[image: image36.png]

DTS/SPAN-120070-4 V0.0.0 (2000-12)
Open Service Access;

Application Programming Interface;

Part 4: Call Control;

Reference

DTS/SPAN-120070-4

Keywords

API, OSA, IDL, Call Control, Generic Call Control, GCC

ETSI

650 Route des Lucioles

F-06921 Sophia Antipolis Cedex - FRANCE
Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la

Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org
The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://www.etsi.org/tb/status/
If you find errors in the present document, send your comment to:
editor@etsi.fr
Copyright Notification

Reproduction is only permitted for the purpose of standardization work undertaken within ETSI.
The copyright and the foregoing restrictions extend to reproduction in all media.
© European Telecommunications Standards Institute 2000.

All rights reserved.

Contents

6Intellectual Property Rights

Foreword
6
Introduction
6
1
Scope
7
2
References
7
3
Definitions, symbols and abbreviations
8
3.1
Definitions
8
3.2
Symbols
8
3.3
Abbreviations
8
4
Call Control SCF
8
5
The Service Interface Specifications
9
5.1
Interface Specification Format
9
5.1.1
Interface Class
9
5.1.2
Method descriptions
9
5.1.3
Parameter descriptions
9
5.1.4
State Model
9
5.2
Base Interface
9
5.2.1
Interface Class IpInterface
9
5.3
Service Interfaces
10
5.3.1
Overview
10
5.4
Generic Service Interface
10
5.4.1
Interface Class IpService
10
6
Generic Call Control Service
11
6.1
Sequence Diagrams
11
6.1.1
Additional Callbacks
11
6.1.2
Alarm Call
13
6.1.3
Application Initiated Call
14
6.1.4
Call Barring 1
16
6.1.5
Number Translation 1
17
6.1.6
Number Translation 1 (with callbacks)
19
6.1.7
Number Translation 2
21
6.1.8
Number Translation 3
22
6.1.9
Number Translation 4
24
6.1.10
Prepaid
26
6.1.11
Pre-Paid with Advice of Charge (AoC)
28
6.2
Class Diagrams
31
6.3
Generic Call Control Service Interface Classes
33
6.3.2
Interface Class IpCallControlManager
34
6.3.3
Interface Class IpAppCallControlManager
37
6.3.4
Interface Class IpCall
40
6.3.5
Interface Class IpAppCall
45
6.4
Generic Call Control Service State Transition Diagrams
49
6.4.1
State Transition Diagrams for IpCallControlManager
49
6.4.1.1
Active State
50
6.4.1.2
Notification terminated State
50
6.4.2
State Transition Diagrams for IpCall
50
6.4.2.1
Network Released State
51
6.4.2.2
Finished State
51
6.4.2.3
Application Released State
52
6.4.2.4
No Parties State
52
6.4.2.5
Active State
52
6.4.2.6
1 Party in Call State
52
6.4.2.7
2 Parties in Call State
52
6.4.2.8
Routing to Destination(s) State
53
6.4.2.10
Network Released State
53
6.4.2.11
Finished State
54
6.4.2.12
Application Released State
54
6.4.2.13
No Parties State
54
6.4.2.14
Active State
54
6.4.2.15
1 Party in Call State
54
6.4.2.16
2 Parties in Call State
55
6.4.2.17
Routing to Destination(s) State
55
6.5
Generic Call Control Data Definitions
55
6.5.1
Generic Call Control Event Notification Data Definitions
56
6.5.2
Generic Call Control Data Definitions
58
7
MultiParty Call Control Service
72
7.1
Sequence Diagrams
72
7.1.1
Application initiated call setup
72
7.1.2
Call Barring 2
74
7.1.3
Complex Card Service
75
7.2
Class Diagrams
78
7.3
MultiParty Call Control Service Interface Classes
80
7.3.2
Interface Class IpMultiPartyCallControlManager
80
7.3.3
Interface Class IpAppMultiPartyCallControlManager
81
7.3.4
Interface Class IpMultiPartyCall
81
7.3.5
Interface Class IpAppMultiPartyCall
83
7.3.6
Interface Class IpCallLeg
83
7.3.7
Interface Class IpAppCallLeg
87
7.4
MultiParty Call Control Service State Transition Diagrams
89
7.4.1
State Transition Diagrams for IpMultiPartyCall
89
7.4.1.1
Active State
90
7.4.1.2
Network Released State
90
7.4.1.3
No Parties State
90
7.4.1.4
Application Released State
90
7.4.1.5
Finished State
90
7.4.1.6
2 .. n Parties in Call State
90
7.4.1.7
1 Party in Call State
90
7.4.1.8
Routing to Destination(s) State
91
7.4.2
State Transition Diagrams for IpCallLeg
91
7.4.2.1
Idle State
91
7.4.2.2
Routing State
91
7.4.2.3
Connected State
91
7.4.2.4
Failed or Disconnected State
92
7.4.2.5
Incoming State
92
7.4.2.6
Progress State
92
7.4.2.7
Alerting State
92
7.4.2.8
Redirected State
92
7.4.2.9
Attached State
92
7.4.2.10
Detached State
92
7.4.2.11
Refused Busy State
92
7.4.2.12
Not Answered State
92
7.4.2.13
Routing Failed State
92
7.4.2.14
Disconnected State
92
7.4.2.15
Offhook State
92
7.4.2.16
Address Collected State
92
7.4.2.17
Address Analysed State
92
7.4.2.18
Party Busy State
93
7.4.2.19
Party Unreachable State
93
7.4.2.20
No Answer from Party State
93
7.4.2.21
Routing to Party Failed State
93
7.4.2.22
Party Answered State
93
7.5
Multi-Party Call Control Data Definitions
93
7.5.1
Event Notification Data Definitions
93
7.5.2
Multi-Party Call Control Data Definitions
93
8
MultiMedia Call Control Service
95
8.1
Sequence Diagrams
95
8.1.1
Barring for media combined with call routing, alternative 1
95
8.1.2
Barring for media combined with call routing, alternative 2
97
8.1.3
Barring for media, simple
98
8.1.4
Call Volume charging supervision
99
8.2
Class Diagrams
101
8.3
MultiMedia Call Control Service Interface Classes
103
8.3.2
Interface Class IpMultiMediaCallControlManager
103
8.3.3
Interface Class IpAppMultiMediaCallControlManager
104
8.3.4
Interface Class IpMultiMediaCall
106
8.3.5
Interface Class IpAppMultiMediaCall
106
8.3.6
Interface Class IpMultiMediaCallLeg
108
8.3.7
Interface Class IpAppMultiMediaCallLeg
109
8.3.8
Interface Class IpMultiMediaChannel
110
8.4
MultiMedia Call Control Service State Transition Diagrams
111
8.5
Multi-Media Call Control Data Definitions
111
8.5.1
Event Notification Data Definitions
112
8.5.2
Multi-Media Call Control Data Definitions
114
9
Conference Call Control Service
116
9.1
Sequence Diagrams
116
9.1.1
Meet-me conference without subconferencing
116
9.1.2
Non-add hoc add-on with subconferencing
118
9.1.3
Non-addhoc add-on multimedia
120
9.1.4
Resource Reservation
122
9.2
Class Diagrams
124
9.3
Conference Call Control Service Interface Classes
125
9.3.2
Interface Class IpConfCallControlManager
126
9.3.3
Interface Class IpAppConfCallControlManager
129
9.3.4
Interface Class IpConfCall
130
9.3.5
Interface Class IpAppConfCall
132
9.3.6
Interface Class IpSubConfCall
133
9.3.7
Interface Class IpAppSubConfCall
137
9.4
Conference Call Control Service State Transition Diagrams
139
9.5
Conference Call Control Data Definitions
139
9.5.1
Event Notification Data Definitions
139
9.5.2
Conference Call Control Data Definitions
139
Annex A (normative): OMG IDL Description of Call Control SCF
144
Annex <zz> (informative): Bibliography
145
History
147

