joint API group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5)
N5-020088

Meeting #16, Hong Kong, CHINA, 4 – 8 February 2002

Source:
Siemens, karsten.luettge@icn.siemens.de
Title:
Additional Rules for WSDL generation from OSA APIs
Agenda Item:
6.6 (WSDL, SOAP, XML)

Document for:
Discussion

Category:
TDoc

Work Item ID:
OSA2

Doc Summary:

Specs involved:
?

Introduction

In Cancun, there was a contribution from Nortel and Lucent about generating WSDL from the Corba IDL. As an example, a WSDL description of the Account Management service has been presented (tdoc N5-011192). We would like to thank Nortel and Lucent for the initial work done.

In the context of Paymentgroup, similar work has been done. As a result of this work, an XML schema description of the Content Charging service has been produced and prototyped (see tdoc N5-020086 for the spec and tdoc N5-020087 for the prototype). As a result of these activities, we would propose some additional guidelines on how the OSA Web services should look like.

Discussion

The rationale behind the proposed rules is that the “main customers” of the joint workgroup are the programmers that implement OSA client applications. The specifications produced by the joint workgroup need to meet their needs, both in functionality and technology. Thus, it is less important that there is a 1:1 mapping between the Corba IDL and the Web services WSDL specified by the joint workgroup, since most programmers will use only one of the technologies. But it is important, that each specification is consistent with other specs that use the same technology, that is, a Web service should use similar concepts or naming conventions as other Web services, since most programmers will use OSA and other, non-OSA specifications in parallel.

We expect that a seamless integration of OSA interfaces into a specific technology (like Web services) cannot be achieved by automatically generating the WSDL from UML or IDL. We believe it requires manual work. A similar approach has been taken by the Java realization group, which introduced a rule book for manual optimization of automatically generated code.

The following example compares the generated WSDL to a manually optimized WSDL by means of sample messages. The generated WSDL example has been quoted from tdoc N5-011192 from Cancun. The optimized WSDL example is not based on real WSDL, it shall illustrate how the messages could look like.

Some informal rules are given that describe how the WSDL instances should look like. More formal rules that describe how to generate WSDL need to be derived from this.

Original Proposal

QueryBalanceReq

Method Call

POST /AccountManagment HTTP/1.1

Host: www.somecompany.com

Content-Type: text/xml; charset=”utf-8”

Content-Length: nnnn

SOAPAction: “http://www.csapi.org/am/IpAccountManager#queryBalanceReq”

<soapenv:Envelope xmlns:soapenv=”http://schemas.xmlsoap.org/soap/envelope”>

<soapenv:Body>

<m:QueryBalanceReq xmlns:m=”http://www.csapi.org/am/wsdl”>

<m:users>

<m:TpAddress>

<m:plan>P_ADDRESS_PLAN_E164</m:plan>

<m:AddrString>6137631725</m:AddrString>

<m:Name>David Tweedie</m:AddrString>

<m:Presentation>

P_ADDRESS_PRESENTATION_ALLOWED

</m:Presentation>

<m:Screening>

P_ADDRESS_SCREENING_UNDEFINED

</m:Screening>

<m:SubAddString></m:SubAddString>

</m:TpAddress>

<m:TpAddress>

<m:plan>P_ADDRESS_PLAN_E164</m:plan>

<m:AddrString>356871684</m:AddrString>

<m:Name>Musa Unmehopa</m:AddrString>

<m:Presentation>

P_ADDRESS_PRESENTATION_ALLOWED

</m:Presentation>

<m:Screening>

P_ADDRESS_SCREENING_UNDEFINED

</m:Screening>

<m:SubAddString></m:SubAddString>

</m:TpAddress>

</m:users>

</m:QueryBalanceReq>

</soapenv:Body>

</soapenv:Envelope>

Return Value

HTTP/1.1 200 OK

Content-Type: text/xml; charset=”utf-8”

Content-Length: nnnn

<soapenv:Envelope xmlns:soapenv=”http://schemas.xmlsoap.org/soap/envelope”>

<soapenv:Body>

<m:QueryBalanceReqResponse xmlns:m=”http://www.csapi.org/am/wsdl”>

<m:return>1234567</m:return>

</m:QueryBalnaceReqResponse>

</soapenv:Body>

</soapenv:Envelope>

QueryBalanceRes

Method Call

POST /AccountManagment HTTP/1.1

Host: www.somecompany.com

Content-Type: text/xml; charset=”utf-8”

Content-Length: nnnn

SOAPAction: “http://www.csapi.org/am/IpAccountManager#queryBalanceReq”

