[image: image8.wmf]

Draft ETSI ES 202 915-4-4 V0.0.1 (2002-06)
ETSI Standard

Open Service Access (OSA);

Application Programming Interface (API);

Part 4: Call Control;

Sub-part 4: Multi-Media Call Control SCF

[image: image1.png]
<
Reference

DES/SPAN-120091-4-4

Keywords

API, OSA, IDL, UML

ETSI

650 Route des Lucioles

F-06921 Sophia Antipolis Cedex - FRANCE
Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la

Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org
The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://portal.etsi.org/tb/status/status.asp
If you find errors in the present document, send your comment to:
editor@etsi.fr
Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2002.

© The Parlay Group 2002.

All rights reserved.
Contents

5Intellectual Property Rights

Foreword
5
1
Scope
7
2
References
7
3
Definitions and abbreviations
7
3.1
Definitions
7
3.2
Abbreviations
7
4
MultiMedia Call Control Service Sequence Diagrams
8
4.1
Barring for media combined with call routing, alternative 1
8
4.2
Barring for media combined with call routing, alternative 2
9
4.3
Barring for media, simple
10
4.4
Call Volume charging supervision
11
5
Class Diagrams
13
6
MultiMedia Call Control Service Interface Classes
15
6.1
Interface Class IpMultiMediaCallControlManager
16
6.1.1
Method createMediaNotification()
16
6.1.2
Method destroyMediaNotification()
17
6.1.3
Method changeMediaNotification()
17
6.1.4
Method getMediaNotification()
18
6.2
Interface Class IpAppMultiMediaCallControlManager
18
6.2.1
Method reportMediaNotification()
18
6.3
Interface Class IpMultiMediaCall
19
6.3.1
Method superviseVolumeReq()
20
6.4
Interface Class IpAppMultiMediaCall
20
6.4.1
Method superviseVolumeRes()
21
6.4.2
Method superviseVolumeErr()
21
6.5
Interface Class IpMultiMediaCallLeg
21
6.5.1
Method mediaStreamAllow()
22
6.5.2
Method mediaStreamMonitorReq()
22
6.5.3
Method getMediaStreams()
23
6.6
Interface Class IpAppMultiMediaCallLeg
23
6.6.1
Method mediaStreamMonitorRes()
23
6.7
Interface Class IpMultiMediaStream
24
6.7.1
Method subtract()
24
7
MultiMedia Call Control Service State Transition Diagrams
24
8
Multi-Media Call Control Data Definitions
25
8.1
Event Notification Data Definitions
25
8.1.1
TpMediaStreamRequestSet
25
8.1.2
TpMediaStreamRequest
25
8.1.3
TpMediaStreamDirection
25
8.1.4
TpMediaStreamDataTypeRequest
26
8.1.5
TpAudioCapabilitiesType
26
8.1.6
TpVideoCapabilitiesType
26
8.1.7
TpDataCapabilities
27
8.1.8
TpMediaStreamEventType
27
8.1.9
TpMediaStreamSet
27
8.1.10
TpMediaStream
27
8.1.11
TpMediaStreamDataType
27
8.2
Multi-Media Call Control Data Definitions
27
8.2.1
IpMultiMediaCall
27
8.2.2
IpMultiMediaCallRef
27
8.2.3
IpAppMultiMediaCall
27
8.2.4
IpAppMultiMediaCallRef
27
8.2.5
IpMultiMediaCallLeg
28
8.2.6
IpMultiMediaCallLegRef
28
8.2.7
IpAppMultiMediaCallLeg
28
8.2.8
IpAppMultiMediaCallLegRef
28
8.2.9
TpAppMultiMediaCallLegRefSet
28
8.2.10
TpMultiMediaCallIdentifier
28
8.2.11
TpMultiMediaCallIdentifierSet
28
8.2.12
TpMultiMediaCallLegIdentifier
28
8.2.13
IpAppMultiMediaCallControlManager
28
8.2.14
IpAppMultiMediaCallControlManagerRef
28
8.2.15
TpAppMultiMediaCallBack
29
8.2.16
TpAppMultiMediaCallBackRefType
29
8.2.17
TpAppMultiMediaCallLegCallBack
29
8.2.18
TpCallSuperviseVolume
29
8.2.19
TpNotificationMediaRequest
30
8.2.20
TpMediaNotificationRequested
30
8.2.21
TpMediaNotificationsRequestedSet
30
Annex A (normative): OMG IDL Description of Multi-Media Call Control SCF
31
Annex B (informative): W3C WSDL Description of Multi-Media Call Control SCF
32
Annex C (informative): Java API Description of the Call Control SCFs
33
Annex D (informative): CN5 Documents Implemented in this draft
34
Annex E (informative): Contents of 3GPP OSA Rel-5 Call Control
37
Annex F (informative): Record of changes
38
F.1
Interfaces
38
F.1.1
New
38
F.1.2
Deprecated
38
F.1.3
Removed
38
F.2
Methods
38
F.2.1
New
38
F.2.2
Deprecated
38
F.2.3
Modified
39
F.2.4
Removed
39
F.3
Data Definitions
39
F.3.1
New
39
F.3.2
Modified
39
F.3.3
Removed
39
F.4
Service Properties
39
F.4.1
New
39
F.4.2
Deprecated
39
F.4.3
Modified
40
F.4.4
Removed
40
F.5
Exceptions
40
F.5.1
New
40
F.5.2
Modified
40
F.5.3
Removed
40
F.6
Others
40
History
41

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (http://webapp.etsi.org/IPR/home.asp).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

Foreword

This ETSI Standard (ES) has been produced by ETSI Technical Committee Services and Protocols for Advanced Networks (SPAN), and is now submitted for the ETSI standards Membership Approval Procedure.

The present document is part 4, sub-part 4 of a multi-part deliverable covering Open Service Access (OSA); Application Programming Interface (API), as identified below. The API specification (ES 202 915) is structured in the following parts:

Part 1:
"Overview";

Part 2:
"Common Data Definitions";

Part 3:
"Framework";

Part 4:
"Call Control";

Sub-part 1: Call Control Common Definitions;

Sub-part 2: Generic Call Control SCF;

Sub-part 3: Multi-Party Call Control SCF;

Sub-part 4: Multi-Media Call Control SCF;

Sub-part 5: Conference Call Control SCF

Part 5:
"User Interaction SCF";

Part 6:
"Mobility SCF";

Part 7:
"Terminal Capabilities SCF";

Part 8:
"Data Session Control SCF";

Part 9:
"Generic Messaging SCF";

Part 10:
"Connectivity Manager SCF";

Part 11:
"Account Management SCF";

Part 12:
"Charging SCF".

Part 13:
"Policy Management SCF";

Part 14:
"Presence and Availability Management SCF".

The present document has been defined jointly between ETSI, The Parlay Group [24] and the 3GPP, in co-operation with a number of JAIN™ Community [25] member companies.

The present document forms part of the Parlay 4 set of specifications.

1
Scope

The present document is part 4, sub-part 4 of the Stage 3 specification for an Application Programming Interface (API) for Open Service Access (OSA).