Intellectual Property Rights

Foreword

Introduction

1
Scope

The scope of this document is to consider the interface specification of an API for accessing Third Party Service Applications. UML techniques have been utilized for this purpose. This document specifies the Call Control aspects of the interface for ‘Access to Third Party Service provision. All aspects of Call Control are defined here, these being:

· Sequence Diagrams

· Class Diagrams

· Interface specification plus detailed method descriptions

· State Transition diagrams

· Data definitions

The process by which this task is accomplished is through the use of Object modeling techniques described by the Unified Modeling Language (UML). UML is a combined tools and methodology process which results in a comprehensive set of specifications representing, in this case, an interface between client and server applications. Further information can be found in the latest version of the ITU-T Recommendation Q.65.

The reader should note that this specification has been defined in co-operation with 3GPP CN5 and two industry consortiums, PARLAY and JAIN.

2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

· References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

· For a specific reference, subsequent revisions do not apply.

· For a non-specific reference, subsequent revisions do apply.

For the purposes of this Technical Report, the following references apply:

[1]
ETSI EN 301 234 (V2.1.1 onwards): "Example 1".

[2]
ETSI EG 201 568 (V1.3.5): "Example 2".

[3]
ETSI ETS 300 499 (1996): "Example 3".

[4]
ETSI ETS 300 999: "Example 4".

OR

ETSI EN 301 234 (V2.1.1 onwards): "Example 1".

ETSI EG 201 568 (V1.3.5): "Example 2".

ETSI ETS 300 499 (1996): "Example 3".

ETSI ETS 300 999: "Example 4".

OR

[EN301234]
ETSI EN 301 234 (V2.1.1 onwards): "Example 1".

[EG201568]
ETSI EG 201 568 (V1.3.5): "Example 2".

[ETS300499]
ETSI ETS 300 499 (1996): "Example 3".

[ETS300999]
ETSI ETS 300 999: "Example 4".

3
Definitions, symbols and abbreviations

3.1
Definitions

For the purposes of the present document, the following terms and definitions apply:

<defined term>: <definition>

example: text serving as an example

3.2
Symbols

For the purposes of the present document, the following symbols apply:

<symbol>
<Explanation>

<2nd symbol>
<2nd Explanation>

3.3
Abbreviations

For the purposes of the present document, the following abbreviations apply:

<ACRONYM1>
<Explanation>

<ACRONYM2>
<Explanation>

<ACRONYM3>
<Explanation>

4 Call Control SCF

The following sections describe each aspect of the Call Control Service Capability Feature (SCF).

The order is as follows:

· The Sequence diagrams give the reader a practical idea of how each of the service capability feature is implemented.

· The Class relationships section show how each of the interfaces applicable to the SCF, relate to one another

· The Interface specification section describes in detail each of the interfaces shown within the Class diagram part.

· The State Transition Diagrams (STD) show the progression of internal processes either in the application, or Gateway.

· The Data definitions section show a detailed expansion of each of the data types associated with the methods within the classes. Note that some data types are used in other methods and classes and are therefore defined within the Common Data types part of this specification.

5 The Service Interface Specifications

5.1 Interface Specification Format

This section defines the interfaces, methods and parameters that form a part of the API specification. The Unified Modelling Language (UML) is used to specify the interface classes. The general format of an interface specification is described below.

5.1.1 Interface Class

This shows a UML interface class description of the methods supported by that interface, and the relevant parameters and types. The Service and Framework interfaces for enterprise-based client applications are denoted by classes with name Ip<name>. The callback interfaces to the applications are denoted by classes with name IpApp<name>. For the interfaces between a Service and the Framework, the Service interfaces are typically denoted by classes with name IpSvc<name>, while the Framework interfaces are denoted by classes with name IpFw<name>

5.1.2 Method descriptions

Each method (API method “call”) is described. All methods in the API return a value of type TpResult, indicating, amongst other things, if the method invocation was sucessfully executed or not.
Both synchronous and asynchronous methods are used in the API. Asynchronous methods are identified by a 'Req' suffix for a method request, and, if applicable, are served by asynchronous methods identified by either a 'Res' or 'Err' suffix for method results and errors, respectively. To handle responses and reports, the application or service developer must implement the relevant IpApp<name> or IpSvc<name> interfaces to provide the callback mechanism.

5.1.3 Parameter descriptions

Each method parameter and its possible values are described. Parameters described as 'in' represent those that must have a value when the method is called. Those described as 'out' are those that contain the return result of the method when the method returns.

5.1.4 State Model

If relevant, a state model is shown to illustrate the states of the objects that implement the described interface.

