	3GPP TSG_CN5 (Open Service Architecture – OSA)

Meeting #9, Helsinki, FINLAND, 6 – 8 February 2001
	Tdoc N5-010067

Agenda Item:

PARLAY Member Meeting, WG Content Based Charging
LS-CBC/3GPP

Singapore

09th – 11th January, 2001

To:
3GPP TSG CN WG5 / ETSI SPAN 12
Source:
Parlay Content Based Charging Group

Contact:
Joerg Oppat (Joerg.Oppat@bln1.siemens.de)

Title:
Status of Content Based Charging.
Answer to Liaison Statement

Introduction

During the last Parlay meeting the Content Based Charging WG presented the status of the API and presented 3 contributions as input and basis for the further discussions within this group. We would like to inform you about the progress made at this meeting, and will inform you about the answer to your proposal of collaboration on the definition of API’s.

Because of your higher time pressure we try to adapt the output to your time frames. The official release for which the Content Based Charging API’s are defined is Parlay Release 3.0 which is scheduled for June-July 2001.

Some comments on your LS

· Account management interface vs. charging interface: We agree that an account management interface may be useful. In case this interface becomes part of OSA Rel. 4, we will include it in the Parlay 3.0 specifications as well. Currently there are no contributions on that in our workgroup. We would like to learn more about the requirements to be fulfilled by the account management interface. In our workgroup, there were concerns about the following issues:

· Are the subscribers willing to allow Parlay or OSA clients to access their account data?

· Is it feasible for a charging server to keep track of enabled or disabled notifications in a million subscriber environment?

· What happens to the enabled/disabled notifications in case the Parlay or OSA client crashes? Do they remain enabled after a restart of the client? Will the callback interface references still be valid?

· Operations supported: We agreed to support direct payment (or, as we call it, immediate payment), immediate transfer, reservation and payment in parts. We agreed that there will always be separate operations to credit or to debit a user rather than a single updateAccount operation. Thus, the credited or debited amount is always given as a non-negative value. The reason is that the privileges needed for a credit are usually different from the privileges needed for a credit. Beyond this, in bookkeeping it is unusual to transfer negative amounts.

· Payment in parts/rollback mechanism: We consider any payment that has been requested and confirmed positively to be irrevocable. Thus, we do not see any requirement to roll back a payment. In case of dispute, a reverse payment has to be done as a separate transaction. It may be a requirement to the account management interface to support a compound operation that

· Fetches the disputed transaction from the account history and

· Generates a new transaction that is reverse to the disputed transaction in terms that the amount is the same, but credited and debited account are exchanged.

· In the transaction description, there may be a reference to the original, but disputed, transaction.

Nevertheless, a reserved amount can always be given back to the user by simply closing (that is, destroying) the reservation without having captured anything.

· Asynchronous interface: Most methods will be asynchronous. However, there are operations that we consider simple and that shall be synchronously. Criteria if a given operation shall be synchronous or asynchronous is if the operation may possibly involve external communication. Should there be any chance that in any implementation the operation will require external communication, it is modelled asynchronously.

· Bookkeeping, or more precisely, double-entry booking: According to the benchmark scenarios we derive our requirements from, we consider it essential that all operations receive a credited user and a debited user as input parameters.

· Additional information for the updateAccount operation: Yes, a description of the service provided or the product purchased shall be specified with any charging request. Our updated working papers will provide a proposal on which parameters should be given to this operation. Please note that, as a working hypothesis, we will have a credit and a debit operation instead of the updateAccount operation.

· What shall be underneath the API: The API shall provide access to prepaid systems as well as to billing systems. We have the requirement to make the API prepaid-ready. That is, the charging server has to respond on any payment request quickly (in the range of tenths of seconds or maybe seconds). If the charging server responds positively, the operator assumes the risk of the payment.

Progress and discussion during this meeting

All these contributions where discussed and an updated variant will be sent to you and the group members till February 2nd. This enables an ongoing discussion in Helsinki on February 8th.

· It was agreed to answer the Liaison Statement positive. This was also accepted by the steering board.

· It was also agreed to distinguish between an interface for account management and an interface for charging. No real request was formulated from the Parlay side but the availability would be accepted.