<soapenv:Envelope xmlns:soapenv=”http://schemas.xmlsoap.org/soap/envelope”>

<soapenv:Body>

<m:QueryBalanceRes xmlns:m=”http://www.csapi.org/am/wsdl”>

<m:queryid>1234567</m:queryid>

<m:balances>

<m:balance>

<m:UserID>

<m:plan>P_ADDRESS_PLAN_E164</m:plan>

<m:AddrString>6137631725</m:AddrString>

<m:Name>David Tweedie</m:AddrString>

<m:Presentation>

P_ADDRESS_PRESENTATION_ALLOWED

</m:Presentation>

<m:Screening>

P_ADDRESS_SCREENING_UNDEFINED

</m:Screening>

<m:SubAddString></m:SubAddString>

</m:UserID>

<m:StatusCode>

P_Balance_Query_OK

</m:StatusCode>

<m:BalanceInfo>

<m:Currency>

CAD

</m:Currency>

<m:ValuePartA>

0

</m:ValuePartA>

<m:ValuePartB>

0

</m:ValuePartB>

<m:Exponent>

0

</m:Exponent>

<m:AdditionalInfo>

Service has been disconnected.

</m:AdditionalInfo>

</m:BalanceInfo>

</m:balance>

<m:balance>

<m:UserID>

<m:plan>P_ADDRESS_PLAN_E164</m:plan>

<m:AddrString>356871684</m:AddrString>

<m:Name>Musa Unmehopa</m:AddrString>

<m:Presentation>

P_ADDRESS_PRESENTATION_ALLOWED

</m:Presentation>

<m:Screening>

P_ADDRESS_SCREENING_UNDEFINED

</m:Screening>

<m:SubAddString></m:SubAddString>

</m:UserID>

<m:StatusCode>

P_Balance_Query_OK

</m:StatusCode>

<m:BalanceInfo>

<m:Currency>

CAD

</m:Currency>

<m:ValuePartA>

0

</m:ValuePartA>

<m:ValuePartB>

10000

</m:ValuePartB>

<m:Exponent>

2

</m:Exponent>

<m:AdditionalInfo>

In Good Standing.

</m:AdditionalInfo>

</m:BalanceInfo>

</m:balance>

</m:balances>

</m:QueryBalanceRes>

</soapenv:Body>

</soapenv:Envelope>

Return Value

HTTP/1.1 200 OK

Content-Type: text/xml; charset=”utf-8”

Content-Length: nnnn

<soapenv:Envelope xmlns:soapenv=”http://schemas.xmlsoap.org/soap/envelope”>

<soapenv:Body>

<m:QueryBalanceResResponse xmlns:m=”http://www.csapi.org/am/wsdl”>

<m:return></m:return>

</m:QueryBalnaceReqResponse>

</soapenv:Body>

</soapenv:Envelope>

Discussion

· 4 messages, many XML elements (I did not count them)

· Client needs to implement a Web server (a HTTP server)

· Client needs to map (asynchronous) messages to the original request

Improved Messages

QueryBalanceReq

Method Call

POST /AccountManagment HTTP/1.1

Host: www.somecompany.com

Content-Type: text/xml; charset=”utf-8”

Content-Length: nnnn

SOAPAction: “http://www.csapi.org/am/IpAccountManager#queryBalance”

<soapenv:Envelope xmlns:soapenv=”http://schemas.xmlsoap.org/soap/envelope”>

<soapenv:Body>

<m:QueryBalance xmlns:m=”http://www.csapi.org/am/wsdl”>

<m:E164user>

<m:AddrString>6137631725</m:AddrString>

</m:user>

<m:E164user>

<m:AddrString>356871684</m:AddrString>

</m:user>

</m:QueryBalance>

</soapenv:Body>

</soapenv:Envelope>

Return Value

HTTP/1.1 200 OK

Content-Type: text/xml; charset=”utf-8”

Content-Length: nnnn

<soapenv:Envelope xmlns:soapenv=”http://schemas.xmlsoap.org/soap/envelope”>

<soapenv:Body>

<m:QueryBalanceResponse xmlns:m=”http://www.csapi.org/am/wsdl”>

<m:balance>

<m:user>

<m:E164Address>

<m:AddrString>6137631725</m:AddrString>

<m:Name>David Tweedie</m:Name>

</m:E164Address>

</m:user>

<m:BalanceInfo>

<m:Balance m:Currency=”CAD”>

0.0

</m:Balance>

<m:AdditionalInfo>

Service has been disconnected.

</m:AdditionalInfo>

</m:BalanceInfo>

</m:balance>

<m:balance>

<m:user>

<m:E164Address>

<m:AddrString>356871684</m:AddrString>

<m:Name>Musa Unmehopa</m:Name>

</m:E164Address>

</m:user>

<m:BalanceInfo>

<m:Balance m:Currency=”CAD”>

1000.00

</m:Balance>

<m:AdditionalInfo>

In Good Standing.