5.2 Base Interface

5.2.1 Interface Class IpInterface

All application, framework and service interfaces inherit from the following interface. This API Base Interface does not provide any additional methods.

	<<Interface>>

IpInterface

	

	

5.3 Service Interfaces

5.3.1 Overview

The Service Interfaces provide the interfaces into the capabilities of the underlying network - such as call control, user interaction, messaging, mobility and connectivity management.

The interfaces that are implemented by the services are denoted as 'Service Interface'. The corresponding interfaces that must be implemented by the application (e.g. for API callbacks) are denoted as 'Application Interface'.

5.4 Generic Service Interface

5.4.1 Interface Class IpService

Inherits from: IpInterface
All service interfaces inherit from the following interface.

	<<Interface>>

IpService

	

	setCallback (appInterface : in IpInterfaceRef) : TpResult

setCallbackWithSessionID (appInterface : in IpInterfaceRef, sessionID : in TpSessionID) : TpResult

Method

setCallback()

This method specifies the reference address of the callback interface that a service uses to invoke methods on the application.

Parameters

appInterface : in IpInterfaceRef

Specifies a reference to the application interface, which is used for callbacks
Raises

TpGeneralException

Method

setCallbackWithSessionID()

This method specifies the reference address of the application's callback interface that a service uses for interactions associated with a specific session ID: e.g. a specific call, or call leg.

Parameters

appInterface : in IpInterfaceRef

Specifies a reference to the application interface, which is used for callbacks
sessionID : in TpSessionID

Specifies the session for which the service can invoke the application's callback interface.
Raises

TpGeneralException

6 Generic Call Control Service

6.1 Sequence Diagrams

6.1.1 Additional Callbacks

The following sequence diagram shows how an application can register two call back interfaces for the same set of events. If one of the call backs can not be used, e.g., because the application crashed, the other call back interface is used instead.

[image: image1.wmf]first instance :

(Logical View...

second instance :

(Logical View::IpA...

 : IpAppCallControlManager

 : IpAppCallControlManager

 : IpCallControlManager

1: new()

2: enableCallNotification()

3: new()

4: enableCallNotification()

8: callEventNotify()

9: "forward event"

5: callEventNotify()

7: "call Notify result: failure"

6: 'forward event'

1:
The first instance of the application is started on node 1. The application creates a new IpAppCallControlManager to handle callbacks for this first instance of the logic.

2:
The enableCallNotfication is associated with an applicationID. The call control manager uses the applicationID to decide whether this is the same application.

3:
The second instance of the application is started on node 2. The application creates a new IpAppCallControlManager to handle callbacks for this second instance of the logic.

4:
The same enableCallNotfication request is sent as for the first instance of the logic. Because both requests are associated with the same application, the second request is not rejected, but the specified callback object is stored as an additional callback.

5:
When the trigger occurs one of the first instance of the application is notified. The gateway may have different policies on how to handle additional callbacks, e.g., always first try the first registered or use some kind of round robin scheme.

6:
The event is forwarded to the first instance of the logic.

7:
When the first instance of the application is overloaded or unavailable this is communicated with an exception to the call control manager.

8:
Based on this exception the call control manager will notify another instance of the application (if available).

9:
The event is forwarded to the second instance of the logic.

6.1.2 Alarm Call

The following sequence diagram shows a 'reminder message', in the form of an alarm, being delivered to a customer as a result of a trigger from an application. Typically, the application would be set to trigger at a certain time, however, the application could also trigger on events.

[image: image2.wmf] :

IpCallControlManager

 : IpAppCall

 : IpCall

 : IpUICall

 :

IpAppUIManager

 :

IpAppUICall

 : (Logical

View::IpA...

1: new()

2: createCall()

3: new()

4: routeReq ()

5: routeRes()

9: sendInfoReq()

6: 'forward event'

7: createUICall()

8: new()

10: sendInfoRes()

11: 'forward event'

12: release()

13: release()

1:
This message is used to create an object implementing the IpAppCall interface.

2:
This message requests the object implementing the IpCallControlManager interface to create an object implementing the IpCall interface.

3:
Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load control values not exceeded) is met it is created.

4:
This message instructs the object implementing the IpCall interface to route the call to the customer destined to receive the 'reminder message'

5:
This message passes the result of the call being answered to its callback object.

6:
This message is used to forward the previous message to the IpAppLogic.

7:
The application requests a new UICall object that is associated with the call object.

8:
Assuming all criteria are met, a new UICall object is created by the service.

9:
This message instructs the object implementing the IpUICall interface to send the alarm to the customer's call.

10:
When the announcement ends this is reported to the call back interface.

11:
The event is forwarded to the application logic.

12:
The application releases the UICall object, since no further announcements are required. Alternatively, the application could have indicated P_FINAL_REQUEST in the sendInfoReq in which case the UICall object would have been implicitly released after the announcement was played.

13:
The application releases the call and all associated parties.

6.1.3 Application Initiated Call

The following sequence diagram shows an application creating a call between party A and party B. This sequence could be done after a customer has accessed a Web page and selected a name on the page of a person or organisation to talk to.

[image: image3.wmf] :

IpCallControlManager

 : IpAppCall

 : IpCall

 : (Logical

View::IpA...

5: routeRes()

1: new()

2: createCall()

3: new()

4: routeReq ()

7: routeReq ()

8: routeRes()

6: 'forward event'

9: 'forward event'

10: deassignCall()

1:
This message is used to create an object implementing the IpAppCall interface.

2:
This message requests the object implementing the IpCallControlManager interface to create an object implementing the IpCall interface.

3:
Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load control values not exceeded) is met, it is created.

4:
This message is used to route the call to the A subscriber (origination). In the message the application request response when the A party answers.

5:
This message indicates that the A party answered the call.

6:
This message forwards the previous message to the application logic.

7:
This message is used to route the call to the B-party. Also in this case a response is requested for call answer or failure.

8:
This message indicates that the B-party answered the call. The call now has two parties and a speech connection is automatically established between them.

9:
This message is used to forward the previous message to the IpAppLogic.

10:
Since the application is no longer interested in controlling the call, the application deassigns the call. The call will continue in the network, but there will be no further communication between the call object and the application.