The OSA specifications define an architecture that enables application developers to make use of network functionality through an open standardised interface, i.e. the OSA APIs.

The present document specifies the Multi-Media Call Control Service Capability Feature (SCF) aspects of the interface. All aspects of the Multi-Media Call Control SCF are defined here, these being:

· Sequence Diagrams

· Class Diagrams

· Interface specification plus detailed method descriptions

· State Transition diagrams

· Data Definitions

· IDL Description of the interfaces

· WSDL Description of the interfaces

· Reference to the Java API description of the interfaces

The process by which this task is accomplished is through the use of object modelling techniques described by the Unified Modelling Language (UML).

2
References

The references listed in clause 2 of ES 202 915-1 contain provisions which, through reference in this text, constitute provisions of the present document.

ETSI ES 202 915-1: "Open Service Access; Application Programming Interface; Part 1: Overview".

ETSI ES 202 915-4-1: "Open Service Access; Application Programming Interface; Part 4: Call Control; Sub-part 1: Call Control Common Definitions

3
Definitions and abbreviations

3.1
Definitions

For the purposes of the present document, the terms and definitions given in ES 202 915-1 apply.

3.2
Abbreviations

For the purposes of the present document, the abbreviations given in ES 202 915-1 apply.

4 MultiMedia Call Control Service Sequence Diagrams

4.1 Barring for media combined with call routing, alternative 1

This sequence illustrates how one application can influence both the call routing and the media stream establishment of one call.

In this sequence there is one application handling both the media barring and the routing of the call.

[image: image2.wmf] : (Logical

View::IpAppLogic)

 :

IpAppMultiMediaCallControlManager

 :

IpMultiMediaCallControlManager

 :

IpMultiMediaCall

 :

IpMultiMediaCallLeg

 :

IpAppMultiMediaCallLeg

1: new()

2: createNotification()

3: reportNotification()

4: "forward event"

10: createAndRouteCallLegReq()

6: mediaStreamMonitorReq()

9: mediaStreamAllow()

7: mediaStreamMonitorRes()

5: new()

8: "forward event"

11: mediaStreamMonitorRes()

12: "forward event"

13: mediaStreamAllow()

1:
The application creates a AppMultiMediaCallControlManager interface in order to handle callback methods.

2:
The application expresses interest in all calls from subscriber A. Since createNotification is used and not createMediaNotification all calls are reported regardless of the media used.

3:
A makes a call with the SIP INVITE with SDP media stream indicating video. The application is notified.

4:
The event is forwarded to the application.

5:
The application creates a new AppMultiMediaCallLeg interface to receive callbacks.

6:
The application sets a monitor on video media streams to be established (added) for the indicated leg.

7:
Since the video media stream was included in the SIP invite, the media streams monitored will be returned in the monitor result.

8:
The event is forwarded to the application.

9:
The application denies the video media stream, i.e., it is not included in the allowed media streams. This corresponds to removing the media stream from the setup.

10:
The application requests to reroute the call to a different destination (or the same one...)

11:
Later in the call the A party tries to establish a lower bandwidth video media stream. This is again reported with MediaStreamMonitorRes.

12:
The event is forwarded.

13:
This time the application allows the establishment of the media stream by including the media stream in the allowed list.

4.2 Barring for media combined with call routing, alternative 2

This sequence illustrates how one application can influence both the call routing and the media establishment of one call.

Media establishment and call establishment are regarded separately by the application.

From the gateway point of view it can actually be regarded as two separately triggered applications, one for media control and one for routing. This is also the way that it is shown here, for clarity.

However, an implementation of the application could combine the media logic and call logic in one object.

[image: image3.wmf]callLogic : (Logical

View::IpAppLogic)

callAppLogic :

IpAppMultiMediaCallControlManager

 :

IpMultiMediaCallControlManager

 :

IpMultiMediaCall

PartyA :

IpMultiMediaCallLeg

PartyB :

IpAppCallLeg

PartyB :

IpAppCallLeg

PartyA :

IpMultiMedi...

 : IpAppMultiMediaCall

mediaAppLogic :

IpAppMultiMediaCallControlManager

mediaLogic :

(Logic...

1: new()

2: createNotification()

5: reportNotification()

6: "forward event"

12: createAndRouteCallLegReq()

7: new()

9: reportMediaNotification()

19: reportMediaNotification()

3: new()

4: createMediaNotification()

10: "forward event"

14: mediaStreamAllow()

15: deassignCall()

20: "forward event"

21: mediaStreamAllow()

22: deassignCall()

8: new()

11: new()

13: new()

16: eventReportRes()

17: "forward event"

18: deassignCall()

1:
The application creates a new AppMultiMediaCallControlManager interface.

2:
The application expresses interest in all calls from subscriber A for rerouting purposes.

3:
The application creates a new AppMultiMediaCallControlManager interface. This is to be used for the media control only.

4:
Separately the application expresses interest is some media streams for calls from and to A. The request indicates interrupt mode.

5:
Subscriber A makes a call with the SIP INVITE with SDP media stream indicating video. Since the media establishment is combined with the SIP INVITE message, both applications are triggered (not necessarily in the order shown).

Here the call application is notified about the call setup.

6:
The event is forwarded to the call control application.

7:
The call control application creates a new AppMultiMediaCall interface.

8:
The call control application creates a new AppMultiMediaCallLeg interface.

9:
The media application is notified about the call setup. All media streams from the setup will be indicated.

10:
The event is forwarded to the media application.

11:
The call control application creates a new AppMultiMediaCallLeg interface.

12:
The call application decides to reroute the call to another address. Included in the request are monitors on answer and call end.

However, since the media was also triggered in mode interrupt the call will not proceed until the media streams are confirmed or rejected.

14:
The application allows the audio media stream, but refuses the high bandwidth video, by excluding it from the allowed list. Since both call processing and media handling is now acknowledged, the call routing can continue (with a changed SDP parameter reflecting the manipulated media).

15:
The Media application is no longer interested in the call.

16:
When the B subscriber answers the call application is notified.

17:
The event is forwarded to the call application.

19:
When later in the call A tries to establish a lower bandwidth video stream the media application is triggered.

20:
The triggering is forwarded to the media application.

21:
The application now allows the establishment of the media stream by including the media stream in the mediaStreamAllow list.

22:
The media application is no longer interested in the call.

4.3 Barring for media, simple

This sequence illustrates how an application can block the establishment of video streams for a certain user.

[image: image4.wmf] : (Logical

View::IpAppLogic)

 :

IpAppMultiMediaCallControlManager

 :

IpMultiMediaCallControlMan...

 :

IpMultiMediaCall

 :

IpMultiMediaCallLeg

1: new()

2: createMediaNotification()

3: reportMediaNotification()

4: "forward event"

6: deassignCall()

5: mediaStreamAllow()

1:
The application starts a new AppMultiMediaCallControlManager interface for reception of callbacks.

2:
The application expresses interest in all calls from or to subscriber A that use video. The just created App interface is given as the callback interface.

