Page 1

joint API group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5)
N5-020638

Meeting #19, Montreal, CANADA, 8 – 12 July 2002

	CR-Form-v5

	CHANGE REQUEST

	

	(

	29.198-03
	CR
	CRNum
	(

rev
	-
	(

Current version:
	5.0.0
	(

	

	For HELP on using this form, see bottom of this page or look at the pop-up text over the (
 symbols.

	

	Proposed change affects:
(

	(U)SIM
	
	ME/UE
	
	Radio Access Network
	
	Core Network
	X

	

	Title:
(

	Addition of status of methods to interfaces in clause 8.3

	
	

	Source:
(

	ETSI STF211 (Peter Schmitting)

	
	

	Work item code:
(

	OSA2
	
	Date: (

	12/07/2002

	
	
	
	
	

	Category:
(

	F
	
	Release: (

	REL-5

	
	Use one of the following categories:
F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
2
(GSM Phase 2)
R96
(Release 1996)
R97
(Release 1997)
R98
(Release 1998)
R99
(Release 1999)
REL-4
(Release 4)
REL-5
(Release 5)

	
	

	Reason for change:
(

	There is no requirement in the standard about the necessity to implement all or only some of the methods defined for an interface.

	
	

	Summary of change:
(

	Add a statement that clarifies which methods are mandatory and which are optional.

	
	

	Consequences if
(

not approved:
	Application developers will not know which methgods will actually be available.

	
	

	Clauses affected:
(

	8.3 Interface Classes

	
	

	Other specs
(

	
	 Other core specifications
(

	

	affected:
	
	 Test specifications
	

	
	
	 O&M Specifications
	

	
	

	Other comments:
(

	

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at: http://www.3gpp.org/3G_Specs/CRs.htm. Below is a brief summary:

1)
Fill out the above form. The symbols above marked (
 contain pop-up help information about the field that they are closest to.

2)
Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3)
With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

…

8.3.1.1
Interface Class IpFwServiceRegistration

Inherits from: IpInterface.
The Service Registration interface provides the methods used for the registration of network SCFs at the framework.
All methods shall be implemented.
	<<Interface>>

IpFwServiceRegistration

	

	registerService (serviceTypeName : in TpServiceTypeName, servicePropertyList : in TpServicePropertyList) : TpServiceID

announceServiceAvailability (serviceID : in TpServiceID, serviceInstanceLifecycleManagerRef : in service_lifecycle::IpServiceInstanceLifecycleManagerRef) : void

unregisterService (serviceID : in TpServiceID) : void

describeService (serviceID : in TpServiceID) : TpServiceDescription

unannounceService (serviceID : in TpServiceID) : void

…

8.3.2.1
Interface Class IpServiceInstanceLifecycleManager

Inherits from: IpInterface.
The IpServiceInstanceLifecycleManager interface allows the Framework to create and destroy Service Manager Instances.
All methods shall be implemented.
	<<Interface>>

IpServiceInstanceLifecycleManager

	

	createServiceManager (application : in TpClientAppID, serviceProperties : in TpServicePropertyList, serviceInstanceID : in TpServiceInstanceID) : IpServiceRef

destroyServiceManager (serviceInstance : in TpServiceInstanceID) : void

…

8.3.3.1
Interface Class IpFwServiceDiscovery

Inherits from: IpInterface.
As a minimum requirement the listServiceTypes(), describeServiceType() and discoverService() methods shall be implemented.
	<<Interface>>

IpFwServiceDiscovery

	

	listServiceTypes () : TpServiceTypeNameList

describeServiceType (name : in TpServiceTypeName) : TpServiceTypeDescription

discoverService (serviceTypeName : in TpServiceTypeName, desiredPropertyList : in TpServicePropertyList, max : in TpInt32) : TpServiceList

listRegisteredServices () : TpServiceList

…

8.3.4.1
Interface Class IpFwFaultManager

Inherits from: IpInterface.
This interface is used by the service instance to inform the framework of events which affect the integrity of the API, and request fault management status information from the framework. The fault manager operations do not exchange callback interfaces as it is assumed that the service instance has supplied its Fault Management callback interface at the time it obtains the Framework's Fault Management interface, by use of the obtainInterfaceWithCallback operation on the IpAccess interface.
If the IpFwFaultManager interface is implemented, at least one of the methods shall be implemented as a minimum requirement.
	<<Interface>>