6.1.4 Call Barring 1

The following sequence diagram shows a call barring service, initiated as a result of a prearranged event being received by the framework. Before the call is routed to the destination number, the calling party is asked for a PIN code. The code is accepted and the call is routed to the original called party.

[image: image4.wmf] : (Logical

View::Ip...

 :

IpAppCallControlManager

 : IpAppCall

 : IpCall

 : IpUICall

 :

IpUIManager

 :

IpCallControlManager

 :

IpAppUICall

13: routeRes ()

12: routeReq ()

8: sendInfoAndCollectReq()

9: sendInfoAndCollectRes()

3: callEventNotify()

4: 'forward event'

5: new()

1: new()

14: 'forward event'

10: 'forward event'

2: enableCallNotification()

6: createUICall()

7: new()

11: release()

15: callEnded()

16: "forward event"

17: deassignCall()

1:
This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2:
This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts a call barring service, it is likely that all new call events destined for a particular address or address range prompted for a password before the call is allowed to progress. When a new call, that matches the event criteria set, arrives a message (not shown) is directed to the object implementing the IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg object.

3:
This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.

4:
This message is used to forward the previous message to the IpAppLogic.

5:
This message is used by the application to create an object implementing the IpAppCall interface. The reference to this object is passed back to the object implementing the IpCallControlManager using the return parameter of the callEventNotify.

6:
This message is used to create a new UICall object. The reference to the call object is given when creating the UICall.

7:
Provided all the criteria are fulfilled, a new UICall object is created.

8:
The call barring service dialogue is invoked.

9:
The result of the dialogue, which in this case is the PIN code, is returned to its callback object.

10:
This message is used to forward the previous message to the IpAppLogic.

11:
This message releases the UICall object.

12:
Assuming the correct PIN is entered, the call is forward routed to the destination party.

13:
This message passes the result of the call being answered to its callback object.

14:
This message is used to forward the previous message to the IpAppLogic

15:
When the call is terminated in the network, the application will receive a notification. This notification will always be received when the call is terminated by the network in a normal way, the application does not have to request this event explicitly.

16:
The event is forwarded to the application.

17:
The application must free the call related resources in the gateway by calling deassignCall.

6.1.5 Number Translation 1

The following sequence diagram shows a simple number translation service, initiated as a result of a prearranged event being received by the framework.

[image: image5.wmf] :

IpCallControlManager

 : IpAppCall

 : IpCall

 :

IpAppCallControlManager

 : (Logical

View::IpA...

6: 'translate number'

7: routeReq ()

8: routeRes ()

3: callEventNotify()

4: 'forward event'

5: new()

9: 'forward event'

1: new()

2: enableCallNotification()

10: deassignCall()

1:
This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2:
This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts a number translation service, it is likely that only new call events within a certain address range will be enabled. When a new call, that matches the event criteria set in message 2, arrives a message (not shown) is directed to the object implementing the IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg object.

3:
This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.

4:
This message is used to forward message 3 to the IpAppLogic.

5:
This message is used by the application to create an object implementing the IpAppCall interface. The reference to this object is passed back to the object implementing the IpCallControlManager using the return parameter of message 3.

6:
This message invokes the number translation function.

7:
The returned translated number is used in message 7 to route the call towards the destination.

8:
This message passes the result of the call being answered to its callback object

9:
This message is used to forward the previous message to the IpAppLogic.

10:
The application is no longer interested in controlling the call and therefore deassigns the call. The call will continue in the network, but there will be no further communication between the call object and the application.

6.1.6 Number Translation 1 (with callbacks)

The following sequence diagram shows a simple number translation service, initiated as a result of a prearranged event being received by the framework.

For illustation, in this sequence the callback references are set explictly. This is optional. All the callbacks references can also be passed in other methods. From an efficiency point of view that is also the preferred method. The rest of the sequences use that mechanism.

[image: image6.wmf] :

IpCallControlManager

 : IpAppCall

 : IpCall

 :

IpAppCallControlManager

 : (Logical

View::IpA...

10: routeRes ()

4: callEventNotify()

8: 'translate number'

9: routeReq ()

5: 'forward event'

6: new()

11: 'forward event'

1: new()

2: enableCallNotification()

12: deassignCall()

3: setCallback()

7: setCallbackWithSessionID()

1:
This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2:
This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts a number translation service, it is likely that only new call events within a certain address range will be enabled. When a new call, that matches the event criteria set in message 2, arrives a message (not shown) is directed to the object implementing the IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg object.

3:
This message sets the reference of the IpAppCallControlManager object in the CallControlManager. The CallControlManager reports the callEventNotify to referenced object only for enableCallNotification's that do not have a explicit IpAppCallControlManager reference specified in the enableCallNotification.

4:
This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.

5:
This message is used to forward message 4 to the IpAppLogic.

6:
This message is used by the application to create an object implementing the IpAppCall interface.

7:
This message is used to set the reference to the IpAppCall for this call.

8:
This message invokes the number translation function.

9:
The returned translated number is used in message 7 to route the call towards the destination.

10:
This message passes the result of the call being answered to its callback object

11:
This message is used to forward the previous message to the IpAppLogic.

12:
The application is no longer interested in controlling the call and therefore deassigns the call. The call will continue in the network, but there will be no further communication between the call object and the application.

6.1.7 Number Translation 2

The following sequence diagram shows a number translation service, initiated as a result of a prearranged event being received by the framework. If the translated number being routed to does not answer or is busy then the call is automatically released.

[image: image7.wmf] : (Logical

View::IpA...

 : IpAppCallControlManager

 : IpAppCall

 : IpCallControlManager

 : IpCall

6: 'translate number'

9: 'forward event'

8: routeRes ()

7: routeReq ()

10: release ()

1: new()

3: callEventNotify()

4: 'forward event'

5: new()

2: enableCallNotification()

1:
This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2:
This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts a number translation service, it is likely that only new call events within a certain address range will be enabled. When a new call, that matches the event criteria, arrives a message (not shown) is directed to the object implementing the IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg object.

3:
This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.

4:
This message is used to forward the previous message to the IpAppLogic.

5:
This message is used by the application to create an object implementing the IpAppCall interface. The reference to this object is passed back to the object implementing the IpCallControlManager using the return parameter of the callEventNotify.

6:
This message invokes the number translation function.