3:
Subscriber A makes a call with the SIP INVITE with SDP media stream indicating video.

4:
The message is forwarded to the application.

5:
The application indicates that the setup of the media stream is not allowed by not including the media stream in the allowed list. This has the effect of suppressing the video capabilities in the setup.

6:
The application is no longer interested in the call.

New attempts to open video streams will again be indicated with a createMediaNotification.

4.4 Call Volume charging supervision

This sequence illustrates how an application may supervise a call based on the number of bytes that are exchanged.

[image: image5.wmf] :

IpMultiMediaCallControlMan...

 :

IpAppMultiMediaCall

 : (Logical

View::IpAppLogic)

 :

IpMultiMediaCall

 : IpUICall

IpUIManager :

IpUIManager

 :

IpAppMultiMediaCallControlManager

 : IpAppUICall

4: createCall()

3: new()

5: routeReq()

8: routeReq()

9: routeRes()

10: "forward event"

6: routeRes()

7: "forward event"

12: superviseVolumeRes()

13: "forward event"

15: sendInfoAndCollectReq()

16: sendInfoAndCollectRes()

17: "forward event"

19: superviseVolumeReq()

20: release()

11: superviseVolumeReq()

18: release()

14: createUICall()

1: new()

2: setCallback()

1:
The application creates a new interface to receive callbacks on the call control manager.

2:
The created interface is set as the callback interface for the call control manager.

3:
The application creates a new interface to receive callback on the call.

4:
The application requests the creation of a call.

5:
The application initiates the call by routing to the origination. This will implicitly create a call leg. The application requests a notification when the party answers.

6:
When the A party answers the application is notified.

7:
The message is forwarded to the logic.

8:
The application also routes the call to the destination. This implicitly creates a call leg. The application requests to be notified on answer of the B-party.

9:
When the B-party answers the application is notified.

10:
The message is forwarded to the logic.

11:
The application requests to supervise the call. In the request the application specifies a limit on the amount of bytes that may be transferred. The application specifies that if the limit is reached the application should be notified.

12:
When the limit is reached a notification is send to the application.

13:
The message is forwarded to the logic.

15:
The application plays an announcement to the user, asking whether the user wants to end the call or continue the call.

16:
When the user answers whether the call should continue.

17:
The message is forwarded to the logic.

18:
The UIcall is released, since no further announcements are needed.

19:
In case the user answers that the call should continue, the supervision is reset with a new maximum number of allowed bytes. (note that this might have charging consequences, not shown)

20:
If the user answered that the call should not continue, the call is released.

5 Class Diagrams

[image: image6.wmf]IpAppMultiMediaCall

superviseVolumeRes()

superviseVolumeErr()

(from mmccs)

<<Interface>>

IpAppMultiMediaCallControlManager

reportMediaNotification()

(from mmccs)

<<Interface>>

IpAppMultiMediaCallLeg

mediaStreamMonitorRes()

(from mmccs)

<<Interface>>

IpAppCallLeg

eventReportRes()

eventReportErr()

attachMediaRes()

attachMediaErr()

detachMediaRes()

detachMediaErr()

getInfoRes()

getInfoErr()

routeErr()

superviseRes()

superviseErr()

callLegEnded()

(from mpccs)

<<Interface>>

IpAppMultiPartyCall

getInfoRes()

getInfoErr()

superviseRes()

superviseErr()

callEnded()

createAndRouteCallLegErr()

(from mpccs)

<<Interface>>

IpAppMultiPartyCallControlManager

reportNotification()

callAborted()

managerInterrupted()

managerResumed()

callOverloadEncountered()

callOverloadCeased()

(from mpccs)

<<Interface>>

1

0..n

1

0..n

IpMultiMediaCallLeg

mediaStreamAllow()

mediaStreamMonitorReq()

getMediaStreams()

(from mmccs)

<<Interface>>

<<uses>>

IpMultiMediaCall

superviseVolumeReq()

(from mmccs)

<<Interface>>

1

0..n

IpMultiMediaCallControlManager

createMediaNotification()

destroyMediaNotification()

changeMediaNotification()

getMediaNotification()

(from mmccs)

<<Interface>>

1

0..n

<<uses>>

<<uses>>

Figure: Application Interfaces
[image: image7.wmf]IpMultiMediaCallControlManager

createMediaNotification()

destroyMediaNotification()

changeMediaNotification()

getMediaNotification()

(from mmccs)

<<Interface>>

IpMultiMediaCall

superviseVolumeReq()

(from mmccs)

<<Interface>>

IpMultiMediaCallLeg

mediaStreamAllow()

mediaStreamMonitorReq()

getMediaStreams()

(from mmccs)

<<Interface>>

IpMultiMediaStream

subtract()

(from mmccs)

<<Interface>>

IpCallLeg

routeReq()

eventReportReq()

release()

getInfoReq()

getCall()

attachMediaReq()

detachMediaReq()

getCurrentDestinationAddress()

continueProcessing()

setChargePlan()

setAdviceOfCharge()

superviseReq()

deassign()

(from mpccs)

<<Interface>>

IpMultiPartyCall

getCallLegs()

createCallLeg()

createAndRouteCallLegReq()

release()

deassignCall()

getInfoReq()

setChargePlan()

setAdviceOfCharge()

superviseReq()

(from mpccs)

<<Interface>>

IpMultiPartyCallControlManager

createCall()

createNotification()

destroyNotification()

changeNotification()

<<deprecated>> getNotification()

setCallLoadControl()

<<new>> enableNotifications()

<<new>> disableNotifications()

<<new>> getNextNotification()

(from mpccs)

<<Interface>>

1

0..n

1

0..n

1

0..n

Figure: Service Interfaces
6 MultiMedia Call Control Service Interface Classes

The MultiMedia Call Control service enhances the functionality of the MultiParty Call Control Service with multi-media capabilities.
The MultiMedia Call Control Service is represented by the IpMultiMediaCallControlManager, IpMultiMediaCall, IpMultiMediaCallLeg and IpMultiMediaStream interfaces that interface to services provided by the network. Some methods are asynchronous, in that they do not lock a thread into waiting whilst a transaction performs. In this way, the client machine can handle many more calls, than one that uses synchronous message calls. To handle responses and reports, the developer must implement IpAppMultiMediaCallControlManager, IpAppMultiMediaCall and IpAppMultiMediaCallLeg to provide the callback mechanism.
To handle the multi-media aspects of a call the concept of media stream is introduced. A media stream is bi-directional media stream and is associated with a call leg. These media streams are usually negotiated between the terminals in the call. The multi-party Call Service gives the application control over the media streams associated with the legs in a multi-media call in the following way:
· the application can be triggered on the establishment of a media stream that meets the application defined characteristics.
· the application can monitor on the establishment (addition) or release (subtraction) of media streams of an ongoing call.
· the application can allow or deny the establishment of media streams (provided the stream establishment was monitored/notified in interrupt mode).
· the application can explicitly subtract already established media streams.
· the application can request the media streams associated with a specific leg.

