3GPP TSG_CN5 (Open Service Architecture – OSA)

Meeting #10, Antwerp, BELGIUM, 5 – 7 March 2001
Tdoc N5-010127

Source:
Ericsson

Title:
Removal of GCCS
Agenda Item:

Document for:
Approval
Category:

Work Item ID:

Doc Summary:

Specs involved:

1. Introduction

The current version of the 12070 part 4, contains the Generic Call Control (GCC), Multi-Party Call control (MPCC), Multi-media call control (MMCC) and Conference Call control (CCC). However, a number of improvements have been introduced in the MPCC, MMCC and CCC, like the updates on notification operations and event alignment. The GCC is now on it’s own, being quite different from the others. Because :

· application developers will be very much confused by having the different versions of the API,

· a lot of improvements and corrections have been adopted in the MPCC and not in the GCC

· the functionality the GCC currently offers can be offered by a MPCC version that is tuned by means of the Service Properties.

we strongly recommend to remove the GCC from the specification and replace it by a tuned MPCC.

2. Impact on specification

The following outlines the impact on the specification.

4
4.1
4.1.1

4.1.2

4.1.3

4.1.4

4.1.5

4.1.6

4.1.7

4.1.8

4.1.9

4.1.10

4.1.11

4.2

4.3

4.3.1

4.3.2

4.3.3

4.3.4

4.4
4.4.1

4.4.1.1

4.4.1.2

4.4.2

4.4.2.1

4.4.2.2

4.4.2.3

4.4.2.4

4.4.2.5

4.4.2.6

4.4.2.7

4.4.2.8

4.4.2.9

4.4.2.10

4.4.2.11

4.4.2.12

4.4.2.13

4.4.2.14

4.4.2.15

4.4.2.16

4.5

4.6

·

·

·

·

4.6.1

4.6.2

5 MultiParty Call Control Service

The Call Control API for the CAMEL Service Environment (CSE) is a special version of the Multi-party Call Control API that is outlined in the next sections.

Implementations of this special version must have the following Service Properties set to the indicated values :

· P_OPERATION_SET = {

“IpMultiPartyCallControlManager.createNotification”,

“IpMultiPartyCallControlManager.destroyNotification”,

“IpMultiPartyCallControlManager.changeNotification”,

“IpMultiPartyCallControlManager.getNotification”,

“IpMultiPartyCall.getCallLegs”,

“IpMultiPartyCall.createCallLeg”,

“IpMultiPartyCall.createAndRouteCallLegReq”,

“IpMultiPartyCall.release”,

“IpMultiPartyCall.deassignCall”,

“IpMultiPartyCall.getCallInfoReq”,

“IpMultiPartyCall.setCallChargePlan”,

“IpMultiPartyCall.setAdviceOfCharge”,

“IpMultiPartyCall.superviseCallReq”,

“IpCallLeg.routeReq”,

“IpCallLeg.eventReportReq”,

“IpCallLeg.release”,

“IpCallLeg.getInfoReq”,

“IpCallLeg.getCall”,

“IpCallLeg.continueProcessing”

}

· P_UI_CALL_BASED = TRUE

· P_UI_AT_ALL_STAGES = FALSE

· P_MEDIA_TYPE = P_AUDIO

· P_MAX_CALLLEGS_PER_CALL = 2

· P_MEDIA_ATTACH_EXPLICIT = FALSE

5.1 Sequence Diagrams
EDITORS NOTE: sequences below from the Generic Call Control need to be adapted to the MPCC. This should be done from the UML model and is considered a minor job.

5.1.1 Additional Callbacks

The following sequence diagram shows how an application can register two call back interfaces for the same set of events. If one of the call backs can not be used, e.g., because the application crashed, the other call back interface is used instead.

[image: image16.wmf]first instance :

(Logical View...

second instance :

(Logical View::IpA...

 : IpAppCallControlManager

 : IpAppCallControlManager

 : IpCallControlManager

1: new()

2: enableCallNotification()

3: new()

4: enableCallNotification()

8: callEventNotify()

9: "forward event"

5: callEventNotify()

7: "call Notify result: failure"

6: 'forward event'

1:
The first instance of the application is started on node 1. The application creates a new IpAppCallControlManager to handle callbacks for this first instance of the logic.

2:
The enableCallNotfication is associated with an applicationID. The call control manager uses the applicationID to decide whether this is the same application.

3:
The second instance of the application is started on node 2. The application creates a new IpAppCallControlManager to handle callbacks for this second instance of the logic.

4:
The same enableCallNotfication request is sent as for the first instance of the logic. Because both requests are associated with the same application, the second request is not rejected, but the specified callback object is stored as an additional callback.

5:
When the trigger occurs one of the first instance of the application is notified. The gateway may have different policies on how to handle additional callbacks, e.g., always first try the first registered or use some kind of round robin scheme.

6:
The event is forwarded to the first instance of the logic.

7:
When the first instance of the application is overloaded or unavailable this is communicated with an exception to the call control manager.

8:
Based on this exception the call control manager will notify another instance of the application (if available).

9:
The event is forwarded to the second instance of the logic.

5.1.2 Alarm Call

The following sequence diagram shows a 'reminder message', in the form of an alarm, being delivered to a customer as a result of a trigger from an application. Typically, the application would be set to trigger at a certain time, however, the application could also trigger on events.

[image: image17.wmf] :

IpCallControlManager

 : IpAppCall

 : IpCall

 : IpUICall

 :

IpAppUIManager

 :

IpAppUICall

 : (Logical

View::IpA...

1: new()

2: createCall()

3: new()

4: routeReq()

5: routeRes()

9: sendInfoReq()

6: 'forward event'

7: createUICall()

8: new()

10: sendInfoRes()

11: 'forward event'

12: release()

13: release()

1:
This message is used to create an object implementing the IpAppCall interface.

2:
This message requests the object implementing the IpCallControlManager interface to create an object implementing the IpCall interface.

3:
Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load control values not exceeded) is met it is created.

4:
This message instructs the object implementing the IpCall interface to route the call to the customer destined to receive the 'reminder message'

5:
This message passes the result of the call being answered to its callback object.

6:
This message is used to forward the previous message to the IpAppLogic.

7:
The application requests a new UICall object that is associated with the call object.

8:
Assuming all criteria are met, a new UICall object is created by the service.

9:
This message instructs the object implementing the IpUICall interface to send the alarm to the customer's call.

10:
When the announcement ends this is reported to the call back interface.

11:
The event is forwarded to the application logic.

12:
The application releases the UICall object, since no further announcements are required. Alternatively, the application could have indicated P_FINAL_REQUEST in the sendInfoReq in which case the UICall object would have been implicitly released after the announcement was played.

13:
The application releases the call and all associated parties.

5.1.3 Application Initiated Call

The following sequence diagram shows an application creating a call between party A and party B. This sequence could be done after a customer has accessed a Web page and selected a name on the page of a person or organisation to talk to.

[image: image18.wmf] :

IpCallControlManager

 : IpAppCall

 : IpCall

 : (Logical

View::IpA...

5: routeRes()

1: new()

2: createCall()

3: new()

4: routeReq()

7: routeReq()

8: routeRes()

6: 'forward event'

9: 'forward event'

10: deassignCall()

1:
This message is used to create an object implementing the IpAppCall interface.

2:
This message requests the object implementing the IpCallControlManager interface to create an object implementing the IpCall interface.

3:
Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load control values not exceeded) is met, it is created.

4:
This message is used to route the call to the A subscriber (origination). In the message the application request response when the A party answers.

5:
This message indicates that the A party answered the call.

6:
This message forwards the previous message to the application logic.

7:
This message is used to route the call to the B-party. Also in this case a response is requested for call answer or failure.

8:
This message indicates that the B-party answered the call. The call now has two parties and a speech connection is automatically established between them.

9:
This message is used to forward the previous message to the IpAppLogic.

10:
Since the application is no longer interested in controlling the call, the application deassigns the call. The call will continue in the network, but there will be no further communication between the call object and the application.

5.1.4 Call Barring 1

The following sequence diagram shows a call barring service, initiated as a result of a prearranged event being received by the framework. Before the call is routed to the destination number, the calling party is asked for a PIN code. The code is accepted and the call is routed to the original called party.

[image: image19.wmf] : (Logical

View::Ip...

 : IpAppCallControlManager

 : IpAppCall

 : IpCall

 : IpUICall

 :

IpUIManager

 :

IpCallControlManager

 :

IpAppUICall

13: routeRes()

12: routeReq()

8: sendInfoAndCollectReq()

9: sendInfoAndCollectRes()

3: callEventNotify()

4: 'forward event'

5: new()

1: new()

14: 'forward event'

10: 'forward event'

2: enableCallNotification()

6: createUICall()

7: new()

11: release()

15: callEnded()

16: "forward event"

17: deassignCall()

1:
This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2:
This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts a call barring service, it is likely that all new call events destined for a particular address or address range prompted for a password before the call is allowed to progress. When a new call, that matches the event criteria set, arrives a message (not shown) is directed to the object implementing the IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg object.

3:
This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.

4:
This message is used to forward the previous message to the IpAppLogic.

5:
This message is used by the application to create an object implementing the IpAppCall interface. The reference to this object is passed back to the object implementing the IpCallControlManager using the return parameter of the callEventNotify.

6:
This message is used to create a new UICall object. The reference to the call object is given when creating the UICall.

7:
Provided all the criteria are fulfilled, a new UICall object is created.

8:
The call barring service dialogue is invoked.

9:
The result of the dialogue, which in this case is the PIN code, is returned to its callback object.

10:
This message is used to forward the previous message to the IpAppLogic.

11:
This message releases the UICall object.

12:
Assuming the correct PIN is entered, the call is forward routed to the destination party.

13:
This message passes the result of the call being answered to its callback object.

14:
This message is used to forward the previous message to the IpAppLogic

15:
When the call is terminated in the network, the application will receive a notification. This notification will always be received when the call is terminated by the network in a normal way, the application does not have to request this event explicitly.

16:
The event is forwarded to the application.

17:
The application must free the call related resources in the gateway by calling deassignCall.

5.1.5 Number Translation 1

The following sequence diagram shows a simple number translation service, initiated as a result of a prearranged event being received by the framework.

[image: image20.wmf] :

IpCallControlManager

 : IpAppCall

 : IpCall

 : IpAppCallControlManager

 : (Logical

View::IpA...

6: 'translate number'

7: routeReq()

8: routeRes()

3: callEventNotify()

4: 'forward event'

5: new()

9: 'forward event'

1: new()

2: enableCallNotification()

10: deassignCall()

1:
This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2:
This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts a number translation service, it is likely that only new call events within a certain address range will be enabled. When a new call, that matches the event criteria set in message 2, arrives a message (not shown) is directed to the object implementing the IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg object.

3:
This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.

4:
This message is used to forward message 3 to the IpAppLogic.

5:
This message is used by the application to create an object implementing the IpAppCall interface. The reference to this object is passed back to the object implementing the IpCallControlManager using the return parameter of message 3.

6:
This message invokes the number translation function.

7:
The returned translated number is used in message 7 to route the call towards the destination.

8:
This message passes the result of the call being answered to its callback object

9:
This message is used to forward the previous message to the IpAppLogic.

10:
The application is no longer interested in controlling the call and therefore deassigns the call. The call will continue in the network, but there will be no further communication between the call object and the application.

5.1.6 Number Translation 1 (with callbacks)

The following sequence diagram shows a simple number translation service, initiated as a result of a prearranged event being received by the framework.

For illustation, in this sequence the callback references are set explictly. This is optional. All the callbacks references can also be passed in other methods. From an efficiency point of view that is also the preferred method. The rest of the sequences use that mechanism.

[image: image21.wmf] :

IpCallControlManager

 : IpAppCall

 : IpCall

 : IpAppCallControlManager

 : (Logical

View::IpA...

10: routeRes()

4: callEventNotify()

8: 'translate number'

9: routeReq()

5: 'forward event'

6: new()

11: 'forward event'

1: new()

2: enableCallNotification()

12: deassignCall()

3: setCallback()

7: setCallbackWithSessionID()

1:
This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2:
This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts a number translation service, it is likely that only new call events within a certain address range will be enabled. When a new call, that matches the event criteria set in message 2, arrives a message (not shown) is directed to the object implementing the IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg object.

3:
This message sets the reference of the IpAppCallControlManager object in the CallControlManager. The CallControlManager reports the callEventNotify to referenced object only for enableCallNotification's that do not have a explicit IpAppCallControlManager reference specified in the enableCallNotification.

4:
This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.

5:
This message is used to forward message 4 to the IpAppLogic.

6:
This message is used by the application to create an object implementing the IpAppCall interface.

7:
This message is used to set the reference to the IpAppCall for this call.

8:
This message invokes the number translation function.

9:
The returned translated number is used in message 7 to route the call towards the destination.

10:
This message passes the result of the call being answered to its callback object

11:
This message is used to forward the previous message to the IpAppLogic.

12:
The application is no longer interested in controlling the call and therefore deassigns the call. The call will continue in the network, but there will be no further communication between the call object and the application.

5.1.7 Number Translation 2

The following sequence diagram shows a number translation service, initiated as a result of a prearranged event being received by the framework. If the translated number being routed to does not answer or is busy then the call is automatically released.

[image: image22.wmf] : (Logical

View::IpA...

 : IpAppCallControlManager

 : IpAppCall

 : IpCallControlManager

 : IpCall

6: 'translate number'

9: 'forward event'

8: routeRes()

7: routeReq()

10: release()

1: new()

3: callEventNotify()

4: 'forward event'

5: new()

2: enableCallNotification()

1:
This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2:
This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts a number translation service, it is likely that only new call events within a certain address range will be enabled. When a new call, that matches the event criteria, arrives a message (not shown) is directed to the object implementing the IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg object.

3:
This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.

4:
This message is used to forward the previous message to the IpAppLogic.

5:
This message is used by the application to create an object implementing the IpAppCall interface. The reference to this object is passed back to the object implementing the IpCallControlManager using the return parameter of the callEventNotify.

6:
This message invokes the number translation function.

7:
The returned translated number is used to route the call towards the destination.

8:
Assuming the called party is busy or does not answer, the object implementing the IpCall interface sends a callback in this message, indicating the unavailability of the called party.