7:
The returned translated number is used to route the call towards the destination.

8:
Assuming the called party is busy or does not answer, the object implementing the IpCall interface sends a callback in this message, indicating the unavailability of the called party.

9:
This message is used to forward the previous message to the IpAppLogic.

10:
The application takes the decision to release the call.

6.1.8 Number Translation 3

The following sequence diagram shows a number translation service, initiated as a result of a prearranged event being received by the framework. If the translated number being routed to does not answer or is busy then the call is automatically routed to a voice mailbox.

[image: image8.wmf] : IpCallControlManager

 : IpAppCall

 : IpCall

 : IpAppCallControlManager

 : (Logical

View::IpA...

8: routeRes ()

6: 'translate number'

7: routeReq ()

9: 'forward event'

10: 'translate number'

11: routeReq ()

12: routeRes ()

13: 'forward event'

1: new()

3: callEventNotify()

4: 'forward event'

5: new()

2: enableCallNotification()

14: deassignCall()

1:
This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2:
 This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts a number translation service, it is likely that only new call events within a certain address range will be enabled. When a new call, that matches the event criteria, arrives a message (not shown) is directed to the object implementing the IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg object.

3:
This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.

4:
This message is used to forward the previous message to the IpAppLogic.

5:
This message is used by the application to create an object implementing the IpAppCall interface. The reference to this object is passed back to the object implementing the IpCallControlManager using the return parameter of the callEventNotify.

6:
This message invokes the number translation function.

7:
The returned translated number is used to route the call towards the destination.

8:
Assuming the called party is busy or does not answer, the object implementing the IpCall interface sends a callback, indicating the unavailability of the called party.

9:
This message is used to forward the previous message to the IpAppLogic.

10:
The application takes the decision to translate the number, but this time the number is translated to a number belonging to a voice mailbox system.

11:
This message routes the call towards the voice mailbox.

12:
This message passes the result of the call being answered to its callback object.

13:
This message is used to forward the previous message to the IpAppLogic.

14:
The application is no longer interested in controlling the call and therefore deassigns the call. The call will continue in the network, but there will be no further communication between the call object and the application.

6.1.9 Number Translation 4

The following sequence diagram shows a number translation service, initiated as a result of a prearranged event being received by the framework. Before the call is routed to the translated number, the application requests for all call related information to be delivered back to the application on completion of the call.

[image: image9.wmf] : IpCallControlManager

 : IpAppCall

 : IpCall

 : IpAppCallControlManager

 : (Logical

View::IpA...

6: 'translate number'

7: getCallInfoReq ()

8: routeReq ()

9: routeRes ()

13: getCallInfoRes ()

14: 'forward event'

10: 'forward event'

1: new()

3: callEventNotify()

4: 'forward event'

5: new()

2: enableCallNotification()

15: deassignCall()

11: callEnded()

12: "forward event"

1:
This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2:
This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts a number translation service, it is likely that only new call events within a certain address range will be enabled. When a new call, that matches the event criteria, arrives a message (not shown) is directed to the object implementing the IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg object.

3:
This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.

4:
This message is used to forward the previous message to the IpAppLogic.

5:
 This message is used by the application to create an object implementing the IpAppCall interface. The reference to this object is passed back to the object implementing the IpCallControlManager using the return parameter of the callEventNotify.

6:
 This message invokes the number translation function.

7:
The application instructs the object implementing the IpCall interface to return all call related information once the call has been released.

8:
The returned translated number is used to route the call towards the destination.

9:
This message passes the result of the call being answered to its callback object.

10:
This message is used to forward the previous message to the IpAppLogic.

11:
Towards the end of the call, when one of the parties disconnects, a message (not shown) is directed to the object implementing the IpCall. This causes an event, to be passed to the object implementing the IpAppCall object.

12:
This message is used to forward the previous message to the IpAppLogic.

13:
The application now waits for the call information to be sent. Now that the call has completed, the object implementing the IpCall interface passes the call information to its callback object.

14:
This message is used to forward the previous message to the IpAppLogic

15:
After the last information is received, the application deassigns the call. This will free the resources related to this call in the gateway.

6.1.10 Prepaid

This sequence shows a Pre-paid application.

The subscriber is using a pre-paid card or credit card to pay for the call. The application each time allows a certain timeslice for the call. After the timeslice, a new timeslice can be started or the application can terminate the call. In the following sequence the end-user will received an announcement before his final timeslice.

[image: image10.wmf]Prepaid :

(Logical View...

 :

IpAppCallControlManager

 :

IpCallControlManager

 : IpCall

 : IpUICall

 : IpUIManager

 : IpAppUICall

 : IpAppCall

1: new()

2: enableCallNotification()

3: callEventNotify()

4: "forward event"

5: new()

7: routeReq ()

8: superviseCallRes()

9: "forward event"

10: superviseCallReq ()

11: superviseCallRes()

12: "forward event"

13: superviseCallReq ()

14: superviseCallRes()

15: "forward event"

6: superviseCallReq ()

17: sendInfoReq()

18: sendInfoRes()

19: "forward event"

21: superviseCallReq()

22: superviseCallRes()

23: "forward event:

24: release()

16: createUICall()

20: release()

1:
This message is used by the application to create an object implementing the IpAppGenericCallControlManager interface.

2:
This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts a pre-paid service, it is likely that only new call events within a certain address range will be enabled. When a new call, that matches the event criteria, arrives a message (not shown) is directed to the object implementing the IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg object.

3:
The incoming call triggers the Pre-Paid Application (PPA).

4:
The message is forwarded to the application.

5:
A new object on the application side for the Generic Call object is created

6:
The Pre-Paid Application (PPA) requests to supervise the call. The application will be informed after the period indicated in the message. This period is related to the credits left on the account of the pre-paid subscriber.

7:
Before continuation of the call, PPA sends all charging information, a possible tariff switch time and the call duration supervision period, towards the GW which forwards it to the network.

8:
At the end of each supervision period the application is informed and a new period is started.

9:
The message is forwarded to the application.

10:
The Pre-Paid Application (PPA) requests to supervise the call for another call duration.

11:
At the end of each supervision period the application is informed and a new period is started.

12:
The message is forwarded to the application.

13:
The Pre-Paid Application (PPA) requests to supervise the call for another call duration.

