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8.3.1.1
Interface Class IpFwServiceRegistration 

Inherits from: IpInterface.
The Service Registration interface provides the methods used for the registration of network SCFs at the framework. 
All methods shall be implemented.
	<<Interface>>

IpFwServiceRegistration

	

	registerService (serviceTypeName : in TpServiceTypeName, servicePropertyList : in TpServicePropertyList) : TpServiceID

announceServiceAvailability (serviceID : in TpServiceID, serviceInstanceLifecycleManagerRef : in service_lifecycle::IpServiceInstanceLifecycleManagerRef) : void

unregisterService (serviceID : in TpServiceID) : void

describeService (serviceID : in TpServiceID) : TpServiceDescription

unannounceService (serviceID : in TpServiceID) : void




…

8.3.2.1
Interface Class IpServiceInstanceLifecycleManager 

Inherits from: IpInterface.
The IpServiceInstanceLifecycleManager interface allows the Framework to create and destroy Service Manager Instances. 
All methods shall be implemented.
	<<Interface>>

IpServiceInstanceLifecycleManager

	

	createServiceManager (application : in TpClientAppID, serviceProperties : in TpServicePropertyList, serviceInstanceID : in TpServiceInstanceID) : IpServiceRef

destroyServiceManager (serviceInstance : in TpServiceInstanceID) : void




…

8.3.3.1
Interface Class IpFwServiceDiscovery 

Inherits from: IpInterface.
As a minimum requirement the listServiceTypes(), describeServiceType() and discoverService() methods shall be implemented.
	<<Interface>>

IpFwServiceDiscovery

	

	listServiceTypes () : TpServiceTypeNameList

describeServiceType (name : in TpServiceTypeName) : TpServiceTypeDescription

discoverService (serviceTypeName : in TpServiceTypeName, desiredPropertyList : in TpServicePropertyList, max : in TpInt32) : TpServiceList

listRegisteredServices () : TpServiceList




…

8.3.4.1
Interface Class IpFwFaultManager 

Inherits from: IpInterface.
This interface is used by the service instance to inform the framework of events which affect the integrity of the API, and request fault management status information from the framework.  The fault manager operations do not exchange callback interfaces as it is assumed that the service instance has supplied its Fault Management callback interface at the time it obtains the Framework's Fault Management interface, by use of the obtainInterfaceWithCallback operation on the IpAccess interface. 
If the IpFwFaultManager interface is implemented, at least one of the methods shall be implemented as a minimum requirement.
	<<Interface>>

IpFwFaultManager

	

	activityTestReq (activityTestID : in TpActivityTestID, testSubject : in TpSubjectType) : void

svcActivityTestRes (activityTestID : in TpActivityTestID, activityTestResult : in TpActivityTestRes) : void

appUnavailableInd () : void

genFaultStatsRecordReq (timePeriod : in TpTimeInterval, recordSubject : in TpSubjectType) : void

svcUnavailableInd (reason : in TpSvcUnavailReason) : void

svcActivityTestErr (activityTestID : in TpActivityTestID) : void

genFaultStatsRecordRes (faultStatistics : in TpFaultStatsRecord, serviceIDs : in TpServiceIDList) : void

genFaultStatsRecordErr (faultStatisticsError : in TpFaultStatisticsError, serviceIDs : in TpServiceIDList) : void




…

8.3.4.2
Interface Class IpSvcFaultManager 

Inherits from: IpInterface.
This interface is used to inform the service instance of events that affect the integrity of the Framework, Service or Client Application.  The Framework will invoke methods on the Fault Management Service Interface that is specified when the service instance obtains the Fault Management Framework interface: i.e. by use of the obtainInterfaceWithCallback operation on the IpAccess interface 
If the IpSvcFaultManager interface is implemented, at least one of the methods shall be implemented as a minimum requirement.
	<<Interface>>

IpSvcFaultManager

	

	activityTestRes (activityTestID : in TpActivityTestID, activityTestResult : in TpActivityTestRes) : void

svcActivityTestReq (activityTestID : in TpActivityTestID) : void

fwFaultReportInd (fault : in TpInterfaceFault) : void

fwFaultRecoveryInd (fault : in TpInterfaceFault) : void

fwUnavailableInd (reason : in TpFwUnavailReason) : void

svcUnavailableInd () : void

appUnavailableInd () : void

genFaultStatsRecordRes (faultStatistics : in TpFaultStatsRecord, recordSubject : in TpSubjectType) : void

activityTestErr (activityTestID : in TpActivityTestID) : void

genFaultStatsRecordErr (faultStatisticsError : in TpFaultStatisticsError, recordSubject : in TpSubjectType) : void

genFaultStatsRecordReq (timePeriod : in TpTimeInterval, serviceIDs : in TpServiceIDList) : void