9:
This message is used to forward the previous message to the IpAppLogic.

10:
The application takes the decision to release the call.

5.1.8 Number Translation 3

The following sequence diagram shows a number translation service, initiated as a result of a prearranged event being received by the framework. If the translated number being routed to does not answer or is busy then the call is automatically routed to a voice mailbox.

[image: image23.wmf] : IpCallControlManager

 : IpAppCall

 : IpCall

 : IpAppCallControlManager

 : (Logical

View::IpA...

8: routeRes()

6: 'translate number'

7: routeReq()

9: 'forward event'

10: 'translate number'

11: routeReq()

12: routeRes()

13: 'forward event'

1: new()

3: callEventNotify()

4: 'forward event'

5: new()

2: enableCallNotification()

14: deassignCall()

1:
This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2:
 This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts a number translation service, it is likely that only new call events within a certain address range will be enabled. When a new call, that matches the event criteria, arrives a message (not shown) is directed to the object implementing the IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg object.

3:
This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.

4:
This message is used to forward the previous message to the IpAppLogic.

5:
This message is used by the application to create an object implementing the IpAppCall interface. The reference to this object is passed back to the object implementing the IpCallControlManager using the return parameter of the callEventNotify.

6:
This message invokes the number translation function.

7:
The returned translated number is used to route the call towards the destination.

8:
Assuming the called party is busy or does not answer, the object implementing the IpCall interface sends a callback, indicating the unavailability of the called party.

9:
This message is used to forward the previous message to the IpAppLogic.

10:
The application takes the decision to translate the number, but this time the number is translated to a number belonging to a voice mailbox system.

11:
This message routes the call towards the voice mailbox.

12:
This message passes the result of the call being answered to its callback object.

13:
This message is used to forward the previous message to the IpAppLogic.

14:
The application is no longer interested in controlling the call and therefore deassigns the call. The call will continue in the network, but there will be no further communication between the call object and the application.

5.1.9 Number Translation 4

The following sequence diagram shows a number translation service, initiated as a result of a prearranged event being received by the framework. Before the call is routed to the translated number, the application requests for all call related information to be delivered back to the application on completion of the call.

[image: image24.wmf] : IpCallControlManager

 : IpAppCall

 : IpCall

 : IpAppCallControlManager

 : (Logical

View::IpA...

6: 'translate number'

7: getCallInfoReq()

8: routeReq()

9: routeRes()

13: getCallInfoRes()

14: 'forward event'

10: 'forward event'

1: new()

3: callEventNotify()

4: 'forward event'

5: new()

2: enableCallNotification()

15: deassignCall()

11: callEnded()

12: "forward event"

1:
This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2:
This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts a number translation service, it is likely that only new call events within a certain address range will be enabled. When a new call, that matches the event criteria, arrives a message (not shown) is directed to the object implementing the IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg object.

3:
This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.

4:
This message is used to forward the previous message to the IpAppLogic.

5:
 This message is used by the application to create an object implementing the IpAppCall interface. The reference to this object is passed back to the object implementing the IpCallControlManager using the return parameter of the callEventNotify.

6:
 This message invokes the number translation function.

7:
The application instructs the object implementing the IpCall interface to return all call related information once the call has been released.

8:
The returned translated number is used to route the call towards the destination.

9:
This message passes the result of the call being answered to its callback object.

10:
This message is used to forward the previous message to the IpAppLogic.

11:
Towards the end of the call, when one of the parties disconnects, a message (not shown) is directed to the object implementing the IpCall. This causes an event, to be passed to the object implementing the IpAppCall object.

12:
This message is used to forward the previous message to the IpAppLogic.

13:
The application now waits for the call information to be sent. Now that the call has completed, the object implementing the IpCall interface passes the call information to its callback object.

14:
This message is used to forward the previous message to the IpAppLogic

15:
After the last information is received, the application deassigns the call. This will free the resources related to this call in the gateway.

5.1.10 Prepaid

This sequence shows a Pre-paid application.

The subscriber is using a pre-paid card or credit card to pay for the call. The application each time allows a certain timeslice for the call. After the timeslice, a new timeslice can be started or the application can terminate the call. In the following sequence the end-user will received an announcement before his final timeslice.

[image: image25.wmf]Prepaid :

(Logical View...

 : IpAppCallControlManager

 :

IpCallControlManager

 : IpCall

 : IpUICall

 : IpUIManager

 : IpAppUICall

 : IpAppCall

1: new()

2: enableCallNotification()

3: callEventNotify()

4: "forward event"

5: new()

7: routeReq()

8: superviseCallRes()

9: "forward event"

10: superviseCallReq()

11: superviseCallRes()

12: "forward event"

13: superviseCallReq()

14: superviseCallRes()

15: "forward event"

6: superviseCallReq()

17: sendInfoReq()

18: sendInfoRes()

19: "forward event"

21: superviseCallReq()

22: superviseCallRes()

23: "forward event:

24: release()

16: createUICall()

20: release()

1:
This message is used by the application to create an object implementing the IpAppGenericCallControlManager interface.

2:
This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts a pre-paid service, it is likely that only new call events within a certain address range will be enabled. When a new call, that matches the event criteria, arrives a message (not shown) is directed to the object implementing the IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg object.

3:
The incoming call triggers the Pre-Paid Application (PPA).

4:
The message is forwarded to the application.

5:
A new object on the application side for the Generic Call object is created

6:
The Pre-Paid Application (PPA) requests to supervise the call. The application will be informed after the period indicated in the message. This period is related to the credits left on the account of the pre-paid subscriber.

7:
Before continuation of the call, PPA sends all charging information, a possible tariff switch time and the call duration supervision period, towards the GW which forwards it to the network.

8:
At the end of each supervision period the application is informed and a new period is started.

9:
The message is forwarded to the application.

10:
The Pre-Paid Application (PPA) requests to supervise the call for another call duration.

11:
At the end of each supervision period the application is informed and a new period is started.

12:
The message is forwarded to the application.

13:
The Pre-Paid Application (PPA) requests to supervise the call for another call duration.

14:
When the user is almost out of credit an announcement is played to inform about this. The announcement is played only to the leg of the A-party, the B-party will not hear the announcement.

15:
The message is forwarded to the application.

16:
A new UICall object is created and associated with the controlling leg.

17:
An announcement is played to the controlling leg informing the user about the near-expiration of his credit limit. The B-subscriber will not hear the announcement.

18:
When the announcement is completed the application is informed.

19:
The message is forwarded to the application.

20:
The application releases the UICall object.

21:
The user does not terminate so the application terminates the call after the next supervision period.

22:
The supervision period ends

23:
The event is forwarded to the logic.

24:
The application terminates the call. Since the user interaction is already explicitly terminated no userInteractionFaultDetected is sent to the application.

5.1.11 Pre-Paid with Advice of Charge (AoC)

This sequence shows a Pre-paid application that uses the Advice of Charge feature.

The application will send the charging information before the actual call setup and when during the call the charging changes new information is sent in order to update the end-user. Note: the Advice of Charge feature requires an application in the end-user terminal to display the charges for the call, depending on the information received from the application.

[image: image26.wmf]Prepaid :

(Logical Vie...

 : IpAppCallControlManager

 :

IpCallControlManager

 : IpCall

 : IpUICall

 : IpUIManager

 : IpAppUICall

 : IpAppCall

1: new()

2: enableCallNotification()

3: callEventNotify()

4: "forward event"

8: routeReq()

11: superviseCallReq()

15: superviseCallReq()

7: superviseCallReq()

24: superviseCallReq()

27: release()

21: sendInfoReq()

18: new()

22: sendInfoRes()

23: "forward event"

5: new()

9: superviseCallRes()

10: "forward event"

12: superviseCallRes()

13: "forward event"

14: setAdviceOfCharge()

16: superviseCallRes()

17: "forward event"

25: superviseCallRes()

26: "forward event:

6: setAdviceOfCharge()

19: createUICall()

20: new()

28: userInteractionFaultDetected()

1:
This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2:
This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts a pre-paid service, it is likely that only new call events within a certain address range will be enabled. When a new call, that matches the event criteria, arrives a message (not shown) is directed to the object implementing the IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg object.

3:
The incoming call triggers the Pre-Paid Application (PPA).

4:
The message is forwarded to the application.

5:
A new object on the application side for the Call object is created

6:
The Pre-Paid Application (PPA) sends the AoC information (e.g the tariff switch time). (it shall be noted the PPA contains ALL the tariff information and knows how to charge the user).

During this call sequence 2 tariff changes take place. The call starts with tariff 1, and at the tariff switch time (e.g., 18:00 hours) switches to tariff 2. The application is not informed about this (but the end-user is!)

7:
The Pre-Paid Application (PPA) requests to supervise the call. The application will be informed after the period indicated in the message. This period is related to the credits left on the account of the pre-paid subscriber.

8:
The application requests to route the call to the destination address.

9:
At the end of each supervision period the application is informed and a new period is started.

10:
The message is forwarded to the application.

11:
The Pre-Paid Application (PPA) requests to supervise the call for another call duration.

12:
At the end of each supervision period the application is informed and a new period is started.

13:
The message is forwarded to the application.

14:
Before the next tariff switch (e.g., 19:00 hours) the application sends a new AOC with the tarif switch time. Again, at the tariff switch time,the network will send AoC information to the end-user.

15:
The Pre-Paid Application (PPA) requests to supervise the call for another call duration.

16:
When the user is almost out of credit an announcement is played to inform about this (19-21). The announcement is played only to the leg of the A-party, the B-party will not hear the announcement.

17:
The message is forwarded to the application.

18:
The application creates a new call back interface for the User interaction messages.

19:
A new UI Call object that will handle playing of the announcement needs to be created

20:
The Gateway creates a new UI call object that will handle playing of the announcement.

21:
With this message the announcement is played to the calling party.

22:
The user indicates that the call should continue.

23:
The message is forwarded to the application.

24:
The user does not terminate so the application terminates the call after the next supervision period.

25:
The user is out of credit and the application is informed.

26:
The message is forwarded to the application.

27:
With this message the application requests to release the call.

28:
Terminating the call which has still a UICall object associated will result in a userInteractionFaultDetected. The UICall object is terminated in the gateway and no further communication is possible between the UICall and the application.

5.2 Sequence Diagrams

5.2.1 Application initiated call setup

The following sequence diagram shows an application creating a call between party A and party B. Here, a call is created first. Then party A's call leg is created before triggers are set on it for answer and then routed to the call. On answer, an announcement is played indicating that the call is being set up to party B. While the announcement is being played, party B's call leg is created and then triggers are set on it for answer. On answer the announcement is cancelled and party B is routed to the call.

[image: image27.wmf]PartyB :

IpCallLeg

 : IpMultiPartyCallControlManager

 :

IpAppMultiPartyCall

 :

IpMultiPartyCall

PartyA :

IpCallLeg

 : (Logical

View::Ip...

4: setCallback()

1: new()

2: createCall()

3: new()

7: eventReportReq()

 :

IpAppUICall

 : IpUICall

11: sendInfoReq()

15: eventReportReq()

18: abortActionReq()

5: createCallLeg(in TpSessionID, in IpAppCallLegRef, in TpAddress, in TpAddress, in TpAddress, in TpAddress, in TpCallAppInfoSet, out TpCallLegIdentifierRef, in TpCallLegConnectionProperties)

6: new()

13: createCallLeg(in TpSessionID, in IpAppCallLegRef, in TpAddress, in TpAddress, in TpAddress, in TpAddress, in TpCallAppInfoSet, out TpCallLegIdentifierRef, in TpCallLegConnectionProperties)

14: new()

AppPartyA :

(IpAppMultiPartyCallLeg)

AppPartyB :

(IpAppMultiPartyCallLeg)

9: eventReportRes ()

17: eventReportRes ()

8: routeReq(in TpSessionID)

16: routeReq(in TpSessionID)

12: sendInfoRes()

 :

IpUIManager

10: createUICall()

19: deassignCall()

1:
This message is used to create an object implementing the IpAppMultiPartyCall interface.

2:
This message requests the object implementing the IpMultiPartyCallControlManager interface to create an object implementing the IpMultiPartyCall interface.

3:
Assuming that the criteria for creating an object implementing the IpMultiPartyCall interface (e.g. load control values not exceeded) is met it is created.

4:
Once the object implementing the IpMultiPartyCall interface is created it is used to pass the reference of the object implementing the IpAppMultiPartyCall interface as the callback reference to the object implementing the IpMultiPartyCall interface. Note that the reference to the callback interface could already have been passed in the createCall.

5:
This message instructs the object implementing the IpMultiPartyCall interface to create a call leg for customer A.

6:
Assuming that the criteria for creating an object implementing the IpCallLeg interface is met, message 6 is used to create it.

7:
This message requests the call leg for customer A to inform the application when the call leg answers the call.

8:
The call is then routed to the originating call leg.

9:
Assuming the call is answered, the object implementing party A's IpCallLeg interface passes the result of the call being answered back to its callback object. This message is then forwarded via another message (not shown) to the object implementing the IpAppLogic interface.

10:
A UICall object is created and associated with the just created call leg.

11:
This message is used to inform party A that the call is being routed to party B.

12:
An indication that the dialogue with party A has commenced is returned via message 13 and eventually forwarded via another message (not shown) to the object implementing the IpAppLogic interface.

13:
This message instructs the object implementing the IpMultiPartyCall interface to create a call leg for customer B.

14:
Assuming that the criteria for creating a second object implementing the IpCallLeg interface is met, it is created.

15:
This message requests the call leg for customer B to inform the application when the call leg answers the call.

16:
The call is then routed to the call leg.

17:
Assuming the call is answered, the object implementing party B's IpCallLeg interface passes the result of the call being answered back to its callback object. This message is then forwarded via another message (not shown) to the object implementing the IpAppLogic interface.

18:
This message then instructs the object implementing the IpUICall interface to stop sending announcements to party A.

19:
The application deassigns the call. This will also deassign the associated user interaction.

5.2.2 Call Barring 2

The following sequence diagram shows a call barring service, initiated as a result of a prearranged event being received by the framework. Before the call is routed to the destination number, the calling party is asked for a PIN code. The code is rejected and the call is cleared.

[image: image28.wmf] : (Logical

View::IpA...