14:
When the user is almost out of credit an announcement is played to inform about this. The announcement is played only to the leg of the A-party, the B-party will not hear the announcement.

15:
The message is forwarded to the application.

16:
A new UICall object is created and associated with the controlling leg.

17:
An announcement is played to the controlling leg informing the user about the near-expiration of his credit limit. The B-subscriber will not hear the announcement.

18:
When the announcement is completed the application is informed.

19:
The message is forwarded to the application.

20:
The application releases the UICall object.

21:
The user does not terminate so the application terminates the call after the next supervision period.

22:
The supervision period ends

23:
The event is forwarded to the logic.

24:
The application terminates the call. Since the user interaction is already explicitly terminated no userInteractionFaultDetected is sent to the application.

6.1.11 Pre-Paid with Advice of Charge (AoC)

This sequence shows a Pre-paid application that uses the Advice of Charge feature.

The application will send the charging information before the actual call setup and when during the call the charging changes new information is sent in order to update the end-user. Note: the Advice of Charge feature requires an application in the end-user terminal to display the charges for the call, depending on the information received from the application.

[image: image11.wmf]Prepaid :

(Logical Vie...

 :

IpAppCallControlManager

 :

IpCallControlManager

 : IpCall

 : IpUICall

 : IpUIManager

 : IpAppUICall

 : IpAppCall

1: new()

2: enableCallNotification()

3: callEventNotify()

4: "forward event"

8: routeReq ()

11: superviseCallReq ()

15: superviseCallReq ()

7: superviseCallReq()

24: superviseCallReq ()

27: release()

21: sendInfoReq()

18: new()

22: sendInfoRes()

23: "forward event"

5: new()

9: superviseCallRes()

10: "forward event"

12: superviseCallRes()

13: "forward event"

14: setAdviceOfCharge()

16: superviseCallRes()

17: "forward event"

25: superviseCallRes()

26: "forward event:

6: setAdviceOfCharge()

19: createUICall()

20: new()

28: userInteractionFaultDetected()

1:
This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2:
This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts a pre-paid service, it is likely that only new call events within a certain address range will be enabled. When a new call, that matches the event criteria, arrives a message (not shown) is directed to the object implementing the IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg object.

3:
The incoming call triggers the Pre-Paid Application (PPA).

4:
The message is forwarded to the application.

5:
A new object on the application side for the Call object is created

6:
The Pre-Paid Application (PPA) sends the AoC information (e.g the tariff switch time). (it shall be noted the PPA contains ALL the tariff information and knows how to charge the user).

During this call sequence 2 tariff changes take place. The call starts with tariff 1, and at the tariff switch time (e.g., 18:00 hours) switches to tariff 2. The application is not informed about this (but the end-user is!)

7:
The Pre-Paid Application (PPA) requests to supervise the call. The application will be informed after the period indicated in the message. This period is related to the credits left on the account of the pre-paid subscriber.

8:
The application requests to route the call to the destination address.

9:
At the end of each supervision period the application is informed and a new period is started.

10:
The message is forwarded to the application.

11:
The Pre-Paid Application (PPA) requests to supervise the call for another call duration.

12:
At the end of each supervision period the application is informed and a new period is started.

13:
The message is forwarded to the application.

14:
Before the next tariff switch (e.g., 19:00 hours) the application sends a new AOC with the tarif switch time. Again, at the tariff switch time,the network will send AoC information to the end-user.

15:
The Pre-Paid Application (PPA) requests to supervise the call for another call duration.

16:
When the user is almost out of credit an announcement is played to inform about this (19-21). The announcement is played only to the leg of the A-party, the B-party will not hear the announcement.

17:
The message is forwarded to the application.

18:
The application creates a new call back interface for the User interaction messages.

19:
A new UI Call object that will handle playing of the announcement needs to be created

20:
The Gateway creates a new UI call object that will handle playing of the announcement.

21:
With this message the announcement is played to the calling party.

22:
The user indicates that the call should continue.

23:
The message is forwarded to the application.

24:
The user does not terminate so the application terminates the call after the next supervision period.

25:
The user is out of credit and the application is informed.

26:
The message is forwarded to the application.

27:
With this message the application requests to release the call.

28:
Terminating the call which has still a UICall object associated will result in a userInteractionFaultDetected. The UICall object is terminated in the gateway and no further communication is possible between the UICall and the application.

6.2 Class Diagrams

The generic call control service consists of two packages, one for the interfaces on the application side and one for interfaces on the service side.
The class diagrams in the following figures show the interfaces that make up the generic call control application package and the generic call control service package. Communication between these packages is indicated with the <<uses>> associations; e.g., the IpCallControlManager interface uses the IpAppGenericCallControlManager , by means of calling callback methods.
This class diagram shows the interfaces of the generic call control application package and their relations to the interfaces of the generic call control service package.

[image: image12.wmf]IpAppCallControlManager

callAborted()

callEventNotify()

callNotificationInterrupt...

callNotificationContinue...

callOverloadEncountere...

callOverloadCeased()

(from gccs)

<<Interface>>

IpAppCall

routeRes()

routeErr()

getCallInfoRes()

getCallInfoErr()

superviseCallRes()

superviseCallErr()

callFaultDetected()

getMoreDialledDigitsR...

getMoreDialledDigitsErr()

callEnded()

(from gccs)

<<Interface>>

IpCall

(from gccs)

<<Interface>>

IpCallControlManager

(from gccs)

<<Interface>>

<<uses>>

<<uses>>

1

0..n

IpInterface

<<Interface>>

1

0..n

Figure: Application Interfaces
This class diagram shows the interfaces of the generic call control service package.