6.1 Interface Class IpMultiMediaCallControlManager

Inherits from: IpMultiPartyCallControlManager
The Multi Media Call Control Manager is the factory interface for creating multimedia calls. The multi-media call control manager interface provides the management functions to the multi-media call control service. The application programmer can use this interface to create, destroy, change and get media stream related notifications.
	<<Interface>>

IpMultiMediaCallControlManager

	

	createMediaNotification (appInterface : in IpAppMultiMediaCallControlManagerRef, notificationMediaRequest : in TpNotificationMediaRequest) : TpAssignmentID

destroyMediaNotification (assignmentID : in TpAssignmentID) : void

changeMediaNotification (assignmentID : in TpAssignmentID, notificationMediaRequest : in TpNotificationMediaRequest) : void

getMediaNotification () : TpMediaNotificationRequestedSet

6.1.1 Method createMediaNotification()

This method is used to create media stream notifications so that events can be sent to the application.

This applies both to callsetup media (e.g., SIP initial INVITE or H.323 with faststart) and for media setup during the call.

This is the first step an application has to do to get initial notifications of media streams happening in the network. When such an event happens, the application will be informed by reportMediaNotification(). In case the application is interested in other events during the context of a particular call session it has to use the mediaStreamMonitorReq() method on the Multi-Media call leg object.

The createMediaNotification method is purely intended for applications to indicate their interest to be notified when certain media stream events take place. It is possible to subscribe to a certain media stream event for a whole range of addresses, e.g. the application can indicate it wishes to be informed when a call is made to any number starting with 800.

If some application already requested notifications with criteria that overlap the specified criteria, the request is refused with P_INVALID_CRITERIA. The criteria are said to overlap if both originating and terminating ranges overlap and the same number plan is used.

If the same application requests two notifications with exactly the same criteria but different callback references, the second callback will be treated as an additional callback. Both notifications will share the same assignmentID. The gateway will always use the most recent callback. In case this most recent callback fails the second most recent is used. In case the createMediaNotification contains no callback, at the moment the application needs to be informed the gateway will use as callback the one that has been registered by setCallback().

Returns assignmentID: Specifies the ID assigned by the multi-media call control manager interface for this newly-created notification.

Parameters

appInterface : in IpAppMultiMediaCallControlManagerRef

Specifies a reference to the application interface, which is used for callbacks.
notificationMediaRequest : in TpNotificationMediaRequest

The mediaMonitorMode is a parameter of TpMediaStreamRequest and can be in interrupt or in notify mode. If in interrupt mode the application has to specify which media streams are allowed by calling mediaStreamAllow on the callLeg.
The notificationMediaRequest parameter specifies the event specific criteria used by the application to define the event required. This is the media portion of the criteria. Only events that meet the notificationMediaRequest are reported.
Individual addresses or address ranges may be specified for the destination and/or origination.
Returns

TpAssignmentID

Raises

TpCommonExceptions, P_INVALID_CRITERIA, P_INVALID_INTERFACE_TYPE, P_INVALID_EVENT_TYPE
6.1.2 Method destroyMediaNotification()

This method is used by the application to disable Multi Media Channel notifications

Parameters

assignmentID : in TpAssignmentID

Specifies the assignment ID given by the Multi Media call control manager interface when the previous enableMediaNotification was called. If the assignment ID does not correspond to one of the valid assignment IDs, the exception P_INVALID_ASSIGNMENTID will be raised.
Raises

TpCommonExceptions
6.1.3 Method changeMediaNotification()

This method is used by the application to change the event criteria introduced with createMediaNotification. Any stored criteria associated with the specified assignmentID will be replaced with the specified criteria.

Parameters

assignmentID : in TpAssignmentID

Specifies the ID assigned by the multi-media call control manager interface for the media stream notification. If two callbacks have been registered under this assignment ID both of them will be disabled.
notificationMediaRequest : in TpNotificationMediaRequest

Specifies the new set of event specific criteria used by the application to define the event required. Only events that meet these criteria are reported.
Raises

TpCommonExceptions, P_INVALID_ASSIGNMENT_ID, P_INVALID_CRITERIA, P_INVALID_EVENT_TYPE
6.1.4 Method getMediaNotification()

This method is used by the application to query the event criteria set with createMediaNotification or changeMediaNotification.

Returns notificationsMediaRequested: Specifies the notifications that have been requested by the application.

Parameters

No Parameters were identified for this method

Returns

TpMediaNotificationRequestedSet

Raises

TpCommonExceptions
6.2 Interface Class IpAppMultiMediaCallControlManager

Inherits from: IpAppMultiPartyCallControlManager
The Multi Media call control manager application interface provides the application call control management functions to the multi media call control service.
	<<Interface>>

IpAppMultiMediaCallControlManager

	

	reportMediaNotification (callReference : in TpMultiMediaCallIdentifier, callLegReferenceSet : in TpMultiMediaCallLegIdentifierSet, mediaStreams : in TpMediaStreamSet, type : in TpMediaStreamEventType, assignmentID : in TpAssignmentID) : TpAppMultiMediaCallBack

6.2.1 Method reportMediaNotification()

This method is used to inform the application about the establishment of media streams.

If the corresponding monitor was in interrupt mode, then the application has to allow or deny the streams using mediaStreamAllow() method.

Returns appInterface : Specifies a reference to the application interface which implements the callback interface for the new call.

Returns appMultiMediaCallBack: Specifies references to the application interface which implements the callback interface for the new multi-media call and/or new call leg. This parameter may be null if the notification is being given in NOTIFY mode

Parameters

callReference : in TpMultiMediaCallIdentifier

Specifies the call interface on which the media streams were added or subtracted. It also gives the corresponding sessionID.
callLegReferenceSet : in TpMultiMediaCallLegIdentifierSet

Specifies set of all callLeg references (interface and sessionID) for which the media streams were established or subtracted.
First in the set is the reference to the originating callLeg. It indicates the call leg related to the originating party. In case there is a destination call leg this will be the second leg in the set. from the notificationInfo can be found on whose behalf the notification was sent.
However, this parameter will be null if the notification is being given in NOTIFY mode
mediaStreams : in TpMediaStreamSet

Specifies all the media streams that are established. Note that this can be more media streams than requested in the createMediaNotification, e.g., when faststart is used in H.323 or in SIP when an INVITE method with SDP media stream parameters is used.
type : in TpMediaStreamEventType

Refers to the type of event on the media stream, i.e., added or subtracted.
assignmentID : in TpAssignmentID

Specifies the assignment id which was returned by the createMediaNotification() method. The application can use assignment id to associate events with event specific criteria and to act accordingly.
Returns

TpAppMultiMediaCallBack

6.3 Interface Class IpMultiMediaCall

Inherits from: IpMultiPartyCall
	<<Interface>>

IpMultiMediaCall

	

	superviseVolumeReq (callSessionID : in TpSessionID, volume : in TpCallSuperviseVolume, treatment : in TpCallSuperviseTreatment) : void

6.3.1 Method superviseVolumeReq()

The application calls this method to supervise a call. The application can set a granted data volume this call.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.
volume : in TpCallSuperviseVolume

Specifies the granted time in milliseconds for the connection.
treatment : in TpCallSuperviseTreatment

Specifies how the network should react after the granted volume expired.
Raises

TpCommonExceptions, P_INVALID_SESSION_ID
6.4 Interface Class IpAppMultiMediaCall

Inherits from: IpAppMultiPartyCall
The application multi-media call interface contains the callbacks that will be used from the multi-media call interface for asynchronous results to requests performed by the application. The application should implement this interface.
	<<Interface>>

IpAppMultiMediaCall

	

	superviseVolumeRes (callSessionID : in TpSessionID, report : in TpCallSuperviseReport, usedVolume : in TpCallSuperviseVolume) : void

superviseVolumeErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : void

6.4.1 Method superviseVolumeRes()

This asynchronous method reports a call supervision event to the application when it has indicated its interest in these kind of events.

