWN_SERVICE_TYPE
	Unknown Service Type

Each exception class contains the following structure:

	Structure Element Name
	Structure Element Type
	Structure Element Description

	ExtraInformation
	TpString
	Carries extra information to help identify the source of the exception, e.g. a parameter name

�PAGE \# "'Page: '#'�'" �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'" �� Enter the CR number here. This number is allocated by the 3GPP support team.

�PAGE \# "'Page: '#'�'" �� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'Page: '#'�'" �� Enter the version of the specification here. This number is the version of the specification to which the CR will be applied if it is approved. Make sure that the latest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��http://www.3gpp.org/3G_Specs/3G_Specs.htm�

�PAGE \# "'Page: '#'�'" �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'Page: '#'�'" �� Mark one or more of the boxes with an X.

�PAGE \# "'Page: '#'�'" �� Enter a concise description of the subject matter of the CR. It should be no longer than one line.

�PAGE \# "'Page: '#'�'" �� Enter the source of the CR. This is either (a) one or several companies or, (b) if a (sub)working group has already reviewed and agreed the CR, then list the group as the source.

�PAGE \# "'Page: '#'�'" �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, B & C CRs for release 4 and later. A list of work item acronyms can be found in the 3GPP work plan. See � HYPERLINK "http://www.3gpp.org/ftp/information/work_plan/" ��http://www.3gpp.org/ftp/information/work_plan/�

�PAGE \# "'Page: '#'�'" �� Enter the date on which the CR was last revised.

�PAGE \# "'Page: '#'�'" �� Enter a single letter corresponding to the most appropriate category listed below. For more detailed help on interpreting these categories, see the Technical Report � HYPERLINK "http://www.3gpp.org/ftp/Specs/archive/21_series/21.900/" ��21.900� "TSG working methods".

�PAGE \# "'Page: '#'�'" �� Enter a single release code from the list below.

�PAGE \# "'Page: '#'�'" �� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'" �� Enter here the consequences if this CR was to be rejected. It is necessary to complete this section only if the CR is of category "F" (i.e. correction).

�PAGE \# "'Page: '#'�'" �� Enter the number of each clause which contains changes.

�PAGE \# "'Page: '#'�'" �� Enter an X in the box if any other specifications are affected by this change.

�PAGE \# "'Page: '#'�'" �� List here the specifications which are affected or the CRs which are linked.

�PAGE \# "'Page: '#'�'" �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

�PAGE \# "'Page: '#'�'" �� This is an example of pop-up text.

CR page 1