 :

IpAppMultiPartyCallControlManager

 :

IpAppMultiPartyCall

 :

IpMultiPartyCall

 : IpUICall

 :

IpUIManager

 : IpMultiPartyCallControlManager

 :

IpAppUICall

8: sendInfoAndCollectReq()

9: sendInfoAndCollectRes()

11: sendInfoReq()

12: sendInfoRes()

15: release()

1: new()

3: reportNotification ()

4: 'forward event'

5: new()

10: 'forward event'

13: 'forward event'

2: createNotification ()

7: createUICall()

14: release()

6: getCallLegs()

1:
This message is used by the application to create an object implementing the IpAppMultiPartyCallControlManager interface.

2:
This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts a call barring service, it is likely that all new call events destined for a particular address or address range prompted for a password before the call is allowed to progress. When a new call, that matches the event criteria, arrives a message (not shown) is directed to the object implementing the IpMultiPartyCallControlManager. Assuming that the criteria for creating an object implementing the IpMultiPartyCall interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg object.

3:
This message is used to pass the new call event to the object implementing the IpAppMultiPartyCallControlManager interface.

4:
This message is used to forward message 3 to the IpAppLogic.

5:
This message is used by the application to create an object implementing the IpAppMultiPartyCall interface. The reference to this object is passed back to the object implementing the IpMultiPartyCallControlManager using the return parameter of the callEventNotify.

6:
The application requests an list of all the legs currently in the call.

7:
This message is used to create a UICall object that is associated with the incoming leg of the call.

8:
The call barring service dialogue is invoked.

9:
The result of the dialogue, which in this case is the PIN code, is returned to its callback object.

10:
This message is used to forward the previous message to the IpAppLogic

11:
Assuming an incorrect PIN is entered, the calling party is informed using additional dialogue of the reason why the call cannot be completed.

12:
This message passes the indication that the additional dialogue has been sent.

13:
This message is used to forward the previous message to the IpAppLogic.

14:
No more UI is required, so the UICall object is released.

15:
This message is used by the application to clear the call.

5.2.3 Complex Card Service

The following sequence diagram shows an advanced card service, initiated as a result of a prearranged event being received by the framework. Before the call is made, the calling party is asked for an ID and PIN code. If the ID and PIN code are accepted, the calling party is prompted to enter the address of the destination party. A trigger of '#5' is then set on the controlling leg (the calling party's leg) such that if the calling party enters a '#5' an event will be sent to the application. The call is then routed to the destination party. Sometime during the call the calling party enters '#5' which causes the called leg to be released. The calling party is now prompted to enter the address of a new destination party, to which it is then routed.

[image: image29.wmf] : (Logical

View::IpAppLogic)

 :

IpAppMultiPartyCallControlManager

 :

IpAppMultiPartyCall

 :

IpMultiPartyCall

 : IpUICall

PartyB' :

IpCallLeg

AppPartyB' :

IpAppCallLeg

AppPartyB :

IpAppCallLeg

 :

IpUIManager

AppPartyA :

IpAppCallLeg

PartyB :

IpCallLeg

 :

IpMultiPartyCallControlManager

PartyA :

IpCallLeg

 :

IpAppUICall

27: createAndRouteCall()

8: sendInfoAndCollectReq()

10: sendInfoAndCollectReq()

9: sendInfoAndCollectRes()

11: sendInfoAndCollectRes()

13: eventReportReq()

1: new()

3: reportNotification ()

4: 'forward event'

5: new()

23: release()

21: eventReportRes()

24: sendInfoAndCollectReq()

25: sendInfoAndCollectRes()

12: setCallbackWithSessionID()

2: createNotification ()

7: createUICall()

6: getCallLegsf()

15: createCallLeg(in TpSessionID, in IpAppCallLegRef, in TpAddress, in TpAddress, in TpAddress, in TpAddress, in TpCallAppInfoSet, out TpCallLegIdentifierRef, in TpCallLegConnectionProperties)

17: routeReq(in TpSessionID)

16: eventReportReq()

14: new()

20: attachMedia()

18: eventReportRes()

19: "forward event"

22: "forward event"

30: eventReportRes()

31: "forward event"

32: callEnded()

33: "forward event"

34: userInteractionFaultDetected()

35: "forward event"

36: deassignCall()

26: new ()

28: new ()

29: eventReportRes()

1:
This message is used by the application to create an object implementing the IpAppMultiPartyCallControlManager interface.

2:
This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts a call barring service, it is likely that all new call events destined for a particular address or address range result in the caller being prompted for a password before the call is allowed to progress. When a new call, that matches the event criteria set in message 2, arrives a message (not shown) is directed to the object implementing the IpMultiPartyCallControlManager. Assuming that the criteria for creating an object implementing the IpMultiPartyCall interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg object.

3:
This message is used to pass the new call event to the object implementing the IpAppMultiPartyCallControlManager interface.

4:
This message is used to forward message 3 to the IpAppLogic.

5:
This message is used by the application to create an object implementing the IpAppMultiPartyCall interface. The reference to this object is passed back to the object implementing the IpMultiPartyCallControlManager using the return parameter of message 3.

6:
This message retuns the call legs currently in the call. In principle a reference to the call leg of the calling party is already obtained by the application when it was notified of the new call event.

7:
This message is used to associate a user interaction object with the calling party.

8:
The initial card service dialogue is invoked using this message.

9:
The result of the dialogue, which in this case is the ID and PIN code, is returned to its callback object using this message and eventually forwarded via another message (not shown) to the IpAppLogic.

10:
Assuming the correct ID and PIN are entered, the final dialogue is invoked.

11:
The result of the dialogue, which in this case is the destination address, is returned and eventually forwarded via another message (not shown) to the IpAppLogic.

12:
This message is used to forward the address of the callback object.

13:
The trigger for follow-on calls is set (on service code).

14:
A new AppCallLeg is created to receive callbacks for another leg. Alternatively, the already existing AppCallLeg object could be passed in the subsequent createCallLeg(). In that case the application has to use the sessionIDs of the legs to distinguish between callbacks destined for the A-leg and callbacks destined for the B-leg.

15:
This message is used to create a new call leg object. The object is created in the idle state and not yet routed in the network.

16:
The application requests to be notified when the leg is answered.

17:
The application routes the leg. As a result the network will try to reach the associated party.

18:
When the B-party answers the call, the application is notified.

19:
The event is forwarded to the application logic.

20:
Legs that are created and routed explicitly are by default in state detached. This means that the media is not connected to the other parties in the call. In order to allow inband communication between the new party and the other parties in the call the media have to be explicitly attached.

21:
At some time during the call the calling party enters '#5'. This causes this message to be sent to the object implementing the IpAppCallLeg interface, which forwards this event as a message (not shown) to the IpAppLogic.

22:
The event is forwarded to the application.

23:
This message releases the called party.

24:
Another user interaction dialogue is invoked.

25:
The result of the dialogue, which in this case is the new destination address is returned and eventually forwarded via another message (not shown) to the IpAppLogic.

26:
A new AppCallLeg is created to receive callbacks for another leg.

27:
The call is then forward routed to the new destination party.

28:
As a result a new Callleg object is created.

29:
This message passes the result of the call being answered to its callback object and is eventually forwarded via another message (not shown) to the IpAppLogic.

30:
When the A-party terminates the application is informed.

31:
The event is forwarded to the application logic.

32:
Since the release of the A-party will in this case terminate the entire call, the application is also notified with this message.

33:
The event is forwarded to the application logic.

34:
Since the user interaction object were not released at the moment that the call terminated, the application receives this message to indicate that the UI resources are released in the gateway and no further communication is possible.

35:
The event is forwarded to the application logic.

36:
The application deassigns the call object.

5.3 Class Diagrams

The multiparty call control service consists of two packages, one for the interfaces on the application side and one for interfaces on the service side.
The class diagrams in the following figures show the interfaces that make up the multi party call control application package and the multi party call control service package. This class diagram shows the interfaces of the multi-party call control application package and their relations to the interfaces of the multi-party call control service package.

[image: image30.wmf]IpAppMultiPartyCallControlManager

reportNotification()

callAborted()

callNotificationInterrupted()

callNotificationContinued()

callOverloadEncountered()

callOverloadCeased()

(from mpccs)

<<Interface>>

IpAppMultiPartyCall

getCallInfoRes()

getCallInfoErr()

superviseCallRes()

superviseCallErr()

callFaultDetected()

getMoreDialledDigitsRes()

getMoreDialledDigitsErr()

callEnded()

createAndRouteCallLegErr()

(from mpccs)

<<Interface>>

IpMultiPartyCallControlManager

createCall()

createNotification()

destroyNotification()

changeNotification()

getNotification()

setCallLoadControl()

(from mpccs)

<<Interface>>

IpMultiPartyCall

getCallLegs()

createCallLeg()

createAndRouteCallLegReq()

release()

deassignCall()

getCallInfoReq()

setCallChargePlan()

setAdviceOfCharge()

superviseCallReq()

getMoreDialledDigitsReq()

(from mpccs)

<<Interface>>

IpCallLeg

routeReq()

eventReportReq()

release()

getInfoReq()

getCall()

attachMedia()

detachMedia()

getLastRedirectedAddress()

continueProcessing()

(from mpccs)

<<Interface>>

1

0..n

<<uses>>

1

0..n

IpAppCallLeg

eventReportRes()

eventReportErr()

getInfoRes()

getInfoErr()

routeErr()

(from mpccs)

<<Interface>>

1

0..n

<<uses>>

1

0..n

<<uses>>

IpInterface

(from open_service_access)

<<Interface>>

Figure: Application Interfaces
This class diagram shows the interfaces of the multi-party call control service package.

[image: image31.wmf]IpMultiPartyCallControlManager

createCall()

createNotification()

destroyNotification()

changeNotification()

getNotification()

setCallLoadControl()

(from mpccs)

<<Interface>>

IpMultiPartyCall

getCallLegs()

createCallLeg()

createAndRouteCallLegReq()

release()

deassignCall()

getCallInfoReq()

setCallChargePlan()

setAdviceOfCharge()

superviseCallReq()

getMoreDialledDigitsReq()

(from mpccs)

<<Interface>>

1

0..n

IpCallLeg

routeReq()

eventReportReq()

release()

getInfoReq()

getCall()

attachMedia()

detachMedia()

getLastRedirectedAddress()

continueProcessing()

(from mpccs)

<<Interface>>

1

0..n

IpService

setCallback()

setCallbackWithSessionID()

(from open_service_access)

<<Interface>>

Figure: Service Interfaces

5.4 MultiParty Call Control Service Interface Classes

The Multi-party Call Control service enhances the functionality of the Generic Call Control Service with leg management. It also allows for multi-party calls to be established, i.e., up to a service specific number of legs can be connected simultaneously to the same call.
The Multi-party Call Control Service is represented by the IpMultiPartyCallControlManager, IpMultiPartyCall, IpCallLeg interfaces that interface to services provided by the network. Some methods are asynchronous, in that they do not lock a thread into waiting whilst a transaction performs. In this way, the client machine can handle many more calls, than one that uses synchronous message calls. To handle responses and reports, the developer must implement IpAppMultiPartyCallManager, IpAppMutliPartyCall and IpAppCallLeg to provide the callback mechanism.

5.4.1 Interface Class IpMultiPartyCallControlManager
Inherits from: IpService
This interface is the 'service manager' interface for the Multi-party Call Control Service. The multi-party call control manager interface provides the management functions to the multi-party call control service. The application programmer can use this interface to provide overload control functionality, create call objects and to enable or disable call-related event notifications.
<<Interface>>

IpMultiPartyCallControlManager

createCall (appCall : in IpAppCallRef, callReference : out TpCallIdentifierRef) : TpResult

createNotification (appCallControlManager : in IpAppCallControlManagerRef, notificationRequest : in TpCallNotificationRequest, assignmentID : out TpAssignmentIDRef) : TpResult

destroyNotification (assignmentID : in TpAssignmentID) : TpResult

changeNotification (assignmentID : in TpAssignmentID, notificationRequest : in TpCallNotificationRequest) : TpResult

getNotification (notificationsRequested : out TpNotificationsRequestedSetRef) : TpResult

setCallLoadControl (duration : in TpDuration, mechanism : in TpCallLoadControlMechanism, treatment : in TpCallTreatment, addressRange : in TpAddressRange, assignmentID : out TpAssignmentIDRef) : TpResult

Method

createCall()

This method is used to create a new call object.

Parameters

appCall : in IpAppCallRef

Specifies the application interface for callbacks from the call created.
callReference : out TpCallIdentifierRef

Specifies the interface reference and sessionID of the call created.
Raises

TpGCCSException,TpGeneralException
Method

createNotification()

This method is used to enable call notifications so that events can be sent to the application. If some application already requested notifications with criteria that overlap the specified criteria, the request is refused with P_GCCS_INVALID_CRITERIA.

The criteria are said to overlap if both originating and terminating ranges overlap and the same number plan is used and the same NotificationCallType is used.

If the same application requests two notifications with exactly the same criteria but different callback references, the second callback will be treated as an additional callback. This means that the callback will only be used in case when the first callback specified by the application is unable to handle the reportNotification (e.g., due to overload or failure).

Parameters

appCallControlManager : in IpAppCallControlManagerRef

If this parameter is set (i.e. not NULL) it specifies a reference to the application interface, which is used for callbacks. If set to NULL, the application interface defaults to the interface specified via the setCallback() method.
notificationRequest : in TpCallNotificationRequest

Specifies the event specific criteria used by the application to define the event required. Only events that meet these criteria are reported. Examples of events are "incoming call attempt reported by network", "answer", "no answer", "busy". Individual addresses or address ranges may be specified for destination and/or origination.
assignmentID : out TpAssignmentIDRef

Specifies the ID assigned by the generic call control manager interface for this newly-enabled event notification.
Raises

TpGCCSException,TpGeneralException
Method

destroyNotification()

This method is used by the application to disable call notifications.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignment ID given by the generic call control manager interface when the previous enableNotification() was called. If the assignment ID does not correspond to one of the valid assignment IDs, the framework will return the error code P_INVALID_ASSIGNMENTID.
Raises

TpGCCSException,TpGeneralException
Method

changeNotification()

This method is used by the application to change the event criteria introduced with createNotification. Any stored criteria associated with the specified assignementID will be replaced with the specified criteria.