</m:AdditionalInfo>

</m:BalanceInfo>

</m:balance>

</m:QueryBalanceResponse>

</soapenv:Body>

</soapenv:Envelope>

Discussion

· Only 2 Messages

· Only one HTTP request/response in a single TCP connection

· less XML elements

· Request and response can be handled in a single thread

Differences

The second example differs from the first one in the following:

· Use of synchronous communication, since the nature of the operation is synchronous. This saves two messages (queryBalanceReqResponse and queryBalanceResResponse) and eliminates the queryid that was formerly necessary to link the response back to the request.

· The <TpAddress> tag, that is basically a union of address types, depending on the chosen address plan, has been represented differently.

· Between the element tags is only the “payload”, that is, the address string, and maybe the name. The <name> element is optional. In the example request, only the address string is significant: there is no need to tell the network the names of its users.

· Additional information can be represented as attributes, which in turn are optional. This applies for instance to the presentation and screening information. In our example, where no user is involved personally, the presentation and screening information has no meaning at all, so it has been omitted.

· The address plan can be represented by an attribute, or there could be a different element name for each address plan. The latter approach has been chosen in the example.

· In the response, the <queryid> tag has been removed.

· The <balances> tag, indicating a list of balances, has been removed. A list of balances appears without any surrounding tags.

· The status code has been omitted; the HTTP header already indicates “200 OK”.

· The <BalanceInfor> contains the amount as a single string with a decimal point, and the currency as an attribute. This much more readable and compact as the original representation of balances.

· The SOAP practice is to name the request and response messages as <operation> and <operation>Response. This practice is well supported by tools, e.g. Apache-SOAP.

Motivation

The proposal is based on and justified by the following facts:

· Many PayCircle/Paymentgroup members complained about the deeply nested data structures. It is very difficult to use. The support of nested data structures by common Web service toolkits (e.g. IBM alphaworks) is low. With a OSA Web service, there’s no need to be 100% compatible with the Corba spec, so why not fix this?

· Asynchronous interfaces are difficult to implement from a client programmers perspective:

· The client must implement HTTP server functionality, which is at least a security impact (requires proper firewall etc.)

· The client programmer must receive asynchronous events and correlate them with pending requests in a different thread. Such functionality is taken over by the operating system, ORB, or container in synchronous communication.

· There are many examples in the specification where asynchronous communication has been chosen only for performance reasons, while the nature of the operation is synchronous (all method triples with Req/Res/Err suffix)

· The sessionID concept has always been questioned in the joint workgroup, but cannot be removed from the Corba IDL. But why continue using it in other technologies?

Proposed Rules for UML – WSDL Translation

· Use synchronous calls where possible. Many operations are modeled asynchronously, but are basically synchronous. This applies basically to all operations that are modeled by the three methods, <operation>Req, <operation>Res, <operation>Err. Examples are: routeReq, queryBalanceReq, directDebitReq.

· Map both <operation>Err methods and exceptions to SOAP faults. The only difference between exceptions and error methods is that the former indicate problems that can be detected immediately, while the latter indicate problems that may occur on external (backend) systems. Why bother the client programmer with the real or possible implementation details of an SCS?

· Use HTTP to correlate request and response messages.

· In Corba IDL, request methods return an assignment id, while the corresponding result or error messsage presents the same assignment id to the client application. With Web services and synchronous modeling, a request message would be carried by a POST message, so the corresponding response message could be carried by the corresponding 200 OK message, while a fault message could be carried by the appropriate HTTP error message.

· In Corba IDL, sessions are referenced by the combination of an object reference and a session id that is local to that object. In HTTP, an object reference could be mapped to an URI, while the session id could be represented as a parameter. So, only a URI (containing a parameter) needs to be returned to the client upon session creation. This URI contains already the sessionID. The client inserts this URI in the To: header of any subsequent request and does not care for the sessionID that is contained in that URI. The client never needs to see and handle any sessionID.

· Flatten the type hierarchy
· Use attributes rather than sequence elements where appropriate, e.g. for currency or presentation flags

· Don’t use typedefs when the new type is equal to the base type.

· Use formatted strings (restrictions of the XML String type) for “logically atomic” values, such as currency amounts.

· Dont use “auxiliary types” to aggregate multiple parameters or return values into a single object. Use flat XML sequences instead. A criteria could be: Is a type used in multiple locations, or only once?

· Make elements optional by utilizing the minOccurence and maxOccurence attributes (e.g. for Presentation and Screening in TpAddress)

· Map tagged choice of data elements to XML choice (omit the selector tag, selection can be done by means of the element name).

Open Issues

· How to we map UML inheritance to WSDL

· just copy the inherited methods to all ports?

· remove the inherited methods since they are not needed (e.g. setCallback)?

· Creation of Service Manager Instance

· use UDDI rather than framework for service discovery

· messages for Service Manager instantiation are needed

· Security needs to be addressed more explicitly for Web services.

· Do we need the framework in WSDL?

Conclusion

We propose to put more manual work on the generation of the WSDL mappings.

End of Contribution