IpFwFaultManager

	

	activityTestReq (activityTestID : in TpActivityTestID, testSubject : in TpSubjectType) : void

svcActivityTestRes (activityTestID : in TpActivityTestID, activityTestResult : in TpActivityTestRes) : void

appUnavailableInd () : void

genFaultStatsRecordReq (timePeriod : in TpTimeInterval, recordSubject : in TpSubjectType) : void

svcUnavailableInd (reason : in TpSvcUnavailReason) : void

svcActivityTestErr (activityTestID : in TpActivityTestID) : void

genFaultStatsRecordRes (faultStatistics : in TpFaultStatsRecord, serviceIDs : in TpServiceIDList) : void

genFaultStatsRecordErr (faultStatisticsError : in TpFaultStatisticsError, serviceIDs : in TpServiceIDList) : void

…

8.3.4.2
Interface Class IpSvcFaultManager

Inherits from: IpInterface.
This interface is used to inform the service instance of events that affect the integrity of the Framework, Service or Client Application. The Framework will invoke methods on the Fault Management Service Interface that is specified when the service instance obtains the Fault Management Framework interface: i.e. by use of the obtainInterfaceWithCallback operation on the IpAccess interface
If the IpSvcFaultManager interface is implemented, at least one of the methods shall be implemented as a minimum requirement.
	<<Interface>>

IpSvcFaultManager

	

	activityTestRes (activityTestID : in TpActivityTestID, activityTestResult : in TpActivityTestRes) : void

svcActivityTestReq (activityTestID : in TpActivityTestID) : void

fwFaultReportInd (fault : in TpInterfaceFault) : void

fwFaultRecoveryInd (fault : in TpInterfaceFault) : void

fwUnavailableInd (reason : in TpFwUnavailReason) : void

svcUnavailableInd () : void

appUnavailableInd () : void

genFaultStatsRecordRes (faultStatistics : in TpFaultStatsRecord, recordSubject : in TpSubjectType) : void

activityTestErr (activityTestID : in TpActivityTestID) : void

genFaultStatsRecordErr (faultStatisticsError : in TpFaultStatisticsError, recordSubject : in TpSubjectType) : void

genFaultStatsRecordReq (timePeriod : in TpTimeInterval, serviceIDs : in TpServiceIDList) : void

…

8.3.4.3
Interface Class IpFwHeartBeatMgmt

Inherits from: IpInterface.
This interface allows the initialisation of a heartbeat supervision of the framework by a service instance.
If the IpFwHeartBeatMgmt interface is implemented, all methods shall be implemented.
	<<Interface>>

IpFwHeartBeatMgmt

	

	enableHeartBeat (interval : in TpInt32, svcInterface : in IpSvcHeartBeatRef) : void

disableHeartBeat () : void

changeInterval (interval : in TpInt32) : void

…

8.3.4.5
Interface Class IpSvcHeartBeatMgmt

Inherits from: IpInterface.
This interface allows the initialisation of a heartbeat supervision of the service instance by the framework.
If the IpSvcHeartBeatMgmt interface is implemented, all methods shall be implemented.
	<<Interface>>

IpSvcHeartBeatMgmt

	

	enableSvcHeartBeat (interval : in TpInt32, fwInterface : in IpFwHeartBeatRef) : void

disableSvcHeartBeat () : void

changeInterval (interval : in TpInt32) : void

…

8.3.4.7
Interface Class IpFwLoadManager

Inherits from: IpInterface.
The framework API should allow the load to be distributed across multiple machines and across multiple component processes, according to a load management policy. The separation of the load management mechanism and load management policy ensures the flexibility of the load management services. The load management policy identifies what load management rules the framework should follow for the specific service. It might specify what action the framework should take as the congestion level changes. For example, some real-time critical applications will want to make sure continuous service is maintained, below a given congestion level, at all costs, whereas other services will be satisfied with disconnecting and trying again later if the congestion level rises. Clearly, the load management policy is related to the QoS level to which the application is subscribed. The framework load management function is represented by the IpFwLoadManager interface. To handle responses and reports, the service developer must implement the IpSvcLoadManager interface to provide the callback mechanism.
If the IpFwLoadManager interface is implemented, at least one of the methods shall be implemented as a minimum requirement. If the createLoadLevelNotification() method is implemented, the destroyLoadLevelNotification(), resumeNotification() and suspendNotification() methods shall also be implemented.
	<<Interface>>