Parameters

assignmentID : in TpAssignmentID

Specifies the ID assigned by the generic call control manager interface for the event notification.
notificationRequest : in TpCallNotificationRequest

Specifies the new set of event specific criteria used by the application to define the event required. Only events that meet these criteria are reported.
Raises

TpGeneralException,TpGCCSException
Method

getNotification()

This method is used by the application to query the event criteria set with createNotification or changeNotification.

Parameters

notificationsRequested : out TpNotificationsRequestedSetRef

Specifies the nofications that have been requested by the application.
Raises

TpGeneralException,TpGCCSException
Method

setCallLoadControl()

This method imposes or removes load control on calls made to a particular address range within the generic call control service. The address matching mechanism is similar as defined for TpCallEventCriteria.

Parameters

duration : in TpDuration

Specifies the duration for which the load control should be set.
A duration of 0 indicates that the load control should be removed.
A duration of -1 indicates an infinite duration (i.e., until disabled by the application)
A duration of -2 indicates the network default duration.
mechanism : in TpCallLoadControlMechanism

Specifies the load control mechanism to use (for example, admit one call per interval), and any necessary parameters, such as the call admission rate. The contents of this parameter are ignored if the load control duration is set to zero.
treatment : in TpCallTreatment

Specifies the treatment of calls that are not admitted. The contents of this parameter are ignored if the load control duration is set to zero.
addressRange : in TpAddressRange

Specifies the address or address range to which the overload control should be applied or removed.
assignmentID : out TpAssignmentIDRef

Specifies the assignmentID assigned by the gateway to this request. This assignementID can be used to correlate the callOverlloadEncountered and callOverloadCeased methods with the request.
Raises

TpGeneralException,TpGCCSException
5.4.2 Interface Class IpAppMultiPartyCallControlManager
Inherits from: IpInterface
The Multi-Party call control manager application interface provides the application call control management functions to the Multi-Party call control service.
<<Interface>>

IpAppMultiPartyCallControlManager

reportNotification (callReference : in TpCallIdentifier, callLegReference : in TpCallLegIdentifier, notificationInfo : in TpCallNotificationInfo, assignmentID : in TpAssignmentID, appCall : out IpAppCallRefRef) : TpResult

callAborted (callReference : in TpSessionID) : TpResult

callNotificationInterrupted () : TpResult

callNotificationContinued () : TpResult

callOverloadEncountered (assignmentID : in TpAssignmentID) : TpResult

callOverloadCeased (assignmentID : in TpAssignmentID) : TpResult

Method

reportNotification()

This method notifies the application of the arrival of a call-related event.

Parameters

callReference : in TpCallIdentifier

Specifies the reference to the call interface to which the notification relates.
callLegReference : in TpCallLegIdentifier

Specifies the reference to the callLeg interface to which the notification relates.
notificationInfo : in TpCallNotificationInfo

Specifies data associated with this event.
assignmentID : in TpAssignmentID

Specifies the assignment id which was returned by the createNotification() method. The application can use assignment id to associate events with event specific criteria and to act accordingly.
appCall : out IpAppCallRefRef

Specifies a reference to the application interface which implements the callback interface for the new call.
Raises

TpGCCSException,TpGeneralException
Method

callAborted()

This method indicates to the application that the call object (at the gateway) has aborted or terminated abnormally. No further communication will be possible between the call and application.

Parameters

callReference : in TpSessionID

Specifies the sessionID of call that has aborted or terminated abnormally.
Raises

TpGCCSException,TpGeneralException
Method

callNotificationInterrupted()

This method indicates to the application that all event notifications have been temporary interrupted (for example, due to faults detected).

Note that more permanent failures are reported via the Framework (integrity management).

Parameters

No Parameters were identified for this method

Raises

TpGCCSException,TpGeneralException
Method

callNotificationContinued()

This method indicates to the application that event notifications will again be possible.

Parameters

No Parameters were identified for this method

Method

callOverloadEncountered()

This method indicates that the network has detected overload and may have automatically imposed load control on calls requested to a particular address range or calls made to a particular destination within the call control service.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignmentID corresponding to the associated setCallLoadControl. This implies the addressrange for within which the overload has been encountered.
Raises

TpGeneralException,TpGCCSException
Method

callOverloadCeased()

This method indicates that the network has detected that the overload has ceased and has automatically removed any load controls on calls requested to a particular address range or calls made to a particular destination within the call control service.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignmentID corresponding to the associated setCallLoadControl. This implies the addressrange for within which the overload has been ceased
Raises

TpGeneralException,TpGCCSException
5.4.3 Interface Class IpMultiPartyCall
Inherits from: IpService
The Multi-Party Call provides the possibility to control the call routing, to request information from the call, control the charging of the call, to release the call and to supervise the call. It also gives the possibiltiy to manage call legs explicitly. Via the legs the application can also influence the media in multi-media calls. If an application uses the multi-party call control interface it may call the createAndRouteCallLeg() operation several times without disconnecting already connected destination. Therefore, an application may implicitly create more then one (destination) call leg. However, there can only be at most one call leg that owns the call ("call owner") at any time. In contrast to the conference service it is not possible to move legs to another call object.
<<Interface>>

IpMultiPartyCall

getCallLegs (callSessionID : in TpSessionID, callLegList : out TpCallLegIdentifierSetRef) : TpResult

createCallLeg (callSessionID : in TpSessionID, appCallLeg : in IpAppCallLegRef, targetAddress : in TpAddress, originatingAddress : in TpAddress, originalCalledAddress : in TpAddress, redirectingAddress : in TpAddress, appInfo : in TpCallAppInfoSet, callLeg : out TpCallLegIdentifierRef, connectionProperties : in TpCallLegConnectionProperties) : TpResult

createAndRouteCallLegReq (callSessionID : in TpSessionID, eventsRequested : in TpCallEventRequestSet, targetAddress : in TpAddress, originatingAddress : in TpAddress, originalDestinationAddress : in TpAddress, redirectingAddress : in TpAddress, appInfo : in TpCallAppInfoSet, appLegInterface : in IpAppCallLegRef, callLegReference : out TpCallLegIdentifierRef) : TpResult

release (callSessionID : in TpSessionID, cause : in TpCallReleaseCause) : TpResult

deassignCall (callSessionID : in TpSessionID) : TpResult

getCallInfoReq (callSessionID : in TpSessionID, callInfoRequested : in TpCallInfoType) : TpResult

setCallChargePlan (callSessionID : in TpSessionID, callChargePlan : in TpCallChargePlan) : TpResult

setAdviceOfCharge (callSessionID : in TpSessionID, aOCInfo : in TpAoCInfo, tariffSwitch : in TpDuration) : TpResult

superviseCallReq (callSessionID : in TpSessionID, time : in TpDuration, treatment : in TpCallSuperviseTreatment) : TpResult

getMoreDialledDigitsReq (callSessionID : in TpSessionID, length : in TpInt32) : TpResult

Method

getCallLegs()

This method requests the identification of the call leg objects associated with the call object. Returns the legs in the order of creation.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.
callLegList : out TpCallLegIdentifierSetRef

Specifies the call legs associated with the call. The set contains both the sessionIDs and the interface references.
Raises

TpGCCSException, TpGeneralException
Method

createCallLeg()

This method requests the creation of a new call leg object.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.
appCallLeg : in IpAppCallLegRef

Specifies the application interface for callbacks from the call leg created.
targetAddress : in TpAddress

Specifies the destination party to which the call should be routed.
originatingAddress : in TpAddress

Specifies the address of the originating (calling) party.
originalCalledAddress : in TpAddress

Specifies the original address to which the call was initiated.
redirectingAddress : in TpAddress

Specifies the last address from which the call was redirected.
appInfo : in TpCallAppInfoSet

Specifies application-related information pertinent to the call leg (such as alerting method, tele-service type, service identities and interaction indicators).
callLeg : out TpCallLegIdentifierRef

Specifies the interface and sessionID of the call leg created.
connectionProperties : in TpCallLegConnectionProperties

Specifies the properties of the connection.
Raises

TpGeneralException,TpGCCSException
Method

createAndRouteCallLegReq()

This asynchronous operation requests creation and routing of a new callLeg. In case the connection to the destination party is established successfully the CallLeg is attached to the call, i.e. no explicit attachMedia() operation is needed. Requested events will be reported on the IpAppCallLeg interface. This interface the application must provide through the appLegInterface parameter.

The extra address information (i.e., originalDestinationAddress, redirectingAddress, originatingAddress) is optional. If not present (i.e., the plan is set to P_ADDRESS_PLAN_NOT_PRESENT), the information provided in corresponding addresses from the route is used, otherwise the network or gateway provided numbers will be used.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.
eventsRequested : in TpCallEventRequestSet

Specifies the event specific criteria used by the application to define the events required. Only events that meet these criteria are reported. Examples of events are "adress analysed", "answer", "release".

targetAddress : in TpAddress

Specifies the destination party to which the call should be routed.
originatingAddress : in TpAddress

Specifies the address of the originating (calling) party.
originalDestinationAddress : in TpAddress

Specifies the original destination address of the call.
redirectingAddress : in TpAddress

Specifies the address from which the call was last redirected.
appInfo : in TpCallAppInfoSet

Specifies application-related information pertinent to the call (such as alerting method, tele-service type, service identities and interaction indicators).

appLegInterface : in IpAppCallLegRef

Specifies a reference to the application interface that implements the callback interface for the new call leg. Requested events will be reported by the eventReportRes() operation on this interface.
callLegReference : out TpCallLegIdentifierRef

Specifies the reference to the CallLeg interface that was created.
Raises

TpGCCSException,TpGeneralException
Method

release()

This method requests the release of the call object and associated objects. The call will also be terminated in the network. If the application requested reports to be sent at the end of the call (e.g., by means of getCallInfoReq) these reports will still be sent to the application.

The application should always either release or deassign the call when it is finished with the call, unless a callFaultDetected is received by the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.
cause : in TpCallReleaseCause

Specifies the cause of the release.
Raises

TpGCCSException,TpGeneralException
Method

deassignCall()

This method requests that the relationship between the application and the call and associated objects be de-assigned. It leaves the call in progress, however, it purges the specified call object so that the application has no further control of call processing. If a call is de-assigned that has event reports, call information reports or call Leg information reports requested, then these reports will be disabled and any related information discarded.

The application should always either release or deassign the call when it is finished with the call, unless callFaultDetected is received by the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.
Raises

TpGCCSException,TpGeneralException
Method

getCallInfoReq()

This asynchronous method requests information associated with the call to be provided at the appropriate time (for example, to calculate charging). This method must be invoked before the call is routed to a target address. Two types of reports can be requested; a final report or intermediate reports.

A final call report is sent when the call is ended. The call object will exist after the call is ended if information is required to be sent to the application at the end of the call. The call information will be sent after any call event reports.

Intermediate reports are received when the destination leg or party terminates or when the call ends. In case the originating party is still available the application can still initiate a follow-on call.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.
callInfoRequested : in TpCallInfoType

Specifies the call information that is requested.
Raises

TpGCCSException,TpGeneralException
Method

setCallChargePlan()

Set an operator specific charge plan for the call. The charge plan must be set before the call is routed to a target address. Depending on the operator the method can also be used to change the charge plan for ongoing calls.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.
callChargePlan : in TpCallChargePlan

Specifies the charge plan to use.
Raises

TpGCCSException,TpGeneralException
Method

setAdviceOfCharge()

This method allows for advice of charge (AOC) information to be sent to terminals that are capable of receiving this information.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.
aOCInfo : in TpAoCInfo

Specifies two sets of Advice of Charge parameter.
tariffSwitch : in TpDuration

Specifies the tariff switch interval that signifies when the second set of AoC parameters becomes valid.
Raises

TpGeneralException,TpGCCSException
Method

superviseCallReq()

The application calls this method to supervise a call. The application can set a granted connection time for this call. If an application calls this operation before it routes a call or a user interaction operation the time measurement will start as soon as the call is answered by the B-party or the user interaction system.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.
time : in TpDuration

Specifies the granted time in milliseconds for the connection.
treatment : in TpCallSuperviseTreatment

Specifies how the network should react after the granted connection time expired.
Raises

TpGCCSException,TpGeneralException
Method

getMoreDialledDigitsReq()

This asynchronous method requests to collect further digits and return them to the application. Depending on the administered data, the network may indicate a new call to the gateway if a caller goes off-hook or dialled only a few digits. The application then gets a new call event which contains no digits or only the few dialled digits in the event data. The application should then use this method if it requires more dialled digits, e.g. to perform screening.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.
length : in TpInt32

Specifies the maximum number of digits to collect.
Raises

TpGeneralException, TpGCCSException
5.4.4 Interface Class IpAppMultiPartyCall
Inherits from: IpInterface
The Multi-Party call application interface is implemented by the client application developer and is used to handle call request responses and state reports.
<<Interface>>

IpAppMultiPartyCall

getCallInfoRes (callSessionID : in TpSessionID, callInfoReport : in TpCallInfoReport) : TpResult

getCallInfoErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : TpResult

superviseCallRes (callSessionID : in TpSessionID, report : in TpCallSuperviseReport, usedTime : in TpDuration) : TpResult

superviseCallErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : TpResult

callFaultDetected (callSessionID : in TpSessionID, fault : in TpCallFault) : TpResult

getMoreDialledDigitsRes (callSessionID : in TpSessionID, digits : in TpString) : TpResult

getMoreDialledDigitsErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : TpResult

callEnded (callSessionID : in TpSessionID, report : in TpCallEndedReport) : TpResult

createAndRouteCallLegErr (callSessionID : in TpSessionID, callLegReference : in TpCallLegIdentifier, errorIndication : in TpCallError) : TpResult

Method

getCallInfoRes()

This asynchronous method reports time information of the finished call or call attempt as well as release cause depending on which information has been requested by getCallInfoReq. This information may be used e.g. for charging purposes. The call information will possibly be sent after reporting of all cases where the call or a leg of the call has been disconnected or a routing failure has been encountered.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.
callInfoReport : in TpCallInfoReport

Specifies the call information requested.
Raises

TpGCCSException,TpGeneralException
Method

getCallInfoErr()

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.
errorIndication : in TpCallError

Specifies the error which led to the original request failing.
Raises

TpGCCSException,TpGeneralException
Method

superviseCallRes()

This asynchronous method reports a call supervision event to the application when it has indicated it's interest in these kind of events.