…

8.3.4.3
Interface Class IpFwHeartBeatMgmt 

Inherits from: IpInterface.
This interface allows the initialisation of a heartbeat supervision of the framework by a service instance.  
If the IpFwHeartBeatMgmt interface is implemented, all methods shall be implemented.
	<<Interface>>

IpFwHeartBeatMgmt

	

	enableHeartBeat (interval : in TpInt32, svcInterface : in IpSvcHeartBeatRef) : void

disableHeartBeat () : void

changeInterval (interval : in TpInt32) : void




…

8.3.4.5
Interface Class IpSvcHeartBeatMgmt 

Inherits from: IpInterface.
This interface allows the initialisation of a heartbeat supervision of the service instance by the framework. 
If the IpSvcHeartBeatMgmt interface is implemented, all methods shall be implemented.
	<<Interface>>

IpSvcHeartBeatMgmt

	

	enableSvcHeartBeat (interval : in TpInt32, fwInterface : in IpFwHeartBeatRef) : void

disableSvcHeartBeat () : void

changeInterval (interval : in TpInt32) : void




…

8.3.4.7
Interface Class IpFwLoadManager 

Inherits from: IpInterface.
The framework API should allow the load to be distributed across multiple machines and across multiple component processes, according to a load management policy. The separation of the load management mechanism and load management policy ensures the flexibility of the load management services. The load management policy identifies what load management rules the framework should follow for the specific service. It might specify what action the framework should take as the congestion level changes. For example, some real-time critical applications will want to make sure continuous service is maintained, below a given congestion level, at all costs, whereas other services will be satisfied with disconnecting and trying again later if the congestion level rises. Clearly, the load management policy is related to the QoS level to which the application is subscribed. The framework load management function is represented by the IpFwLoadManager interface.  To handle responses and reports, the service developer must implement the IpSvcLoadManager interface to provide the callback mechanism. 
If the IpFwLoadManager interface is implemented, at least one of the methods shall be implemented as a minimum requirement. If the createLoadLevelNotification() method is implemented, the destroyLoadLevelNotification(), resumeNotification() and suspendNotification() methods shall also be implemented.
	<<Interface>>

IpFwLoadManager

	

	reportLoad (loadLevel : in TpLoadLevel) : void

queryLoadReq (querySubject : in TpSubjectType, timeInterval : in TpTimeInterval) : void

querySvcLoadRes (loadStatistics : in TpLoadStatisticList) : void

querySvcLoadErr (loadStatisticError : in TpLoadStatisticError) : void

createLoadLevelNotification (notificationSubject : in TpSubjectType) : void

destroyLoadLevelNotification (notificationSubject : in TpSubjectType) : void

suspendNotification (notificationSubject : in TpSubjectType) : void

resumeNotification (notificationSubject : in TpSubjectType) : void




…

8.3.4.8
Interface Class IpSvcLoadManager 

Inherits from: IpInterface.
The service developer supplies the load manager service interface to handle requests, reports and other responses from the framework load manager function.  The service instance supplies the identity of its callback interface at the time it obtains the framework's load manager interface, by use of the obtainInterfaceWithCallback() method on the IpAccess interface. 
If the IpSvcLoadManager interface is implemented, at least one of the methods shall be implemented as a minimum requirement. If the LoadLevelNotification() method is implemented, the resumeNotification() and suspendNotification() methods shall also be implemented.
	<<Interface>>

IpSvcLoadManager

	

	querySvcLoadReq (timeInterval : in TpTimeInterval) : void

queryLoadRes (loadStatistics : in TpLoadStatisticList) : void

queryLoadErr (loadStatisticsError : in TpLoadStatisticError) : void

loadLevelNotification (loadStatistics : in TpLoadStatisticList) : void

suspendNotification () : void

resumeNotification () : void




…

8.3.5.1
Interface Class IpFwEventNotification 

Inherits from: IpInterface.

The event notification mechanism is used to notify the service of generic events that have occurred. 
If the IpFwEventNotification interface is implemented, all methods shall be implemented.
	<<Interface>>

IpFwEventNotification

	

	createNotification (eventCriteria : in TpFwEventCriteria) : TpAssignmentID

destroyNotification (assignmentID : in TpAssignmentID) : void




…

8.3.5.2
Interface Class IpSvcEventNotification 

Inherits from: IpInterface.
This interface is used by the framework to inform the service of a generic event.  The Event Notification Framework will invoke methods on the Event Notification Service Interface that is specified when the Event Notification interface is obtained. 
If the IpSvcEventNotification interface is implemented, all methods shall be implemented.
	<<Interface>>

IpSvcEventNotification

	

	reportNotification (eventInfo : in TpFwEventInfo, assignmentID : in TpAssignmentID) : void

notificationTerminated () : void
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