IpFwLoadManager

	

	reportLoad (loadLevel : in TpLoadLevel) : void

queryLoadReq (querySubject : in TpSubjectType, timeInterval : in TpTimeInterval) : void

querySvcLoadRes (loadStatistics : in TpLoadStatisticList) : void

querySvcLoadErr (loadStatisticError : in TpLoadStatisticError) : void

createLoadLevelNotification (notificationSubject : in TpSubjectType) : void

destroyLoadLevelNotification (notificationSubject : in TpSubjectType) : void

suspendNotification (notificationSubject : in TpSubjectType) : void

resumeNotification (notificationSubject : in TpSubjectType) : void

…

8.3.4.8
Interface Class IpSvcLoadManager

Inherits from: IpInterface.
The service developer supplies the load manager service interface to handle requests, reports and other responses from the framework load manager function. The service instance supplies the identity of its callback interface at the time it obtains the framework's load manager interface, by use of the obtainInterfaceWithCallback() method on the IpAccess interface.
If the IpSvcLoadManager interface is implemented, at least one of the methods shall be implemented as a minimum requirement. If the LoadLevelNotification() method is implemented, the resumeNotification() and suspendNotification() methods shall also be implemented.
	<<Interface>>

IpSvcLoadManager

	

	querySvcLoadReq (timeInterval : in TpTimeInterval) : void

queryLoadRes (loadStatistics : in TpLoadStatisticList) : void

queryLoadErr (loadStatisticsError : in TpLoadStatisticError) : void

loadLevelNotification (loadStatistics : in TpLoadStatisticList) : void

suspendNotification () : void

resumeNotification () : void

…

8.3.5.1
Interface Class IpFwEventNotification

Inherits from: IpInterface.

The event notification mechanism is used to notify the service of generic events that have occurred.
If the IpFwEventNotification interface is implemented, all methods shall be implemented.
	<<Interface>>

IpFwEventNotification

	

	createNotification (eventCriteria : in TpFwEventCriteria) : TpAssignmentID

destroyNotification (assignmentID : in TpAssignmentID) : void

…

8.3.5.2
Interface Class IpSvcEventNotification

Inherits from: IpInterface.
This interface is used by the framework to inform the service of a generic event. The Event Notification Framework will invoke methods on the Event Notification Service Interface that is specified when the Event Notification interface is obtained.
If the IpSvcEventNotification interface is implemented, all methods shall be implemented.
	<<Interface>>

IpSvcEventNotification

	

	reportNotification (eventInfo : in TpFwEventInfo, assignmentID : in TpAssignmentID) : void

notificationTerminated () : void

�PAGE \# "'Page: '#'�'" �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'" �� Enter the CR number here. This number is allocated by the 3GPP support team.

�PAGE \# "'Page: '#'�'" �� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'Page: '#'�'" �� Enter the version of the specification here. This number is the version of the specification to which the CR will be applied if it is approved. Make sure that the latest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��http://www.3gpp.org/3G_Specs/3G_Specs.htm�

�PAGE \# "'Page: '#'�'" �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'Page: '#'�'" �� Mark one or more of the boxes with an X.

�PAGE \# "'Page: '#'�'" �� Enter a concise description of the subject matter of the CR. It should be no longer than one line.

�PAGE \# "'Page: '#'�'" �� Enter the source of the CR. This is either (a) one or several companies or, (b) if a (sub)working group has already reviewed and agreed the CR, then list the group as the source.

�PAGE \# "'Page: '#'�'" �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, B & C CRs for release 4 and later. A list of work item acronyms can be found in the 3GPP work plan. See � HYPERLINK "http://www.3gpp.org/ftp/information/work_plan/" ��http://www.3gpp.org/ftp/information/work_plan/�

�PAGE \# "'Page: '#'�'" �� Enter the date on which the CR was last revised.

�PAGE \# "'Page: '#'�'" �� Enter a single letter corresponding to the most appropriate category listed below. For more detailed help on interpreting these categories, see the Technical Report � HYPERLINK "http://www.3gpp.org/ftp/Specs/archive/21_series/21.900/" ��21.900� "TSG working methods".

�PAGE \# "'Page: '#'�'" �� Enter a single release code from the list below.

�PAGE \# "'Page: '#'�'" �� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'" �� Enter here the consequences if this CR was to be rejected. It is necessary to complete this section only if the CR is of category "F" (i.e. correction).

�PAGE \# "'Page: '#'�'" �� Enter the number of each clause which contains changes.

�PAGE \# "'Page: '#'�'" �� Enter an X in the box if any other specifications are affected by this change.

�PAGE \# "'Page: '#'�'" �� List here the specifications which are affected or the CRs which are linked.

�PAGE \# "'Page: '#'�'" �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

�PAGE \# "'Page: '#'�'" �� This is an example of pop-up text.

CR page 1