It is also called when the connection is terminated before the supervision event occurs. Furthermore, this method is invoked as a response to the request also when a tariff switch happens in the network during an active call.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call
report : in TpCallSuperviseReport

Specifies the situation which triggered the sending of the call supervision response.
usedVolume : in TpCallSuperviseVolume

Specifies the used time for the call supervision (in milliseconds).
6.4.2 Method superviseVolumeErr()

This asynchronous method reports a call supervision error to the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.
errorIndication : in TpCallError

Specifies the error which led to the original request failing.
6.5 Interface Class IpMultiMediaCallLeg

Inherits from: IpCallLeg
The Multi-Media call leg represents the signalling relationship between the call and an address. Associated with the signalling relationship there can be multiple media channels. Media channels can be started and stopped by the terminals themselves. The application can monitor on these changes and influence them.
	<<Interface>>

IpMultiMediaCallLeg

	

	mediaStreamAllow (callLegSessionID : in TpSessionID, mediaStreamList : in TpSessionIDSet) : void

mediaStreamMonitorReq (callLegSessionID : in TpSessionID, mediaStreamEventCriteria : in TpMediaStreamRequestSet) : void

getMediaStreams (callLegSessionID : in TpSessionID) : TpMediaStreamSet

6.5.1 Method mediaStreamAllow()

This method can be used to allow setup of a media stream that was reported by a mediaStreamMonitorRes method.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.
mediaStreamList : in TpSessionIDSet

Refers to the media streams (sessionIDs) as received in the mediaStreamMonitorRes() or in the reportMediaNotification() that is allowed to be established.
Raises

TpCommonExceptions, P_INVALID_SESSION_ID
6.5.2 Method mediaStreamMonitorReq()

With this method the application can set monitors on the addition and subtraction of media streams. The monitors can either be general or restricted to certain types of codecs.

Monitoring on addition of media streams can be done in either interrupt of notify mode. In the first case the application has to allow or deny the establishment of the stream with mediaStreamAllow.

Monitoring on subtraction of media streams is only allowed in notify mode.

Parameters

callLegSessionID : in TpSessionID

Specifies the session ID of the call leg.
mediaStreamEventCriteria : in TpMediaStreamRequestSet

Specifies the event specific criteria used by the application to define the event required. The mediaMonitorMode .is a parameter of TpMediaStreamRequest and can be in interrupt or in notify mode. If in interrupt mode the application has to respond with mediaStreamAllow().
Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_CRITERIA, P_INVALID_EVENT_TYPE
6.5.3 Method getMediaStreams()

This method is used to return all currently established media streams for the leg.

Parameters

callLegSessionID : in TpSessionID

This method is used to return all currently open media channels for the leg,
Returns

TpMediaStreamSet

Raises

TpCommonExceptions, P_INVALID_SESSION_ID
6.6 Interface Class IpAppMultiMediaCallLeg

Inherits from: IpAppCallLeg
The application multi-media call leg interface contains the callbacks that will be called from the multi-media call leg for asynchronous results to requests performed by the application. The application should implement this interface.
	<<Interface>>

IpAppMultiMediaCallLeg

	

	mediaStreamMonitorRes (callLegSessionID : in TpSessionID, streams : in TpMediaStreamSet, type : in TpMediaStreamEventType) : void

6.6.1 Method mediaStreamMonitorRes()

This method is used to inform the application about the media streams that are being established (added) or subtracted.

If the corresponding request was done in interrupt mode, the application has to allow or deny the media streams using mediaStreamAllow().

Parameters

callLegSessionID : in TpSessionID

Specifies the session ID of the call leg for which the media channels are opened or closed.
streams : in TpMediaStreamSet

Specifies all the media streams that are added. Note that this can be more media streams than requested in the createMediaNotification, e.g., when faststart is used in H.323 or SIP INVITE with SDP media stream parameters is used.
type : in TpMediaStreamEventType

Refers to the type of event on the media stream, i.e., added or subtraced.
6.7 Interface Class IpMultiMediaStream

Inherits from: IpService
The Multi Media Stream Interface represents a bi-directional information stream associated with a call leg. Currently, the only available method is to subtract the media stream.
	<<Interface>>

IpMultiMediaStream

	

	subtract (mediaStreamSessionID : in TpSessionID) : void

6.7.1 Method subtract()

This method can be used to subtract the multi-media stream.

Parameters

mediaStreamSessionID : in TpSessionID

Specifies the sessionID for the media stream.
Raises

TpCommonExceptions, P_INVALID_SESSION_ID
7 MultiMedia Call Control Service State Transition Diagrams

There are no State Transition Diagrams for the MultiMedia Call Control Service package

8 Multi-Media Call Control Data Definitions

This clause provides the Multi-Media call control data definitions necessary to support the API specification.

The general format of a data definition specification is described below.

· Data Type

This shows the name of the data type.

· Description

This describes the data type.

· Tabular Specification

This specifies the data types and values of the data type.

· Example

If relevant, an example is shown to illustrate the data type.

All data types referenced in the present document but not defined in this clause are defined either in the common call control data definitions in ES 202 915-4-1 or in the common data definitions which may be found in ES 202 915-2.

8.1 Event Notification Data Definitions

8.1.1 TpMediaStreamRequestSet

Defines a Numbered Set of Data Elements of TpMediaStreamRequest
8.1.2 TpMediaStreamRequest

Defines the Sequence of Data Elements that specify the type of media stream.

	Sequence Element Name
	Sequence Element Type

	Direction
	TpMediaStreamDirection

	DataTypeRequest
	TpMediaStreamDataTypeRequest

	MediaMonitorMode
	TpCallMonitorMode

8.1.3 TpMediaStreamDirection

Defines the direction in which the media stream is established (as seen from the leg).

	Name
	Value
	Description

	P_SEND_ONLY
	0
	Indicates that the offerer is only willing to send this media stream

	P_RECEIVE_ONLY
	1
	Indicates that the offerer is only willing to receive this media stream

	P_SEND_RECEIVE
	2
	Indicates that the offerer is willing to send and receive this media stream

8.1.4 TpMediaStreamDataTypeRequest

Defines the Tagged Choice of Data Elements that specify the media type and associated codecs that are of interest.