[image: image13.wmf]IpCall

routeReq()

release()

deassignCall()

getCallInfoReq()

setCallChargePlan()

setAdviceOfCharge()

getMoreDialledDigitsR...

superviseCallReq()

(from gccs)

<<Interface>>

IpCallControlManager

createCall()

enableCallNotificatio...

disableCallNotificatio...

setCallLoadControl()

changeCallNotificati...

getCriteria()

(from gccs)

<<Interface>>

IpService

setCallback()

setCallbackWithSessionID()

<<Interface>>

Figure: Service Interfaces

6.3 Generic Call Control Service Interface Classes

The Generic Call Control Service (GCCS) provides the basic call control service for the API. It is based around a third party model, which allows calls to be instantiated from the network and routed through the network.
The GCCS supports enough functionality to allow call routing and call management for today's Intelligent Network (IN) services in the case of a switched telephony network, or equivalent for packet based networks.
It is the intention of the GCCS that it could be readily specialised into call control specifications, for example, ITU-T recommendations H.323, ISUP, Q.931 and Q.2931, ATM Forum specification UNI3.1 and the IETF Session Initiation Protocol, or any other call control technology.
The adopted call model has the following objects. Note that not all of these concepts are used in the generic call.
* a call object. A call is a relation between a number of parties. The call object relates to the entire call view from the application. E.g., the entire call will be released when a release is called on the call. Note that different applications can have different views on the same physical call, e.g., one application for the originating side and another application for the terminating side. The applications will not be aware of each other, all 'communication' between the applications will be by means of network signalling. The API currently does not specify any feature interaction mechanisms.
* a call leg object. The leg object represents a logical association between a call and an address. The relationship includes at least the signalling relation with the party. The relation with the address is only made when the leg is routed. Before that the leg object is IDLE and not yet associated with the address.
* an address. The address logically represents a party in the call.
* a terminal. A terminal is the end-point of the signalling and/or media for a party. This object type is currently not addressed.
The call object is used to establish a relation between a number of parties by creating a leg for each party within the call.
Associated with the signalling relationship represented by the call leg, there may also be a bearer connection (e.g., in the traditional voice only networks) or a number (zero or more) of media channels (in multi-media networks).
A leg can be attached to the call or detached from the call. When the leg is attached, this means that media or bearer channels related to the legs are connected to the media or bearer channels of the other legs that are attached to the same call. I.e., only legs that are attached can 'speak' to each other. A leg can have a number of states, depending on the signalling received from or sent to the party associated with the leg. Usually there is a limit to the number of legs that are in being routed (i.e., the connection is being established) or connected to the call (i.e., the connection is established). Also, there usually is a limit to the number of legs that can be simultaneously attached to the same call.
Some networks distinguish between controlling and passive legs. By definition the call will be released when the controlling leg is released. All other legs are called passive legs. There can be at most one controlling leg per call. However, there is currently no way the application can influence whether a Leg is controlling or not.
There are two ways for an application to get the control of a call. The application can request to be notified of calls that meet certain criteria. When a call occurs in the network that meets these criteria, the application is notified and can control the call. Some legs will already be associated with the call in this case. Another way is to create a new call from the application.
For the generic call control service, only a subset of the model is used; the API for generic call control does not give explicit access to the legs and the media channels. This is provided by the Multi-Party Call Control Service. Furthermore, the generic call is restricted to two party calls, i.e., only two legs are active at any given time. Active is defined here as 'being routed' or connected.
The GCCS is represented by the IpCallManager and IpCall interfaces that interface to services provided by the network. Some methods are asynchronous, in that they do not lock a thread into waiting whilst a transaction performs. In this way, the client machine can handle many more calls, than one that uses synchronous message calls. To handle responses and reports, the developer must implement IpAppCallManager and IpAppCall to provide the callback mechanism.
	

	

	

6.3.1 Interface Class IpCallControlManager
Inherits from: IpService
This interface is the 'service manager' interface for the Generic Call Control Service. The generic call control manager interface provides the management functions to the generic call control service. The application programmer can use this interface to provide overload control functionality, create call objects and to enable or disable call-related event notifications.
	<<Interface>>

IpCallControlManager

	

	createCall (appCall : in IpAppCallRef, callReference : out TpCallIdentifierRef) : TpResult

enableCallNotification (appInterface : in IpAppCallControlManagerRef, eventCriteria : in TpCallEventCriteria, assignmentID : out TpAssignmentIDRef) : TpResult

disableCallNotification (assignmentID : in TpAssignmentID) : TpResult

setCallLoadControl (duration : in TpDuration, mechanism : in TpCallLoadControlMechanism, treatment : in TpCallTreatment, addressRange : in TpAddressRange, assignmentID : out TpAssignmentIDRef) : TpResult

changeCallNotification (assignmentID : in TpAssignmentID, eventCriteria : in TpCallEventCriteria) : TpResult

getCriteria (eventCriteria : out TpCallEventCriteriaResultSetRef) : TpResult

Method

createCall()

This method is used to create a new call object.

Parameters

appCall : in IpAppCallRef

Specifies the application interface for callbacks from the call created.
callReference : out TpCallIdentifierRef

Specifies the interface reference and sessionID of the call created.
Raises

TpGCCSException,TpGeneralException
Method

enableCallNotification()

This method is used to enable call notifications so that events can be sent to the application. If some application already requested notifications with criteria that overlap the specified criteria, the request is refused with P_GCCS_INVALID_CRITERIA.

The criteria are said to overlap if both originating and terminating ranges overlap and the same number plan is used and the same CallNotificationType is used.

If the same application requests two notifications with exactly the same criteria but different callback references, the second callback will be treated as an additional callback. This means that the callback will only be used in case when the first callback specified by the application is unable to handle the callEventNotify (e.g., due to overload or failure).

Parameters

appInterface : in IpAppCallControlManagerRef

If this parameter is set (i.e. not NULL) it specifies a reference to the application interface, which is used for callbacks. If set to NULL, the application interface defaults to the interface specified via the setCallback() method.
eventCriteria : in TpCallEventCriteria

Specifies the event specific criteria used by the application to define the event required. Only events that meet these criteria are reported. Examples of events are "incoming call attempt reported by network", "answer", "no answer", "busy". Individual addresses or address ranges may be specified for destination and/or origination.
assignmentID : out TpAssignmentIDRef

Specifies the ID assigned by the generic call control manager interface for this newly-enabled event notification.
Raises

TpGCCSException,TpGeneralException
Method

disableCallNotification()

This method is used by the application to disable call notifications.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignment ID given by the generic call control manager interface when the previous enableNotification() was called. If the assignment ID does not correspond to one of the valid assignment IDs, the framework will return the error code P_INVALID_ASSIGNMENTID.
Raises

TpGCCSException,TpGeneralException
Method

setCallLoadControl()

This method imposes or removes load control on calls made to a particular address range within the generic call control service. The address matching mechanism is similar as defined for TpCallEventCriteria.