It is also called when the connection is terminated before the supervision event occurs. Furthermore, this method is invoked as a response to the request also when a tariff switch happens in the network during an active call.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call
report : in TpCallSuperviseReport

Specifies the situation which triggered the sending of the call supervision response.
usedTime : in TpDuration

Specifies the used time for the call supervision (in milliseconds).
Raises

TpGCCSException,TpGeneralException
Method

superviseCallErr()

This asynchronous method reports a call supervision error to the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.
errorIndication : in TpCallError

Specifies the error which led to the original request failing.
Raises

TpGCCSException,TpGeneralException
Method

callFaultDetected()

This method indicates to the application that a fault in the network has been detected. The call may or may not have been terminated.

The system deletes the call object. Therefore, the application has no further control of call processing. No report will be forwarded to the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call in which the fault has been detected.
fault : in TpCallFault

Specifies the fault that has been detected.
Raises

TpGCCSException,TpGeneralException
Method

getMoreDialledDigitsRes()

This asynchronous method returns the collected digits to the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.
digits : in TpString

Specifies the additional dialled digits if the string length is greater than zero.
Raises

TpGeneralException,TpGCCSException
Method

getMoreDialledDigitsErr()

This asynchronous method reports an error in collecting digits to the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.
errorIndication : in TpCallError

Specifies the error which led to the original request failing.
Raises

TpGeneralException,TpGCCSException
Method

callEnded()

This method indicates to the application that the call has terminated in the network. However, the application may still receive some results (e.g., getCallInfoRes) related to the call. The application is expected to deassign the call object after having received the callEnded.

Note that the event that caused the call to end might also be received separately if the application was monitoring for it.

Parameters

callSessionID : in TpSessionID

Specifies the call sessionID.
report : in TpCallEndedReport

Specifies the reason the call is terminated.
Raises

TpGeneralException,TpGCCSException
Method

createAndRouteCallLegErr()

This asynchronous method indicates that the request to route the call to the destination party was unsuccessful - the call could not be routed to the destination party (for example, the network was unable to route the call, the parameters were incorrect, the request was refused, etc.). Note that the event cases that can be monitored and correspond to an unsuccessful setup of a connection (e.g. busy, no_answer) will be reported by eventReportRes() and not by this operation.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.
callLegReference : in TpCallLegIdentifier

Specifies the reference to the CallLeg interface that was created.
errorIndication : in TpCallError

Specifies the error which led to the original request failing.
Raises

TpGCCSException,TpGeneralException
5.4.5 Interface Class IpCallLeg
Inherits from: IpService
The call leg interface represents the logical call leg associating a call with an address. The call leg tracks its own states and allows charging summaries to be accessed. The leg represents the signalling relationship between the call and an address. An application that uses the IpCallLeg interface to set up connections has more control, e.g. by defining leg specific event request and can obtain call leg specific report and events.
<<Interface>>

IpCallLeg

routeReq (callLegSessionID : in TpSessionID) : TpResult

eventReportReq (callLegSessionID : in TpSessionID, eventsRequested : in TpCallEventRequestSet) : TpResult

release (callLegSessionID : in TpSessionID, cause : in TpCallReleaseCause) : TpResult

getInfoReq (callLegSessionID : in TpSessionID, callLegInfoRequested : in TpCallLegInfoType) : TpResult

getCall (callLegSessionID : in TpSessionID, callReference : out TpCallIdentifierRef) : TpResult

attachMedia (callLegSessionID : in TpSessionID) : TpResult

detachMedia (callLegSessionID : in TpSessionID) : TpResult

getLastRedirectedAddress (callLegSessionID : in TpSessionID, redirectedAddress : out TpAddressRef) : TpResult

continueProcessing () : TpResult

Method

routeReq()

This asynchronous method requests routing of a connection to the destination party.

The extra address information (i.e., originalDestinationAddress, redirectingAddress, originatingAddress) is optional. If set to unavailable (i.e., the plan is set to P_ADDRESS_PLAN_NOT_PRESENT) the network or gateway provided addresses will be used.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.
Raises

TpGeneralException,TpGCCSException
Method

eventReportReq()

This asynchronous method sets, clears or changes the criteria for the events that the call leg object will be set to observe.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.
eventsRequested : in TpCallEventRequestSet

Specifies the event specific criteria used by the application to define the events required. Only events that meet these criteria are reported. Examples of events are "address analysed", "answer", "release".
Raises

TpGeneralException,TpGCCSException
Method

release()

This method requests the release of the call leg. If successful, the associated address (party) will be released from the call, and the call leg deleted. Note that in some cases releasing the party may lead to release of the complete call in the network. The application will be informed of this with callEnded().

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.
cause : in TpCallReleaseCause

Specifies the cause of the release.
Raises

TpGeneralException,TpGCCSException
Method

getInfoReq()

This asynchronous method requests information associated with the call leg to be provided at the appropriate time (for example, to calculate charging). Note: in the call leg information must be accessible before the objects of concern are deleted.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.
callLegInfoRequested : in TpCallLegInfoType

Specifies the call leg information that is requested.
Raises

TpGeneralException,TpGCCSException
Method

getCall()

This method requests the call associated with this call leg.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.
callReference : out TpCallIdentifierRef

Specifies the interface and sessionID of the call associated with this call leg.
Raises

TpGeneralException,TpGCCSException
Method

attachMedia()

This method requests that the call leg be attached to its call object. This will allow transmission on all associated bearer connections or media channels to and from other parties in the call. The call leg must be in the connected state for this method to complete successfully.

Parameters

callLegSessionID : in TpSessionID

Specifies the sessionID of the call leg to attach to the call.
Raises

TpGeneralException,TpGCCSException
Method

detachMedia()

This method will detach the call leg from its call, i.e., this will prevent transmission on any associated bearer connections or media channels to and from other parties in the call. The call leg must be in the connected state for this method to complete successfully.

Parameters

callLegSessionID : in TpSessionID

Specifies the sessionID of the call leg to detach from the call.
Raises

TpGeneralException,TpGCCSException
Method

getLastRedirectedAddress()

Queries the last address the leg has been redirected to.

Parameters

callLegSessionID : in TpSessionID

Specifies the call session ID of the call leg.
redirectedAddress : out TpAddressRef

Specifies the last address where the call leg was redirected to.
Method

continueProcessing()

This operation continues processing of the call. Applications can invoke this operation after call processing was interrupted due to detection of an event the application subscribed it's interest in.

Parameters

No Parameters were identified for this method

5.4.6 Interface Class IpAppCallLeg
Inherits from: IpInterface
The application call leg interface is implemented by the client application developer and is used to handle responses and errors associated with requests on the call leg in order to be able to receive leg specific information and events.
<<Interface>>

IpAppCallLeg

eventReportRes (callLegSessionID : in TpSessionID, eventInfo : in TpCallEventInfo) : TpResult

eventReportErr (callLegSessionID : in TpSessionID, errorIndication : in TpCallError) : TpResult

getInfoRes (callLegSessionID : in TpSessionID, callLegInfoReport : in TpCallLegInfoReport) : TpResult

getInfoErr (callLegSessionID : in TpSessionID, errorIndication : in TpCallError) : TpResult

routeErr (callLegSessionID : in TpSessionID, errorIndication : in TpCallError) : TpResult

Method

eventReportRes()

This asynchronous method reports that an event has occurred that was requested to be reported (for example, a mid-call event, the party has requested to disconnect, etc.).

Depending on the type of event received, outstanding requests for events are discarded. The exact details of these so-called disarming rules are captured in the data definition of the event type.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.
eventInfo : in TpCallEventInfo

Specifies data associated with this event.
Raises

TpGeneralException,TpGCCSException
Method

eventReportErr()

This asynchronous method indicates that the request to manage call leg reports was unsuccessful, and the reason (for example, the parameters were incorrect, the request was refused, etc.).

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.
errorIndication : in TpCallError

Specifies the error which led to the original request failing.
Raises

TpGeneralException,TpGCCSException
Method

getInfoRes()

This asynchronous method reports all the necessary information requested by the application, for example to calculate charging.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.
callLegInfoReport : in TpCallLegInfoReport

Specifies the call leg information requested.
Raises

TpGeneralException,TpGCCSException
Method

getInfoErr()

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.
errorIndication : in TpCallError

Specifies the error which led to the original request failing.
Raises

TpGeneralException,TpGCCSException
Method

routeErr()

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.
errorIndication : in TpCallError

Specifies the error which led to the original request failing.
Raises

TpGCCSException,TpGeneralException

5.5 MultiParty Call Control Service State Transition Diagrams

5.5.1 State Transition Diagrams for IpMultiPartyCallControlManager

[image: image32.wmf]Active

Creation of Manager

by Service Factory

Notification terminated

"new"

createNotification

destroyNotification

"a call object has terminated abnormally" ^callAborted

"arrival of call related event"[notification active for this call event] /

create a Call object and create 1 or 2 CallLeg objects

^reportNotification

createCall / create a Call object

IpAccess.terminateServiceAgreement

destroyNotification

"a call object has terminated abnormally"

^callAborted

IpAccess.terminateServiceAgreement

"notifications possible again"

^callNotificationContinued

"notifications not possible"

^callNotificationInterrupted

Figure : Application view and the Multi-Party Call Control Manager

5.5.1.1 Active State

In this state a relation between the Application and the Service has been established. The state allows the application to indicate that it is interested in call related events. In case such an event occurs, the Manager will create a Call object, depending on the specific event create 1 or 2 call Leg objects and inform the application.
The application can also indicate it is no longer interested in certain call related events by calling destroyNotification()..
5.5.1.2 Notification terminated State

When the Manager is in the Notification terminated state, events requested will not be forwarded to the application. There can be multiple reasons for this: for instance it might be that the application receives more notifications from the network than defined in the Service Level Agreement. Another example is that the Service has detected it receives no notifications from the network due to e.g. a link failure. In this state no requests for new notifications will be accepted.

5.5.2 State Transition Diagrams for IpMultiPartyCall

The state transition diagram shows the application view on the MultiParty Call object. The diagram is an extension to the state diagram of the Call object in the sense that more than 2 parties are allowed to participate in a call.

[image: image33.wmf]Active

2 .. n Parties in Call

1 Party in

Call

Routing to

Destination(s)

createAndRouteCallLegReq[number active + requested parties <

max allowed number parties in call] / increase number of active +

requested parties

Network

Released

setCallChargePlan

superviseCallReq

getCallInfoReq

setAdviceOfCharge

No Parties

Application

Released

Finished

release

deassignCall

setCallChargePlan

superviseCallReq

getCallInfoReq

setAdviceOfCharge

2 .. n Parties in Call

1 Party in

Call

Routing to

Destination(s)

"disconnect from call party"

[monitor mode = interrupt && 2 parties in call]

In states:

- No Parties,

- Finished

a timer mechanism should prevent that

the object keeps occupying resources. In

case the timer expires, the object should

be destroyed and callFaultDetected

should be reported to the application.

All States

getCallLegs

"answer from called party"

"requests failed"[no more outstanding

routing requests]

"routing unsuccessfull[not more

outstanding routing requests]

release

createAndRouteCallLegReq

deassignCall

getMoreDialledDigitsReq[no outstanding routing requests]

"requested information ready" ^getCallInfoRes,

superviseCallRes

deassignCall

[no reports requested with getCallInfoReq AND

superviseCallReq]

release

"fault in information retrieval" ^getCallInfoErr, superviseCallErr

"requested information ready" ^getCallInfoRes, superviseCallRes

"fault in information retrieval" ^getCallInfoErr, superviseCallErr

"answer from called party"

"party released"

"party released"[no outstanding routing

requests]

"digits collected" ^getMoreDialledDigitsRes

"error in collecting digits" ^getMoreDialledDigitsErr

createCallLeg

IpMultiPartyCallControlManager.createCall

IpAppMultiPartyCallControlManager.reportNotification

IpAppMultiPartyCallControlManager.reportNotification(answer

from called party)

"call ends : calling party abandoned" ^callEnded

release

deassignCall

"call supervision event" ^superviseCallRes

"call ends: calling party disconnects" ^callEnded

"call ends : called party disconnects"[1 or 2 parties in call AND monitor for this event] ^callEnded, routeRes(party disconnect)

"call ends : called party disconnects"[1 or 2 parties in call AND no monitor for this event] ^callEnded

"fault detected"[fault cannot be communicated with network event] ^callFaultDetected

Figure : Application view on the MultiParty Call object

5.5.2.1 Active State

In this state a call between two parties is being setup or present. Refer to the substates for more details.
The application can request the gateway for a certain type of charging of the call by calling setCallChargePlan(). The application can request for charging related information by calling getCallInfoReq(). Furthermore the application can request supervision of the call by calling superviseCallReq(). It is also allowed to send Advice of Charge information by calling setAdviceOfCharge().
5.5.2.2 Network Released State

In this state the call has ended and the Gateway collects the possible call information requested with getCallInfoReq() and / or superviseCallReq(). In case the application has not requested additional call related information a transition to the Idle state is made immediately.
5.5.2.3 No Parties State

In this state the Call object has been created. The application can request the gateway for a certain type of charging of the call by calling setCallChargePlan(). The application can request for charging related information by calling getCallInfoReq(). Furthermore the application can request supervision of the call by calling superviseCallReq().
5.5.2.4 Application Released State

In this state the application has requested to release the Call object and the Gateway collects the possilbe call information requested with getCallInfoReq() and / or superviseCallReq(). In case the application has not requested additional call related information the Call object is destroyed immediately.
5.5.2.5 Finished State

In this state the call has ended and no call related information is to be send to the application. The application can only release the call object. Calling the deassignCall() operation has the same effect. Note that the application has to release the object itself as good OO practice requires that when an object was created on behalf of a certain entity, this entity is also responsible for destroying it when the object is no longer needed.
5.5.2.6 2 .. n Parties in Call State

In this state a successful connection between at least two parties is established.
In this state user interaction is possible, depending on the underlying network.
5.5.2.7 1 Party in Call State

In this state there is one party in the call.
In case the call originated from the network the application can now request for more digits in case the address is not yet complete or the application can request for a connection to a called party be established by calling the operation createAndRouteCallLegReq().
In case the called party was reached by issueing a routing request, the application can request a connection to an additional party by calling the operation createAndRouteCallLegReq() again.
Otherwise, it depends on the actual number of invoked (and still outstanding or successful) routing requests whether the application can still setup a connection to another called party. Also in this case the called party can disconnect before another party is reached. In this case depending on the actual configuration, either the call is ended or a transition is made back to the Routing to Destinations substate or the No Parties state, depending on whether there are outstanding routing requests.
In this state user interaction is possible.
5.5.2.8 Routing to Destination(s) State

In this state there is at least one outstanding routing request.