	
	Tag Element Type
	

	
	TpMediaType
	

	Tag Element Value
	Choice Element Type
	Choice Element Name

	P_AUDIO
	TpAudioCapabilitiesType
	Audio

	P_VIDEO
	TpVideoCapabilitiesType
	Video

	P_DATA
	TpDataCapabilities
	Data

8.1.5 TpAudioCapabilitiesType

Defines the audio codec. The requested capabilities can be indicated by adding the values together (i.e., a logical OR function). e.g., 28 indicates interest in all G.722 codes (4+8+16).

	Name
	Value
	Description

	P_G711_64K
	1
	g.711 on 64k, both alaw and ulaw

	P_G711_56K
	2
	g.711 on 56k, both alaw and ulaw

	P_G722_64K
	4
	

	P_G722_56K
	8
	

	P_G722_48K
	16
	

	P_G7231
	32
	

	P_G728
	64
	

	P_G729
	128
	

	P_G729_ANNEX_A
	256
	

	P_IS1172
	512
	

	P_IS1318
	1024
	

	P_G729_ANNEXB
	2048
	

	P_G729_ANNEX_A_AND_B
	4096
	

	P_G7231_ANNEX_C
	8192
	

	P_GSM_FULLRATE
	16384
	

	P_GSM_HALFRATE
	32768
	

	P_GSM_ENHANCED
	65536
	

8.1.6 TpVideoCapabilitiesType

Defines the video codec. The requested capabilities can be indicated by adding the values together (i.e., a logical OR function). e.g., 3 indicates both H.261 and H.262 codecs.

	Name
	Value
	Description

	P_H261
	1
	

	P_H262
	2
	

	P_H263
	4
	

	P_IS11172
	8
	

8.1.7 TpDataCapabilities

A TpInt32 defining the minimum maxBitRate in bit/s. I.e., all data media streams whose maxBitRate exceeds this number are reported.

8.1.8 TpMediaStreamEventType

Defines the action performed on the media stream.

	Name
	Value
	Description

	P_MEDIA_STREAM_ADDED
	0
	The media stream is added

	P_MEDIA_STREAM_SUBTRACTED
	1
	The media stream is subtracted.

8.1.9 TpMediaStreamSet

Defines a Numbered Set of Data Elements of TpMediaStream
8.1.10 TpMediaStream

Defines the Sequence of Data Elements that specify the type of media stream.

	Sequence Element Name
	Sequence Element Type

	Direction
	TpMediaStreamDirection

	DataType
	TpMediaStreamDataType

	ChannelSessionID
	TpSessionID

	MediaStream
	IpMultiMediaStream

8.1.11 TpMediaStreamDataType

Defines the type of the reported media stream. It is identical to TpMediaStreamDataTypeRequest, only now the values are not used as a mask, but as the actual codec should be indicated for audio and video. For data the actual maximum bit rate is indicated.

8.2 Multi-Media Call Control Data Definitions

8.2.1 IpMultiMediaCall

Defines the address of an IpMultiMediaCall Interface.

8.2.2 IpMultiMediaCallRef

Defines a Reference to type IpMultiMediaCall.

8.2.3 IpAppMultiMediaCall

Defines the address of an IpAppMultiMediaCall Interface.

8.2.4 IpAppMultiMediaCallRef

Defines a Reference to type IpAppMultiMediaCall.

8.2.5 IpMultiMediaCallLeg

Defines the address of an IpMultiMediaCallLeg Interface.

8.2.6 IpMultiMediaCallLegRef

Defines a Reference to type IpMultiMediaCallLeg.

8.2.7 IpAppMultiMediaCallLeg

Defines the address of an IpAppMultiMediaCallLeg Interface.

8.2.8 IpAppMultiMediaCallLegRef

Defines a Reference to type IpAppMultiMediaCallLeg.

8.2.9 TpAppMultiMediaCallLegRefSet

Defines a Numbered Set of Data Elements of IpAppMultiMediaCallLegRef.
8.2.10 TpMultiMediaCallIdentifier

Defines the Sequence of Data Elements that unambiguously specify the MultiMediaCall object

	Sequence Element Name
	Sequence Element Type
	Sequence Element Description

	MMCallReference
	IpMultiMediaCallRef
	This element specifies the interface reference for the call object.

	MMCallSessionID
	TpSessionID
	This element specifies the call session ID of the call created.

8.2.11 TpMultiMediaCallIdentifierSet

Defines a Numbered Set of Data Elements of TpMultiMediaCallIdentifier

8.2.12 TpMultiMediaCallLegIdentifier

Defines the Sequence of Data Elements that unambiguously specify the Call Leg object

	Sequence Element Name
	Sequence Element Type
	Sequence Element Description

	MMCallLegReference
	IpMultiMediaCallLegRef
	This element specifies the interface reference for the callLeg object.

	MMCallLegSessionID
	TpSessionID
	This element specifies the callLeg session ID of the call created.

8.2.13 IpAppMultiMediaCallControlManager

Defines the address of an IpAppMultiMediaCallControlManager Interface.

8.2.14 IpAppMultiMediaCallControlManagerRef

Defines a Reference to type IpAppMultiMediaCallControlManager.

8.2.15 TpAppMultiMediaCallBack

Defines the Tagged Choice of Data Elements that references the application callback interfaces

	
	Tag Element Type
	

	
	TpAppMultiMediaCallBackRefType
	

	Tag Element Value
	Choice Element Type
	Choice Element Name

	P_APP_CALLBACK_UNDEFINED
	NULL
	Undefined

	P_APP_MULTIMEDIA_CALL_CALLBACK
	IpAppMultiMediaCallRef
	AppMultiMediaCall

	P_APP_CALL_LEG_CALLBACK
	IpAppMultiMediaCallLegRef
	AppMultiMediaCallLeg

	P_APP_CALL_AND_CALL_LEG_CALLBACK
	TpAppMultiMediaCallLegCallBack
	AppMultiMediaCallAndCallLeg

8.2.16 TpAppMultiMediaCallBackRefType

Defines the type application call back interface.

	Name
	Value
	Description

	P_APP_CALLBACK_UNDEFINED
	0
	Application Call back interface undefined

	P_APP_MULTIMEDIA_CALL_CALLBACK
	1
	Application Multi-Media Call interface referenced

	P_APP_CALL_LEG_CALLBACK
	2
	Application Multi-Media CallLeg interface referenced

	P_APP_CALL_AND_CALL_LEG_CALLBACK
	3
	Application Multi-Media Call and CallLeg interface referenced

8.2.17 TpAppMultiMediaCallLegCallBack

Defines the Sequence of Data Elements that references a call and a call leg application interface.

	Sequence Element Name
	Sequence Element Type
	

	AppMultiMediaCall
	IpAppMultiMediaCallRef
	

	AppCallLegSet
	TpAppMultiMediaCallLegRefSet
	Specifies the set of all call leg call back references. First in the set is the reference to the call back of the originating callLeg. In case there is a call back to a destination call leg this will be second in the set.