· Some security aspects where mentioned for the account management interface which can be prevented with the definition of detailed policies. (e.g. that the client should not know the account status of a user which is normally anonymous for the client application)

· We would not update the API’s and Functional Specification by this account management API but would be happy for a contribution for the next Helsinki meeting (Lucent?).

· Because of easier handling we would prefer one document for both API’s but would not hinder the charging interface by the availability of the account management interface.

· Bookkeeping was agreed due to legal and technical issues. The transfer of money has to be controllable (money laundring). The mechanisms should allow this option. The second account may be virtual in case of no requirements (network feature realization).

· An account should also be addressed with an optional index to address subaccounts for the merchant side. This enables applications to differentiate the money transfers according different kinds of service.

· Credit and debit should be distinguished also on API level to clearly define the direction of money transfer.

· Direct payment should also be possible for non monetary units. So accounts can be defined as e.g. type bonus points, number of SMS’, number of kbytes, etc.

· agreement to use asynchronous methods for the interfaces

· We will use the term “Reservation” for what has been called a “Transaction” in #319. Our revised papers will contain a discussion about the lifecycle of a reservation and a mechanism to control the expiry of a reservation.

· We agreed to have a mechanism of handing over a reservation from one application server to another. This is to support composed services that run on multiple servers.

· The API shall allow the application server to specify either the exact amount to charge to specify sufficient information for the charging server to rate the service itself. Explanation of what we consider “sufficient information” and how the rating shall work will be contained in the revised papers.

· We agreed upon a rather complex class diagram, which will roughly look like this (only the server side interfaces are shown, there is an associated client side interface for any of them):

·
[image: image1.wmf]

IpReservation

<<Interface>>

IpService

<<Interface>>

IpChargingManager

requestReservationReq()

requestRatingAndReservationReq()

<<Interface>>

IpRatingReservation

<<Interface>>

IpAmountReservation

<<Interface>>

requestRateReq()

allowTakeOverOfReservation()

takeOverOfReservation()

creditUserReq()

debitUserReq()

ext

endLifetime()

getLifetimeLeft()

close()

credit()

debit()

getReservationLeft()

credit()

debit()

getReservationLeft(

)

rateAndCreditUserReq()

rateAndDebitUserReq()

Proposal for collaboration

As stated a common specification for both 3GPP/ETSI and Parlay is accepted to avoid double work and ensure alignment right from the beginning.

The next common meeting will be in Helsinki on February 6th -8th. This was announced at the Parlay Meeting. The documentation for this meeting, or in other words the results of the Singapore meeting will be sent to you till February 2nd.

· We suggest to work on a common UML model for the charging related issues. We suggest this UML model is hosted by ETSI, as it is currently done for the joint OSA/Parlay call control model.

· The editorship for this UML model needs to be defined. We suggest to share that responsibility between 3GPP and Parlay representatives. We suggest the Account Management API to be edited by Lucent, but the Charging API be edited either by Ericsson or Siemens.

· We would appreciate if there was an ad-hoc group for the charging issue within CN5 as a partner for the Parlay Content-based Charging WG. This would avoid for our workgroup members to get involved into control related issues. We would like to have joint meetings with such an ad-hoc group, which we expect to be co-located with either CN5 or Parlay meetings.

�PAGE \# "'Page: '#'�'" �� The Tdoc number for the CN5 plenary meeting will be allocated by the CN5 Secretary: Adrian ZOICAS (ETSI MCC), � HYPERLINK "mailto:Adrian.Zoicas@etsi.fr" ��Adrian.Zoicas@etsi.fr�

_1040623602.doc

IpReservation

<<Interface>>

IpService

<<Interface>>

IpChargingManager

requestReservationReq()

requestRatingAndReservationReq()

requestRateReq()

allowTakeOverOfReservation()

<<Interface>>

extendLifetime()

getLifetimeLeft()

close()

<<Interface>>

credit()

debit()

getReservationLeft()

IpRatingReservation

debitUserReq()

creditUserReq()

takeOverOfReservation()

<<Interface>>

credit()

debit()

getReservationLeft()

rateAndDebitUserReq()

rateAndCreditUserReq()

IpAmountReservation