5.5.3 State Transition Diagrams for IpCallLeg

[image: image34.wmf]Idle

Routing

Progress

Alerting

Redirected

Connected

Attached

Detached

Failed or

Disconnected

All States

Attached

Detached

EventReportReq

getInfoReq

"call progress event"

^EventReportRes

"answer"

^EventReportRes

"midcall event" ^EventReportRes

"invalid address"

^EventReportErr

"disconnect" ^EventReportRes

"routing failed, refused busy or

no answer" ^EventReportRes

"last report"

"call object is destructed"

release

getCall

detachMedia

attachMedia

[when routed with createAndRouteCallLeg]

[when routed with route()]

Incoming

"answer from other party"

Progress

Alerting

Redirected

route

only send result

when monitor for

this event was

requested

getLastRedirectedAddress

eventReportReq

getInfoReq

IpMultiPartyCall.createAndRouteCallLeg

IpMultiPartyCall.createCallLeg

"incoming call event" ^IpAppMultiPartyCallControlManager.callEventNotify

Figure : Application view on the CallLeg object

5.5.3.1 Idle State

In this state a new CallLeg object has been created and the application has not yet issued a routing request.
5.5.3.2 Routing State

In this state a connection to the call party is being established.
5.5.3.3 Connected State

In this state a connection to the call party is established.
In case the request for the connection was made by createAndRouteCallLeg on the Call object, the call party is also attached to the Call.
In case the request was made by route() the call party still needs to be attached to the Call.
5.5.3.4 Failed or Disconnected State

In this state no connection to the call party could be established or the call party has disconnected.
The reason that no connection could be established can be that an invalid address was specified, the network aborted routing or the call party was busy.
5.5.3.5 Incoming State

This state is only valid for an incoming Call Leg in case and there is no call established to another party.
5.5.3.6 Progress State

In this sub-state the network has indicated there is progress in routing the CallLeg.
5.5.3.7 Alerting State

In this sub-state the network has indicated there the terminal of the party is alerting.
5.5.3.8 Redirected State

In this sub-state the network has indicated the call party has redirected calls to another address.
5.5.3.9 Attached State

In this sub-state the media of the Call Leg object is attached to a Call object.
5.5.3.10 Detached State

In this sub-state the media of the Call Leg object is not attached to a Call object.

5.6 Multi-Party Call Control Service Properties

The following table lists properties relevant for the Multi-Party Call Control API.
Property
Type
Description / Interpretation

P_TRIGGERING_EVENT_TYPES
INTEGER_SET

Indicates the static event types supported by the SCS. Static events are the events by which applications are initiated.

P_DYNAMIC_EVENT_TYPES
INTEGER_SET

Indicates the dynamic event types supported by the SCS. Dynamic events are the events the application can request for during the context of a call.

P_ADDRESSPLAN
INTEGER_SET
Indicates the supported address plan (defined in TpAddressPlan.) e.g. {P_ADDRESS_PLAN_E164, P_ADDRESS_PLAN_IP})

P_UI_CALL_BASED
BOOLEAN_SET
Value = TRUE : User interaction can be performed on call level and a reference to a Call object can be used in the IpUIManager.createUICall() operation.

Value = FALSE: No User interaction on call level is supported.

P_UI_AT_ALL_STAGES
BOOLEAN_SET
Value = TRUE: User Interaction can be performed at any stage during a call .

Value = FALSE: User Interaction can be performed in case there is only one party in the call.

P_MEDIA_TYPE
INTEGER_SET
Specifies the media type used by the Service. Values are defined by data-type TpMediaType : P_AUDIO, P_VIDEO, P_DATA

Property
Type
Description

P_MAX_CALLLEGS_PER_CALL
INTEGER_SET
Indicates how many parties can be in one call.

P_UI_CALLLEG_BASED
BOOLEAN_SET
Value = TRUE : User interaction can be performed on leg level and a reference to a CallLeg object can be used in the IpUIManager.createUICall() operation.

Value = FALSE : No user interaction on leg level is supported.

P_ROUTING_WITH_CALLLEG_OPERATIONS
BOOLEAN_SET
Value = TRUE : the atomic operations for routing a CallLeg are supported {IpMultiPartyCall.createCallLeg(), IpCallLeg.eventReportReq(), IpCallLeg.route(), IpCallLeg.attachMedia()}

Value = FALSE : the convenience function has to be used for routing a CallLeg.

P_MEDIA_ATTACH_EXPLICIT
BOOLEAN_SET
Value = TRUE : the CallLeg must be explicitly attached to a Call.

Value = FALSE : the CallLeg is automatically attached to a Call, no IpCallLeg.attachMedia() is needed when a party answers.

The previous table lists properties related to capabilities of the SCS itself. The following table lists properties that are used in the context of the Service Level Agreement, e.g. to restrict the access of applications to the capabilities of the SCS.

Property
Type
Description

P_TRIGGERING_ADDRESSES
ADDRESS_RANGE_SET
Indicates for which numbers the notification may be set. For terminating notifications it applies to the terminating number, for originating notifications it applies only to the originating number.

P_NOTIFICATION_TYPES
INTEGER_SET
Indicates whether the application is allowed to set oritginating and/or terminating triggers in the ECN. Set is:

P_ORIGINATING

P_TERMINATING

P_MONITOR_MODE
INTEGER_SET
Indicates whether the application is allowed to monitor in interrupt and/or notify mode. Set is:

P_INTERRUPT

P_NOTIFY

P_NUMBERS_TO_BE_CHANGED
INTEGER_SET
Indicates which numbers the application is allowed to change or fill for legs in an incoming call. Allowed value set:

{P_ORIGINAL_CALLED_PARTY_NUMBER,

P_REDIRECTING_NUMBER,

P_TARGET_NUMBER,

P_CALLING_PARTY_NUMBER}.

P_CHARGEPLAN_ALLOWED
INTEGER_SET
Indicates which charging is allowed in the setCallChargePlan indicator. Allowed values:

{P_CHARGE_PER_TIME,

P_TRANSPARANT_CHARGING,

P_CHARGE_PLAN}

P_CHARGEPLAN_MAPPING
INTEGER_INTEGER_MAP
Indicates the mapping of chargeplans (we assume they can be indicated with integers) to a logical network chargeplan indicator. When the chargeplan supports indicates P_CHARGE_PLAN then only chargeplans in this mapping are allowed.

5.7 Multi-Party Call Control Data Definitions

This document provides the generic call control data definitions necessary to support the API specification.

This document is written using Hypertext link, to aid navigation through the data structures. Underlined text represents Hypertext links.

The general format of a data definition specification is described below.

· Data Type

This shows the name of the data type.

· Description

This describes the data type.

· Tabular Specification

This specifies the data types and values of the data type.

· Example

If relevant, an example is shown to illustrate the data type.

5.7.1 Event Notification Data Definitions

No specific event notification data defined.

5.7.2 Multi-Party Call Control Data Definitions
IpCallLeg

Defines the address of an IpCallLeg Interface.

IpCallLegRef

Defines a Reference to type IpCallLeg.

IpCallLegRefRef

Defines a Reference to type IpCallLegRef.

IpAppCallLeg

Defines the address of an IpAppCallLeg Interface.

IpAppCallLegRef

Defines a Reference to type IpAppCallLeg.

TpAoCInfo

Defines the Sequence of Data Elements that specify the Advice Of Charge information to be sent to the terminal.

Sequence Element Name
Sequence Element Type
Description

ChargeOrder
TpAoCOrder
Charge order

Currency
TpString

Currency unit according to ISO-4217:1995

TpAoCOrder

Defines the Tagged Choice of Data Elements that specify the charge plan for the call.

Tag Element Type

TpAoCOrderCategory

Tag Element Value
Choice Element Type
Choice Element Name

P_CHARGE_ADVICE_INFO
TpChargeAdviceInfo
ChargeAdviceInfo

P_CHARGE_PER_TIME
TpChargePerTime
ChargePerTime

P_CHARGE_NETWORK
TpString
NetworkCharge

TpCallAoCOrderCategory

Defines the type of AoC data.

Name
Value
Description

P_CHARGE_ADVICE_INFO
0
Set of GSM Charge Advice Information elements according to 3G TS 22.024

P_CHARGE_PER_TIME
1
Charge per time

P_CHARGE_NETWORK
2
Operator specific charge plan specification, e.g. charging table name / charging table entry

TpChargeAdviceInfo

Defines the Sequence of Data Elements that specify the two sets of Advice of Charge parameters. The first set defines the current tariff. The second set may be used in case of a tariff switch in the network.

Sequence Element Name
Sequence Element Type
Description

CurrentCAI
TpCAIElements
Current tariff

NextCAI
TpCAIElements
Next tariff after tariff switch

TpCAIElements

Defines the Sequence of Data Elements that specify theCharging Advice Information elements according to 3G TS 22.024.

Sequence Element Name
Sequence Element Type
Description

UnitsPerInterval
TpInt32
Units per interval

SecondsPerTimeInterval
TpInt32
Seconds per time interval

ScalingFactor
TpInt32
Scaling factor

UnitIncrement
TpInt32
Unit increment

UnitsPerDataInterval
TpInt32
Units per data interval

SegmentsPerDataInterval
TpInt32
Segments per data interval

InitialSecsPerTimeInterval
TpInt32
Initial secs per time interval

TpChargePerTime
Defines the Sequence of Data Elements that specify the time based charging information.
Sequence Element Name
Sequence Element Type
Description

InitialCharge
TpInt32
Initial charge amount (in currency units * 0.0001)

CurrentChargePerMinute
TpInt32
Current tariff (in currency units * 0.0001)

NextChargePerMinute
TpInt32
Next tariff (in currency units * 0.0001) after tariff switch

Only used in setAdviceOfCharge()

TpCallAlertingMechanism

This data type is identical to a TpInt32, and defines the mechanism that will be used to alert a call party. The values of this data type are operator specific.

TpCallAppInfo

Defines the Tagged Choice of Data Elements that specify application-related call information.

Tag Element Type

TpCallAppInfoType

Tag Element Value
Choice Element Type
Choice Element Name

P_CALL_APP_ALERTING_MECHANISM
TPCallAlertingMechanism
CallAppAlertingMechanism

P_CALL_APP_NETWORK_ACCESS_TYPE
TpCallNetworkAccessType
CallAppNetworkAccessType

P_CALL_APP_TELE_SERVICE
TpCallTeleService
CallAppTeleService

P_CALL_APP_BEARER_SERVICE
TpCallBearerService
CallAppBearerService

P_CALL_APP_PARTY_CATEGORY
TpCallPartyCategory
CallAppPartyCategory

P_CALL_APP_PRESENTATION_ADDRESS
TpAddress
CallAppPresentationAddress

P_CALL_APP_GENERIC_INFO
TpString
CallAppGenericInfo

P_CALL_APP_ADDITIONAL_ADDRESS
TpAddress
CallAppAdditionalAddress

P_CALL_APP_ORIGINAL_DESTINATION_ADDRESS
TpAddress
CallAppOriginalDestinationAddress

P_CALL_APP_REDIRECTING_ADDRESS
TpAddress
CallAppRedirectingAddress

TpCallAppInfoType

Defines the type of call application-related specific information.

Name
Value
Description

P_CALL_APP_UNDEFINED
0
Undefined

P_CALL_APP_ALERTING_MECHANISM
1
The alerting mechanism or pattern to use

P_CALL_APP_NETWORK_ACCESS_TYPE
2
The network access type (e.g. ISDN)

P_CALL_APP_TELE_SERVICE
3
Indicates the tele-service (e.g. telephony)

P_CALL_APP_BEARER_SERVICE
4
Indicates the bearer service (e.g. 64kb/s unrestricted data).

P_CALL_APP_PARTY_CATEGORY
5
The category of the calling party

P_CALL_APP_PRESENTATION_ADDRESS
6
The address to be presented to other call parties

P_CALL_APP_GENERIC_INFO
7
Carries unspecified service-service information

P_CALL_APP_ADDITIONAL_ADDRESS
8
Indicates an additional address

P_CALL_APP_ORIGINAL_DESTINATION_ADDRESS
9
Contains the original address specified by the originating user when launching the call.

P_CALL_APP_REDIRECTING_ADDRESS
10
Contains the address of the user from which the call is diverting.

TpCallAppInfoSet

Defines a Numbered Set of Data Elements of TpCallAppInfo.

TpCallBearerService

This data type defines the type of call application-related specific information (Q.931: Information Transfer Capability, and 3G TS 22.002)
Name
Value
Description

P_CALL_BEARER_SERVICE_UNKNOWN
0
Bearer capability information unknown at this time

P_CALL_BEARER_SERVICE_SPEECH
1
Speech

P_CALL_BEARER_SERVICE_DIGITALUNRESTRICTED
2
Unrestricted digital information

P_CALL_BEARER_SERVICE_DIGITALRESTRICTED
3
Restricted digital information

P_CALL_BEARER_SERVICE_AUDIO
4
3.1 kHz audio

P_CALL_BEARER_SERVICE_ DIGITALUNRESTRICTEDTONES
5
Unrestricted digital information with tomes/announcements

P_CALL_BEARER_SERVICE_VIDEO
6
Video

TpCallChargePlan

Defines the Sequence of Data Elements that specify the charge plan for the call.

Sequence Element Name
Sequence Element Type
Description

ChargeOrderType
TpCallChargeOrder
Charge order

Currency
TpString

Currency unit according to ISO-4217:1995

AdditionalInfo
TpString
Descriptive string which is sent to the billing system without prior evaluation. Could be included in the ticket.