8.2.18 TpCallSuperviseVolume

Defines the Sequence of Data Elements that specify the amount of volume that is allowed to be transmitted for the specific connection.

	Sequence Element Name
	Sequence Element Type
	Sequence Element Description

	VolumeQuantity
	TpInt32
	This data type is identical to a TpInt32, and defines the quantity of the granted volume that can be transmitted for the specific connection.

	VolumeUnit
	TpInt32
	This data type is identical to a TpInt32, and defines the unit of the granted volume that can be transmitted for the specific connection.

Unit must be specified as 10^n number of bytes, where

n denotes the power.

When the unit is for example in kilobytes, VolumeUnit must be set to 3.

8.2.19 TpNotificationMediaRequest

Defines the Sequence of Data Elements that specify the criteria for a media stream notification

	Sequence Element Name
	Sequence Element Type
	Description

	MediaNotificationScope
	TpCallNotificationScope
	Defines the scope of the notification request.

	MediaStreamsRequested
	TpMediaStreamRequestSet
	Defines the media stream events which are requested

8.2.20 TpMediaNotificationRequested

Defines the Sequence of Data Elements that specify the criteria relating to event requests.

	Sequence Element Name
	Sequence Element Type

	AppNotificationMediaRequest
	TpNotificationMediaRequest

	AssignmentID
	TpInt32

8.2.21 TpMediaNotificationsRequestedSet

Defines a numbered Set of Data Elements of TpMediaNotificationRequested

Annex A (normative):
OMG IDL Description of Multi-Media Call Control SCF

The OMG IDL representation of this interface specification is contained in the text file mmccs.idl contained in archive es_2029150404IDL.ZIP which accompanies the present document.

Annex B (informative):
W3C WSDL Description of Multi-Media Call Control SCF

The W3C WSDL representation of this specification is contained in text files (mmccs.wsdl contained in archive es_2029150404WSDL.ZIP) which accompanies the present document.

Annex C (informative):
Java API Description of the Call Control SCFs

The Java API representation of this specification can be obtained from the following URL:

· Java Call Control (http://jcp.org/jsr/detail/21.jsp)
Each JSR webpage contains a table identifying the relationships between the different versions of the Parlay, ETSI/OSA, 3GPP/OSA and JAIN SPA specifications. In addition, each JAIN SPA specification version indicates to which Parlay, ETSI/OSA and 3GPP/OSA specification versions it corresponds to.