Valid Currencies are:

ADP, AED, AFA, ALL, AMD, ANG, AON, AOR, ARS, ATS, AUD, AWG, AZM, BAM,

BBD, BDT, BEF, BGL, BGN, BHD, BIF, BMD, BND, BOB, BOV, BRL, BSD, BTN,

BWP, BYB, BZD, CAD, CDF, CHF, CLF, CLP, CNY, COP, CRC, CUP, CVE, CYP,

CZK, DEM, DJF, DKK, DOP, DZD, ECS, ECV, EEK, EGP, ERN, ESP, ETB, EUR,

FIM, FJD, FKP, FRF, GBP, GEL, GHC, GIP, GMD, GNF, GRD, GTQ, GWP, GYD,

HKD, HNL, HRK, HTG, HUF, IDR, IEP, ILS, INR, IQD, IRR, ISK, ITL, JMD,

JOD, JPY, KES, KGS, KHR, KMF, KPW, KRW, KWD, KYD, KZT, LAK, LBP, LKR,

LRD, LSL, LTL, LUF, LVL, LYD, MAD, MDL, MGF, MKD, MMK, MNT, MOP, MRO,

MTL, MUR, MVR, MWK, MXN, MXV, MYR, MZM, NAD, NGN, NIO, NLG, NOK, NPR,

NZD, OMR, PAB, PEN, PGK, PHP, PKR, PLN, PTE, PYG, QAR, ROL, RUB, RUR,

RWF, SAR, SBD, SCR, SDD, SEK, SGD, SHP, SIT, SKK, SLL, SOS, SRG, STD,

SVC, SYP, SZL, THB, TJR, TMM, TND, TOP, TPE, TRL, TTD, TWD, TZS, UAH,

UGX, USD, USN, USS, UYU, UZS, VEB, VND, VUV, WST, XAF, XAG, XAU, XBA,

XBB, XBC, XBD, XCD, XDR, XFO, XFU, XOF, XPD, XPF, XPT, XTS, XXX, YER,

YUM, ZAL, ZAR, ZMK, ZRN, ZWD.

XXX is used for transactions where no currency is involved.

TpCallChargeOrder

Defines the Tagged Choice of Data Elements that specify the charge plan for the call.

Tag Element Type

TpCallChargeOrderCategory

Tag Element Value
Choice Element Type
Choice Element Name

P_CALL_CHARGE_PER_TIME
TpChargePerTime
ChargePerTime

P_CALL_CHARGE_NETWORK
TpString
NetworkCharge

TpCallChargeOrderCategory

Defines the type of charging to be applied

Name
Value
Description

P_CALL_CHARGE_PER_TIME
0
Charge per time

P_CALL_CHARGE_NETWORK
1
Operator specific charge plan specification, e.g. charging table name / charging table entry

TpCallError

Defines the Sequence of Data Elements that specify the additional information relating to acall error.

Sequence Element Name
Sequence Element Type

ErrorTime
TpDateAndTime

ErrorType
TpCallErrorType

AdditionalErrorInfo
TpCallAdditionalErrorInfo

TpCallAdditionalErrorInfo

Defines the Tagged Choice of Data Elements that specify additional call error and call error specific information. This is also used to specify call leg errors and information errors.

Tag Element Type

TpCallErrorType

Tag Element Value
Choice Element Type
Choice Element Name

P_CALL_ERROR_UNDEFINED
NULL
Undefined

P_CALL_ERROR_INVALID_ADDRESS
TpAddressError
CallErrorInvalidAddress

P_CALL_ERROR_INVALID_STATE
NULL
Undefined

TpCallErrorType

Defines a specific call error.

Name
Value
Description

P_CALL_ERROR_UNDEFINED
0
Undefined; the method failed or was refused, but no specific reason can be given.

P_CALL_ERROR_INVALID_ADDRESS
1
The operation failed because an invalid address was given

P_CALL_ERROR_INVALID_STATE
2
The call was not in a valid state for the requested operation

TpCallFault

Defines the cause of the call fault detected.

Name
Value
Description

P_CALL_FAULT_UNDEFINED
0
Undefined

P_CALL_TIMEOUT_ON_RELEASE
1
This fault occurs when the final report has been sent to the application, but the application did not explicitly release or deassign the call object, within a specified time.

The timer value is operator specific.

P_CALL_TIMEOUT_ON_INTERRUPT
2
This fault occurs when the application did not instruct the gateway how to handle the call within a specified time, after the gateway reported an event that was requested by the application in interrupt mode.

The timer value is operator specific.

TpCallEndedReport

Defines the Sequence of Data Elements that specify the reason for the call ending.
Sequence Element Name
Sequence Element Type

CallLegSessionID
TpSessionID
The leg that initiated the release of the call.

If the call release was not initiated by the leg, then this value is set to –1.

Cause
TpCallReleaseCause
The cause of the call ending.

TpCallEventRequest

Defines the Sequence of Data Elements that specify the criteria relating to call report requests.

Sequence Element Name
Sequence Element Type

CallEventType
TpCallEventType

AdditionalCallEventCriteria
TpAdditionalCallEventCriteria

CallMonitorMode
TpCallMonitorMode

TpCallEventRequestSet
Defines a Numbered Set of Data Elements of TpCallEventRequest.

TpCallEventType

Defines a specific call event report type.

Name
Value
Description

P_CALL_EVENT_UNDEFINED
0
Undefined

P_CALL_EVENT_CALL_ATTEMPT
1
A Call attempt takes place (e.g. Offhook event)

P_CALL_EVENT_ADDRESS_COLLECTED
2
The destination address has been collected

P_CALL_EVENT_ADDRESS_ANALYSED
3
The destination address has been analysed

P_CALL_EVENT_PROGRESS
4
Call routing progress event:an indication from the network that progress has been made in routing the call to the requested call party.

P_CALL_EVENT_ALERTING
5
Call is alerting at the call party

P_CALL_EVENT_ANSWER
6
Call answered at address

P_CALL_EVENT_RELEASE
7
A Call has been released or the call could not be routed

P_CALL_EVENT_REDIRECTED
8
Call redirected to new address: an indication from the network that the call has been redirected to a new address.

P_CALL_EVENT_SERVICE_CODE
9
Mid-call service code received

The table below defines the disarming rules for dynamic events. In case such an event occurs the table shows which events are disarmed (are not monitored anymore) and should be re-armed by eventReportReq() in case the application is still interested in these events.

Event Occured
Events Disarmed

P_CALL_EVENT_UNDEFINED
Not Applicable

P_CALL_EVENT_CALL_ATTEMPT
Not applicable, can only be armed as trigger

P_CALL_EVENT_ADDRESS_COLLECTED
P_CALL_EVENT_ADDRESS_COLLECTED

P_CALL_EVENT_ADDRESS_ANALYSED
P_CALL_EVENT_ADDRESS_COLLECTED

P_CALL_EVENT_ADDRESS_ANALYSED

P_CALL_EVENT_PROGRESS
P_CALL_EVENT_ADDRESS_COLLECTED

P_CALL_EVENT_ADDRESS_ANALYSED

P_CALL_EVENT_PROGRESS

P_CALL_EVENT_ALERTING
P_CALL_EVENT_ADDRESS_COLLECTED

P_CALL_EVENT_ADDRESS_ANALYSED

P_CALL_EVENT_PROGRESS
P_CALL_EVENT_ALERTING

P_CALL_EVENT_RELEASE with criteria:

· P_USER_NOT_AVAILABLE

· P_BUSY

· P_NOT_REACHABLE

· P_ROUTING_FAILURE

· P_CALL_RESTRICTED

· P_UNAVAILABLE_RESOURCES

P_CALL_EVENT_ANSWER
P_CALL_EVENT_ADDRESS_COLLECTED

P_CALL_EVENT_ADDRESS_ANALYSED

P_CALL_EVENT_PROGRESS P_CALL_EVENT_ALERTING

P_CALL_EVENT_RELEASE with criteria:

· P_USER_NOT_AVAILABLE

· P_BUSY

· P_NOT_REACHABLE

· P_ROUTING_FAILURE

· P_CALL_RESTRICTED

· P_UNAVAILABLE_RESOURCES

· P_NO_ANSWER

· P_PREMATURE_DISCONNECT

P_CALL_EVENT_ANSWER

P_CALL_EVENT_RELEASE
All pending events are disarmed

P_CALL_EVENT_REDIRECTED
P_CALL_EVENT_REDIRECTED

P_CALL_EVENT_SERVICE_CODE
P_CALL_EVENT_SERVICE_CODE

TpAdditionalCallEventCriteria

Defines the Tagged Choice of Data Elements that specify specific criteria.

Tag Element Type

TpCallEventType

Tag Element Value
Choice Element Type
Choice Element Name

P_CALL_EVENT_UNDEFINED
NULL
Undefined

P_CALL_EVENT_CALL_ATTEMPT
NULL
Undefined

P_CALL_EVENT_ADDRESS_COLLECTED
TpInt32
MinAddressLength

P_CALL_EVENT_ADDRESS_ANALYSED
NULL
Undefined

P_CALL_EVENT_PROGRESS
NULL
Undefined

P_CALL_EVENT_ALERTING
NULL
Undefined

P_CALL_EVENT_ANSWER
NULL
Undefined

P_CALL_EVENT_RELEASE
TpCallReleaseCauseSet
ReleaseCauseSet

P_CALL_EVENT_REDIRECTED
NULL
Undefined

P_CALL_EVENT_SERVICE_CODE
TpCallServiceCode
ServiceCode

TpCallEventInfo

Defines the Sequence of Data Elements that specify the event report specific information.
Sequence Element Name
Sequence Element Type

CallEventType
TpCallEventType

AdditionalCallEventInfo
TpAdditionalCallEventInfo

CallMonitorMode
TpCallMonitorMode

CallEventTime
TpDateAndTime

TpCallAdditionalEventInfo

Defines the Tagged Choice of Data Elements that specify additional call event information for certain types of events.

Tag Element Type

TpCallEventType

Tag Element Value
Choice Element Type
Choice Element Name

P_CALL_EVENT_UNDEFINED
NULL
Undefined

P_CALL_EVENT_CALL_ATTEMPT
NULL
Undefined

P_CALL_EVENT_ADDRESS_COLLECTED
TpAddress
CalledAddress

P_CALL_EVENT_ADDRESS_ANALYSED
TpAddress
CalledAddress

P_CALL_EVENT_PROGRESS
NULL
Undefined

P_CALL_EVENT_ALERTING
NULL
Undefined

P_CALL_EVENT_ANSWER
NULL
Undefined

P_CALL_EVENT_RELEASE
TpCallReleaseCause
ReleaseCause

P_CALL_EVENT_REDIRECTED
TpAddress
ForwardAddress

P_CALL_EVENT_SERVICE_CODE
TpCallServiceCode
ServiceCode

TpCallInfoReport

Defines the Sequence of Data Elements that specify the call information requested. Information that was not requested is invalid.
Sequence Element Name
Sequence Element Type
Description

CallInfoType
TpCallInfoType
The type of call report.

CallInitiationStartTime
TpDateAndTime
The time and date when the call, or follow-on call, was started.

CallConnectedToResourceTime
TpDateAndTime
The date and time when the call was connected to the resource.

This data element is only valid when information on user interaction is reported.

CallConnectedToDestinationTime
TpDateAndTime
The date and time when the call was connected to the destination (i.e., when the destination answered the call). If the destination did not answer, the time is set to an empty string.

This data element is invalid when information on user interaction is reported with an intermediate report.

CallEndTime
TpDateAndTime
The date and time when the call or follow-on call or user interaction was terminated.

Cause
TpCallReleaseCause
The cause of the termination.

A callInfoReport will be generated at the end of user interaction and at the end of the connection with the associated address. This means that either the destination related information is present or the resource related information, but not both.
TpCallInfoType

Defines the type of call information requested and reported. The values may be combined by a logical 'OR' function.

Name
Value
Description

P_CALL_INFO_UNDEFINED
00h
Undefined

P_CALL_INFO_TIMES
01h
Relevant call times

P_CALL_INFO_RELEASE_CAUSE
02h
Call release cause

P_CALL_INFO_INTERMEDIATE
04h
Send only intermediate reports. When this is not specified the information report will only be sent when the call has ended. When intermediate reports are requested a report will be generated between follow-on calls, i.e., when a party leaves the call.

TpCallLoadControlMechanism

Defines the Tagged Choice of Data Elements that specify the applied mechanism and associated parameters.

Tag Element Type

TpCallLoadControlMechanismType

Tag Element Value
Choice Element Type
Choice Element Name

P_CALL_LOAD_CONTROL_PER_INTERVAL
TpCallLoadControlIntervalRate
CallLoadControlPerInterval

TpCallLoadControlIntervalRate

Defines the call admission rate of the call load control mechanism used. This data type indicates the interval (in milliseconds) between calls that are admitted.
Name
Value
Description

P_CALL_LOAD_CONTROL_ADMIT_NO_CALLS
0
Infinite interval

(do not admit any calls)

1 - 60000
Duration in milliseconds

TpCallLoadControlMechanismType

Defines the type of call load control mechanism to use.

Name
Value
Description

P_CALL_LOAD_CONTROL_PER_INTERVAL
1
admit one call per interval

TpCallMonitorMode

Defines the mode that the call will monitor for events, or the mode that the call is in following a detected event.

Name
Value
Description

P_CALL_MONITOR_MODE_INTERRUPT
0
The call event is intercepted by the call control service and call processing is interrupted. The application is notified of the event and call processing resumes following an appropriate API call or network event (such as a call release)

P_CALL_MONITOR_MODE_NOTIFY
1
The call event is detected by the call control service but not intercepted. The application is notified of the event and call processing continues

P_CALL_MONITOR_MODE_DO_NOT_MONITOR
2
Do not monitor for the event

TpCallNetworkAccessType

This data defines the bearer capabilities associated with the call. (3G TS 24.002) This information is network operator specific and may not always be available because there is no standard protocol to retrieve the information.

Name
Value
Description

P_CALL_NETWORK_ACCESS_TYPE_UNKNOWN
0
Network type information unknown at this time

P_CALL_NETWORK_ACCESS_TYPE_POT
1
POTS

P_CALL_NETWORK_ACCESS_TYPE_ISDN
2
ISDN

P_CALL_NETWORK_ACCESS_TYPE_DIALUPINTERNET
3
Dial-up Internet

P_CALL_NETWORK_ACCESS_TYPE_XDSL
4
xDLS

P_CALL_NETWORK_ACCESS_TYPE_WIRELESS
5
Wireless

TpCallNotificationRequest

Defines the Sequence of Data Elements that specify the criteria for an event notification

Sequence Element Name
Sequence Element Type
Description

CallNotificationScope
TpCallNoficationScope
Defines the scope of the nofication request.