Annex D (informative):
CN5 Documents Implemented in this draft

	Document
	Meeting

	N5-000147
	Bristol Sept '00 CN5#5

	N5-000151
	Bristol Sept '00 CN5#5

	N5-000236
	Vienna Oct '00 CN5#6

	N5-000262
	Sophia Antipolis Nov '00 CN5#7

	N5-000263
	Sophia Antipolis Nov '00 CN5#7

	N5-000264
	Sophia Antipolis Nov '00 CN5#7

	N5-000265
	Sophia Antipolis Nov '00 CN5#7

	N5-000266
	Sophia Antipolis Nov '00 CN5#7

	N5-000267
	Sophia Antipolis Nov '00 CN5#7

	N5-000270
	Sophia Antipolis Nov '00 CN5#7

	N5-000297
	Sophia Antipolis Nov '00 CN5#7

	N5-000293
	Scottsdale Dec '00 CN5#8

	N5-000294
	Scottsdale Dec '00 CN5#8

	N5-000309
	Scottsdale Dec '00 CN5#8

	N5-000327
	Scottsdale Dec '00 CN5#8

	N5-000328
	Scottsdale Dec '00 CN5#8

	N5-000344
	Scottsdale Dec '00 CN5#8

	N5-010022
	Helsinki Feb '01 CN5#9

	N5-010036
	Helsinki Feb '01 CN5#9

	N5-010044
	Helsinki Feb '01 CN5#9

	N5-010057
	Helsinki Feb '01 CN5#9

	N5-010058
	Helsinki Feb '01 CN5#9

	N5-010072
	Helsinki Feb '01 CN5#9

	N5-010073
	Helsinki Feb '01 CN5#9

	N5-010074
	Helsinki Feb '01 CN5#9

	N5-010126
	Antwerp March '01 CN5#10

	N5-010112
	Antwerp March '01 CN5#10

	N5-010113
	Antwerp March '01 CN5#10

	N5-010119
	Antwerp March '01 CN5#10

	N5-010128
	Antwerp March '01 CN5#10

	N5-010204
	Antwerp March '01 CN5#10

	N5-010286
	San Diego May ’01 CN5#11

	N5-010287
	San Diego May ’01 CN5#11

	N5-010297
	San Diego May ’01 CN5#11

	N5-010298
	San Diego May ’01 CN5#11

	N5-010417
	San Diego May ’01 CN5#11

	N5-010418
	San Diego May ’01 CN5#11

	N5-010416
	San Diego May ’01 CN5#11

	N5-010415
	San Diego May ’01 CN5#11

	N5-010306
	San Diego May ’01 CN5#11

	N5-010308
	San Diego May ’01 CN5#11

	N5-010464
	San Diego May ’01 CN5#11

	N5-010466
	San Diego May ’01 CN5#11

	N5-010468
	San Diego May ’01 CN5#11

	N5-010354
	San Diego May ’01 CN5#11

	N5-010355
	San Diego May ’01 CN5#11

	N5-010358
	San Diego May ’01 CN5#11

	N5-010437
	San Diego May ’01 CN5#11

	N5-010438
	San Diego May ’01 CN5#11

	N5-010451
	San Diego May ’01 CN5#11

	N5-010461
	San Diego May ’01 CN5#11

	N5-010463
	San Diego May ’01 CN5#11

	N5-010393
	San Diego May ’01 CN5#11

	N5-010411
	San Diego May ’01 CN5#11

	N5-010429
	San Diego May ’01 CN5#11

	N5-010273
	San Diego May ’01 CN5#11

	N5-010376
	San Diego May ’01 CN5#11

	N5-010630
	Sophia Antipolis July ’01 CN5#12

	N5-010631
	Sophia Antipolis July ’01 CN5#12

	N5-010663
	Sophia Antipolis July ’01 CN5#12

	N5-010700
	Sophia Antipolis July ’01 CN5#12

	N5-010613
	Sophia Antipolis July ’01 CN5#12

	N5-010664
	Sophia Antipolis July ’01 CN5#12

	N5-010665
	Sophia Antipolis July ’01 CN5#12

	N5-010660
	Sophia Antipolis July ’01 CN5#12

	N5-010543
	Sophia Antipolis July ’01 CN5#12

	N5-010532
	Sophia Antipolis July ’01 CN5#12

	N5-010533
	Sophia Antipolis July ’01 CN5#12

	N5-010542
	Sophia Antipolis July ’01 CN5#12

	N5-010640
	Sophia Antipolis July ’01 CN5#12

	N5-010641
	Sophia Antipolis July ’01 CN5#12

	N5-010648
	Sophia Antipolis July ’01 CN5#12

	N5-010625
	Sophia Antipolis July ’01 CN5#12

	N5-010626
	Sophia Antipolis July ’01 CN5#12

	N5-010632
	Sophia Antipolis July ’01 CN5#12

	N5-010624
	Sophia Antipolis July ’01 CN5#12

	N5-010623
	Sophia Antipolis July ’01 CN5#12

	N5-010627
	Sophia Antipolis July ’01 CN5#12

	N5-010612
	Sophia Antipolis July ’01 CN5#12

	N5-010677
	Sophia Antipolis July ’01 CN5#12

	N5-010564
	Sophia Antipolis July ’01 CN5#12

	N5-010834
	Munich, September ’01 CN5#13

	N5-010778
	Munich, September ’01 CN5#13

	N5-010775
	Munich, September ’01 CN5#13

	N5-010749
	Munich, September ’01 CN5#13

	N5-010748
	Munich, September ’01 CN5#13

	N5-010747
	Munich, September ’01 CN5#13

	N5-010746
	Munich, September ’01 CN5#13

	N5-010839
	Munich, September ’01 CN5#13

	N5-010908
	Munich, September ’01 CN5#13

	N5-010860
	Munich, September ’01 CN5#13

	N5-010956
	Brighton, October ’01 CN5#14

	N5-010957
	Brighton, October ’01 CN5#14

	N5-011094
	Brighton, October ’01 CN5#14

	N5-011060
	Brighton, October ’01 CN5#14

	N5-011020
	Brighton, October ’01 CN5#14

	N5-011008
	Brighton, October ’01 CN5#14

	N5-010996
	Brighton, October ’01 CN5#14

	N5-011091
	Brighton, October ’01 CN5#14

	N5-011092
	Brighton, October ’01 CN5#14

	N5-011063
	Brighton, October ’01 CN5#14

	N5-011001
	Brighton, October ’01 CN5#14

	N5-011002
	Brighton, October ’01 CN5#14

	N5-011003
	Brighton, October ’01 CN5#14

	N5-011062
	Brighton, October ’01 CN5#14

	N5-011005
	Brighton, October ’01 CN5#14

	N5-011064
	Brighton, October ’01 CN5#14

	N5-011136
	Cancun, November ’01 CN5#15

	N5-011145
	Cancun, November ’01 CN5#15

	N5-011146
	Cancun, November ’01 CN5#15

	N5-011245
	Cancun, November ’01 CN5#15

	N5-011246
	Cancun, November ’01 CN5#15

	N5-011258
	Cancun, November ’01 CN5#15

	N5-011260
	Cancun, November ’01 CN5#15

	N5-011262
	Cancun, November ’01 CN5#15

	N5-011268
	Cancun, November ’01 CN5#15

	N5-011147
	Cancun, November ’01 CN5#15

	N5-011270
	Cancun, November ’01 CN5#15

	N5-020021
	Hong Kong November ’02 CN5#16

	N5-020030
	Hong Kong November ’02 CN5#16

	N5-020031
	Hong Kong November ’02 CN5#16

	N5-020037
	Hong Kong November ’02 CN5#16

	N5-020072
	Hong Kong November ’02 CN5#16

	N5-020519
	Budapest, May '02 CN5#18

	N5-020390
	Budapest, May '02 CN5#18

	N5-020369
	Budapest, May '02 CN5#18

Annex E (informative):
Contents of 3GPP OSA Rel-5 Call Control

All items in Mult-Media Call Control are relevant for TS 129 198-4-4 V5 (Release 5).

Annex F (informative):
Record of changes

The following is a list of the changes made to this specification for each release. The list contains the names of all changed, deprecated, added or removed items in the specifications and not the actual changes. Any type of change information that is important to the reader is put in the Others part of this annex.

Changes are specified as changes to the prior major release, but every minor release will have its own part of the table allowing the reader to know when the actual change was made.

F.1 Interfaces

F.1.1 New

	Identifier
	Comments

	Interfaces added in ES 202 915-4-4 version 1.1.1 (Parlay 4.0)

	
	

F.1.2 Deprecated

	Identifier
	Comments

	Interfaces deprecated in ES 202 915-4-4 version 1.1.1 (Parlay 4.0)

	
	

F.1.3 Removed

	Identifier
	Comments

	Interfaces removed in ES 202 915-4-4 version 1.1.1 (Parlay 4.0)

	
	

F.2 Methods

F.2.1 New

	Identifier
	Comments

	Methods added in ES 202 915-4-4 version 1.1.1 (Parlay 4.0)

	
	

F.2.2 Deprecated

	Identifier
	Comments

	Methods deprecated in ES 202 915-4-4 version 1.1.1 (Parlay 4.0)

	
	

F.2.3 Modified

	Identifier
	Comments

	Methods modified in ES 202 915-4-4 version 1.1.1 (Parlay 4.0)

	
	

F.2.4 Removed

	Identifier
	Comments

	Methods removed in ES 202 915-4-4 version 1.1.1 (Parlay 4.0)

	
	

F.3 Data Definitions

F.3.1 New

	Identifier
	Comments

	Data Definitions added in ES 202 915-4-4 version 1.1.1 (Parlay 4.0)

	
	

F.3.2 Modified

	Identifier
	Comments

	Data Definitions modified in ES 202 915-4-4 version 1.1.1 (Parlay 4.0)

	
	

F.3.3 Removed

	Identifier
	Comments

	Data Definitions removed in ES 202 915-4-4 version 1.1.1 (Parlay 4.0)

	
	

F.4 Service Properties

F.4.1 New

	Identifier
	Comments

	Service Properties added in ES 202 915-4-4 version 1.1.1 (Parlay 4.0)

	
	

F.4.2 Deprecated

	Identifier
	Comments

	Service Properties deprecated in ES 202 915-4-4 version 1.1.1 (Parlay 4.0)

	
	

F.4.3 Modified

	Identifier
	Comments

	Service Properties modified in ES 202 915-4-4 version 1.1.1 (Parlay 4.0)

	
	

F.4.4 Removed

	Identifier
	Comments

	Service Properties removed in ES 202 915-4-4 version 1.1.1 (Parlay 4.0)

	
	

F.5 Exceptions

F.5.1 New

	Identifier
	Comments

	Exceptions added in ES 202 915-4-4 version 1.1.1 (Parlay 4.0)

	
	

F.5.2 Modified

	Identifier
	Comments

	Exceptions modified in ES 202 915-4-4 version 1.1.1 (Parlay 4.0)

	
	

F.5.3 Removed

	Identifier
	Comments

	Exceptions removed in ES 202 915-4-4 version 1.1.1 (Parlay 4.0)

	
	

F.6 Others

History

	Document history

	v.0.0.1
	June 2002
	1st draft of ES 202 915, Parlay 4

	
	
	

	
	
	

	
	
	

	
	
	

[image: image8.wmf]_1065009619.doc