CallEventsRequested
TpCallEventRequestSet
Defines the events which are requested

TpCallNotificationScope

Defines a the sequence of Data elements that specify the scope of a notification request.

Of the addresses only the Plan and the AddrString are used for the purpose of matching the notifications against the criteria.

Sequence Element Name
Sequence Element Type
Description

DestinationAddress
TpAddressRange
Defines the destination address or address range for which the notification is requested.

OriginatingAddress
TpAddressRange
Defines the origination address or address range for which the notification is requested.

NotificationCallType
TpNotificationCallType
Defines wheter the notification is requested for a originating or terminating call.

TpNotificationCallType

Defines the type of call for which the notification is requested or reported.

Name
Value
Description

P_ORIGINATING
1
Indicates that the notification is related to the originating user in the call.

P_TERMINATING
2
Indicates that the notification is related to the terminating user in the call.

TpCallNotificationInfo

Defines the Sequence of Data Elements that specify the information returned to the application in a Call notification report.

Sequence Element Name
Sequence Element Type
Description

CallNotificationReportScope
TpCallNotificationReportScope
Defines the scope of the notification report.

CallAppInfo
TpCallAppInfoSet
Contains additonal call info.

CallEventInfo
TpCallEventInfo
Contains the event which is reported.

TpCallNotificationReportScope

Defines the Sequence of Data Elements that specify the scope for which a notification report was sent.

Sequence Element Name
Sequence Element Type
Description

DestinationAddress
TpAddress
Contains the destination address of the call.

OriginatingAddress
TpAddress
Contains the origination address of the call

NotificationCallType
TpNotificationCallType
Indicates if the notification was reported for an originating or terminating call.

TpNotificationRequested

Defines the Sequence of Data Elements that specify the criteria relating to event requests.

Sequence Element Name
Sequence Element Type

AppCallNotificationRequest
TpCallNotificationRequest

AssignmentID
TpInt32

TpNotificationsRequestedSet

Defines a numbered Set of Data Elements of TpNotificationRequested

TpNotificationsRequestedSetRef

Defines a reference to the type TpNotificationsRequestSet

TpCallPartyCategory

This data type defines the category of a calling party. (Q.763: Calling Party Category / Called Party Category)

Name
Value
Description

P_CALL_PARTY_CATEGORY_UNKNOWN
0
calling party's category unknown at this time

P_CALL_PARTY_CATEGORY_OPERATOR_F
1
operator, language French

P_CALL_PARTY_CATEGORY_OPERATOR_E
2
operator, language English

P_CALL_PARTY_CATEGORY_OPERATOR_G
3
operator, language German

P_CALL_PARTY_CATEGORY_OPERATOR_R
4
operator, language Russian

P_CALL_PARTY_CATEGORY_OPERATOR_S
5
operator, language Spanish

P_CALL_PARTY_CATEGORY_ORDINARY_SUB
6
ordinary calling subscriber

P_CALL_PARTY_CATEGORY_PRIORITY_SUB
7
calling subscriber with priority

P_CALL_PARTY_CATEGORY_DATA_CALL
8
data call (voice band data)

P_CALL_PARTY_CATEGORY_TEST_CALL
9
test call

P_CALL_PARTY_CATEGORY_PAYPHONE
10
payphone

TpCallReleaseCause

Defines the reason for which a call is released

Name
Value
Description

P_UNDEFINED
0
The reason of release isn’t known, because no info was received from the network.

P_USER_NOT_AVAILBLE
1
The user isn’t available in the network. This means that the number isn’t allocated or that the user isn’t registered.

P_BUSY
2
The user is busy.

P_NO_ANSWER
3
No answer was received

P_NOT_REACHABLE
4
The user terminal isn’t reachable

P_ROUTING_FAILURE
5
A routing failure occurred. For example an invalid address was received

P_PREMATURE_DISCONNECT
6
The user disconnected the call during setup phase.

P_DISCONNECTED
7
Call disconnect by the end user.

P_CALL_RESTRICTED
8
The call was subject of restrictions

P_UNAVAILABLE_RESOURCE
9
No resources where available to establisch the call.

P_GENERAL_FAILURE
10
A general network failure occurred.

TpCallReleaseCauseSet

Defines a Numbered Set of Data Elements of TpCallReleaseCause.

TpCallServiceCode

Defines the Sequence of Data Elements that specify the service code and type of service code received during a call. The service code type defines how the value string should be interpreted.

Sequence Element Name
Sequence Element Type

CallServiceCodeType
TpCallServiceCodeType

ServiceCodeValue
TpString

TpCallServiceCodeType

Defines the different types of service codes that can be received during the call.

Name
Value
Description

P_CALL_SERVICE_CODE_UNDEFINED
0
The type of service code is unknown. The corresponding string is operator specific.

P_CALL_SERVICE_CODE_DIGITS
1
The user entered a digit sequence during the call. The corresponding string is an ascii representation of the received digits.

P_CALL_SERVICE_CODE_FACILITY
2
A facility information element is received. The corresponding string contains the facility information element as defined in ITU Q.932

P_CALL_SERVICE_CODE_U2U
3
A user-to-user message was received. The associated string contains the content of the user-to-user information element.

P_CALL_SERVICE_CODE_HOOKFLASH
4
The user performed a hookflash, optionally followed by some digits. The corresponding string is an ascii representation of the entered digits.

P_CALL_SERVICE_CODE_RECALL
5
The user pressed the register recall button, optionally followed by some digits. The corresponding string is an ascii representation of the entered digits.

TpCallTeleService

This data type defines the tele-service associated with the call. (Q.763: User Teleservice Information, Q.931: High Layer Compatitibility Information, and 3G TS 22.003)

Name
Value
Description

P_CALL_TELE_SERVICE_UNKNOWN
0
Teleservice information unknown at this time

P_CALL_TELE_SERVICE_TELEPHONY
1
Telephony

P_CALL_TELE_SERVICE_FAX_2_3
2
Facsimile Group 2/3

P_CALL_TELE_SERVICE_FAX_4_I
3
Facsimile Group 4, Class I

P_CALL_TELE_SERVICE_FAX_4_II_III
4
Facsimile Group 4, Classes II and III

P_CALL_TELE_SERVICE_VIDEOTEX_SYN
5
Syntax based Videotex

P_CALL_TELE_SERVICE_VIDEOTEX_INT
6
International Videotex interworking via gateways or interworking units

P_CALL_TELE_SERVICE_TELEX
7
Telex service

P_CALL_TELE_SERVICE_MHS
8
Message Handling Systems

P_CALL_TELE_SERVICE_OSI
9
OSI application

P_CALL_TELE_SERVICE_FTAM
10
FTAM application

P_CALL_TELE_SERVICE_VIDEO
11
Videotelephony

P_CALL_TELE_SERVICE_VIDEO_CONF
12
Videoconferencing

P_CALL_TELE_SERVICE_AUDIOGRAPH_CONF
13
Audiographic conferencing

P_CALL_TELE_SERVICE_MULTIMEDIA
14
Multimedia services

P_CALL_TELE_SERVICE_CS_INI_H221
15
Capability set of initial channel of H.221

P_CALL_TELE_SERVICE_CS_SUB_H221
16
Capability set of subsequent channel of H.221

P_CALL_TELE_SERVICE_CS_INI_CALL
17
Capability set of initial channel associated with an active 3.1 kHz audio or speech call.

P_CALL_TELE_SERVICE_DATATRAFFIC
18
Data traffic.

P_CALL_TELE_SERVICE_EMERGENCY_CALLS
19
Emergency Calls

P_CALL_TELE_SERVICE_SMS_MT_PP
20
Short message MT/PP

P_CALL_TELE_SERVICE_SMS_MO_PP
21
Short message MO/PP

P_CALL_TELE_SERVICE_CELL_BROADCAST
22
Cell Broadcast Service

P_CALL_TELE_SERVICE_ALT_SPEECH_FAX_3
23
Alternate speech and facsimile group 3

P_CALL_TELE_SERVICE_AUTOMATIC_FAX_3
24
Automatic Facsimile group 3

P_CALL_TELE_SERVICE_VOICE_GROUP_CALL
25
Voice Group Call Service

P_CALL_TELE_SERVICE_VOICE_BROADCAST
26
Voice Broadcast Service

TpCallSuperviseReport

Defines the responses from the call control service for calls that are supervised. The values may be combined by a logical 'OR' function.

Name
Value
Description

P_CALL_SUPERVISE_TIMEOUT
01h
The call supervision timer has expired

P_CALL_SUPERVISE_CALL_ENDED
02h
The call has ended, either due to timer expiry or call party release. In case the called party disconnects but a follow-on call can still be made also this indication is used.

P_CALL_SUPERVISE_TONE_APPLIED
04h
A warning tone has been applied. This is only sent in combination with P_CALL_SUPERVISE_TIMEOUT

P_CALL_SUPERVISE_UI_FINISHED
08h
The user interaction has finished.

TpCallSuperviseTreatment

Defines the treatment of the call by the call control service when the call supervision timer expires. The values may be combined by a logical 'OR' function.

Name
Value
Description

P_CALL_SUPERVISE_RELEASE
01h
Release the call when the call supervision timer expires

P_CALL_SUPERVISE_RESPOND
02h
Notify the application when the call supervision timer expires

P_CALL_SUPERVISE_APPLY_TONE
04h
Send a warning tone to the originating party when the call supervision timer expires. If call release is requested, then the call will be released following the tone after an administered time period

TpCallTreatment

Defines the Sequence of Data Elements that specify the the treatment for calls that will be handled only by the network (for example, call which are not admitted by the call load control mechanism).
Sequence Element Name
Sequence Element Type

ReleaseCause
TpCallReleaseCause

AdditionalTreatmentInfo
TpCallAdditionalTreatmentInfo

TpCallAdditionalTreatmentInfo

Defines the Tagged Choice of Data Elements that specify the information to be sent to a call party.

Tag Element Type

TpCallTreatmentType

Tag Element Value
Choice Element Type
Choice Element Name

P_CALL_TREATMENT_DEFAULT
NULL
Undefined

P_CALL_TREATMENT_RELEASE
NULL
Undefined

P_CALL_TREATMENT_SIAR
TpUICallInfoID
InformationToSend

TpCallTreatmentType

Defines the treatment for calls that will be handled only by the network.
Name
Value
Description

P_CALL_TREATMENT_DEFAULT
0
Default treatment

P_CALL_TREATMENT_RELEASE
1
Release the call

P_CALL_TREATMENT_SIAR
2
Send information to the user, and release the call (Send Info & Release)

TpCallLegIdentifierSet

Defines a Numbered Set of Data Elements of TpCallLegIdentifier.
TpCallLegIdentifierSetRef

Defines a Reference to type TpCallLegIdentifierSet.

TpCallLegIdentifierRef

Defines a Reference to type TpCallLegIdentifier.

TpCallLegIdentifier

Defines the Sequence of Data Elements that unambiguously specify the Call Leg object

Sequence Element Name
Sequence Element Type
Sequence Element Description

CallLegReference
IpCallLegRef
This element specifies the interface reference for the callLeg object.

CallLegSessionID
TpSessionID
This element specifies the callLeg session ID.

TpCallLegAttachMechanism

Defines how a CallLeg should be attached to the call.

Name
Value
Description

P_CALLLEG_ATTACH_IMPLICITLY
0
CallLeg should be attached implicitly to the call.

P_CALLLEG_ATTACH_EXPLICITLY
1
CallLeg should be attached explicitly to the call by using the attachMedia() operation. This allows e.g. the application to do first user interaction to the party before he / she is placed in the call.

TpCallLegConnectionProperties

Defines the Sequence of Data Elements that specify the connection properties of the Call Leg object

Sequence Element Name
Sequence Element Type
Sequence Element Description

AttachMechanism
TpCallLegAttachMechanism
Defines how a CallLeg should be attached to the call.

TpCallLegInfoReport

Defines the Sequence of Data Elements that specify the call leg information requested.

Sequence Element Name
Sequence Element Type
description

CallLegInfoType
TpCallLegInfoType
The type of the call leg.

CallLegStartTime
TpDateAndTime
The time and date when the call leg was started (i.e., the leg was routed).

CallLegConnectedToResourceTime
TpDateAndTime
The date and time when the call leg was connected to the resource. If no resource was connected the time is set to an empty string.

Either this element is valid or the CallConnectedToAddressTime is valid, depending on whether the report is sent as a result of user interaction.

CallLegConnectedToAddressTime
TpDateAndTime
The date and time when the call leg was connected to the destination (i.e., when the destination answered the call). If the destination did not answer, the time is set to an empty string.

Either this element is valid or the CallConnectedToResourceTime is valid, depending on whether the report is sent as a result of user interaction.

CallLegEndTime
TpDateAndTime
The date and time when the call leg was released.

ConnectedAddress
TpAddress
The address of the party associated with the leg. If during the call the connected address was received from the party then this is returned, otherwise the destination address (for legs connected to a destination) or the originating address (for legs connected to the origination) is returned.

CallLegReleaseCause
TpCallReleaseCause
The cause of the termination. May be present with P_CALL_LEG_INFO_RELEASE_CAUSE was specified.

CallAppInfo
TpCallAppInfoSet
Additional information for the leg. May be present with P_CALL_LEG_INFO_APPINFO was specified.

TpCallLegInfoType

Defines the type of call leg information requested and reported. The values may be combined by a logical 'OR' function.

Name
Value
Description

P_CALL_LEG_INFO_UNDEFINED
00h
Undefined

P_CALL_LEG_INFO_TIMES
01h
Relevant call times

P_CALL_LEG_INFO_RELEASE_CAUSE
02h
Call leg release cause

P_CALL_LEG_INFO_ADDRESS
04h
Call leg connected address

P_CALL_LEG_INFO_APPINFO
08h
Call leg application related information

� Contact Information: Ard-Jan Moerdijk, Ericsson Eurolab Netherlands, tel. +31 161 242777, e-mail: Ard.Jan.Moerdijk@eln.ericsson.se