Parameters

duration : in TpDuration

Specifies the duration for which the load control should be set.
A duration of 0 indicates that the load control should be removed.
A duration of -1 indicates an infinite duration (i.e., until disabled by the application)
A duration of -2 indicates the network default duration.
mechanism : in TpCallLoadControlMechanism

Specifies the load control mechanism to use (for example, admit one call per interval), and any necessary parameters, such as the call admission rate. The contents of this parameter are ignored if the load control duration is set to zero.
treatment : in TpCallTreatment

Specifies the treatment of calls that are not admitted. The contents of this parameter are ignored if the load control duration is set to zero.
addressRange : in TpAddressRange

Specifies the address or address range to which the overload control should be applied or removed.
assignmentID : out TpAssignmentIDRef

Specifies the assignmentID assigned by the gateway to this request. This assignementID can be used to correlate the callOverlloadEncountered and callOverloadCeased methods with the request.
Raises

TpGeneralException,TpGCCSException
Method

changeCallNotification()

This method is used by the application to change the event criteria introduced with enableCallNotification. Any stored criteria associated with the specified assignementID will be replaced with the specified criteria.

Parameters

assignmentID : in TpAssignmentID

Specifies the ID assigned by the generic call control manager interface for the event notification.
eventCriteria : in TpCallEventCriteria

Specifies the new set of event specific criteria used by the application to define the event required. Only events that meet these criteria are reported.
Raises

TpGeneralException,TpGCCSException
Method

getCriteria()

This method is used by the application to query the event criteria set with enableCallNotification or changeCallNotification.

Parameters

eventCriteria : out TpCallEventCriteriaResultSetRef

Specifies the event specific criteria used by the application to define the event required. Only events that meet these criteria are reported.
Raises

TpGeneralException,TpGCCSException
6.3.2 Interface Class IpAppCallControlManager
Inherits from: IpInterface
The generic call control manager application interface provides the application call control management functions to the generic call control service.
	<<Interface>>

IpAppCallControlManager

	

	callAborted (callReference : in TpSessionID) : TpResult

callEventNotify (callReference : in TpCallIdentifier, eventInfo : in TpCallEventInfo, assignmentID : in TpAssignmentID, appInterface : out IpAppCallRefRef) : TpResult

callNotificationInterrupted () : TpResult

callNotificationContinued () : TpResult

callOverloadEncountered (assignmentID : in TpAssignmentID) : TpResult

callOverloadCeased (assignmentID : in TpAssignmentID) : TpResult

Method

callAborted()

This method indicates to the application that the call object (at the gateway) has aborted or terminated abnormally. No further communication will be possible between the call and application.

Parameters

callReference : in TpSessionID

Specifies the sessionID of call that has aborted or terminated abnormally.
Raises

TpGCCSException,TpGeneralException
Method

callEventNotify()

This method notifies the application of the arrival of a call-related event.

Parameters

callReference : in TpCallIdentifier

Specifies the reference to the call interface to which the notification relates.
eventInfo : in TpCallEventInfo

Specifies data associated with this event.
assignmentID : in TpAssignmentID

Specifies the assignment id which was returned by the enableNotification() method. The application can use assignment id to associate events with event specific criteria and to act accordingly.
appInterface : out IpAppCallRefRef

Specifies a reference to the application interface which implements the callback interface for the new call.
Raises

TpGCCSException,TpGeneralException
Method

callNotificationInterrupted()

This method indicates to the application that all event notifications have been temporary interrupted (for example, due to faults detected).

Note that more permanent failures are reported via the Framework (integrity management).

Parameters

No Parameters were identified for this method

Raises

TpGCCSException,TpGeneralException
Method

callNotificationContinued()

This method indicates to the application that event notifications will again be possible.

Parameters

No Parameters were identified for this method

Method

callOverloadEncountered()

This method indicates that the network has detected overload and may have automatically imposed load control on calls requested to a particular address range or calls made to a particular destination within the call control service.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignmentID corresponding to the associated setCallLoadControl. This implies the addressrange for within which the overload has been encountered.
Raises

TpGeneralException,TpGCCSException
Method

callOverloadCeased()

This method indicates that the network has detected that the overload has ceased and has automatically removed any load controls on calls requested to a particular address range or calls made to a particular destination within the call control service.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignmentID corresponding to the associated setCallLoadControl. This implies the addressrange for within which the overload has been ceased
Raises

TpGeneralException,TpGCCSException
6.3.3 Interface Class IpCall
Inherits from: IpService
The generic Call provides the possibility to control the call routing, to request information from the call, control the charging of the call, to release the call and to supervise the call. It does not give the possibility to control the legs directly and it does not allow control over the media. The first capability is provided by the multi-party call and the latter as well by the multi-media call. The call is limited to two party calls, although it is possible to provide 'follow-on' calls, meaning that the call can be rerouted after the terminating party has disconnected or routing to the terminating party has failed. Basically, this means that at most two legs can be in connected or routing state at any time.
	<<Interface>>

IpCall

	

	routeReq (callSessionID : in TpSessionID, responseRequested : in TpCallReportRequestSet, targetAddress : in TpAddress, originatingAddress : in TpAddress, originalDestinationAddress : in TpAddress, redirectingAddress : in TpAddress, appInfo : in TpCallAppInfoSet, callLegSessionID : out TpSessionIDRef) : TpResult

release (callSessionID : in TpSessionID, cause : in TpCallReleaseCause) : TpResult

deassignCall (callSessionID : in TpSessionID) : TpResult

getCallInfoReq (callSessionID : in TpSessionID, callInfoRequested : in TpCallInfoType) : TpResult

setCallChargePlan (callSessionID : in TpSessionID, callChargePlan : in TpCallChargePlan) : TpResult

setAdviceOfCharge (callSessionID : in TpSessionID, aOCInfo : in TpAoCInfo, tariffSwitch : in TpDuration) : TpResult

getMoreDialledDigitsReq (callSessionID : in TpSessionID, length : in TpInt32) : TpResult

superviseCallReq (callSessionID : in TpSessionID, time : in TpDuration, treatment : in TpCallSuperviseTreatment) : TpResult

Method

routeReq()

This asynchronous method requests routing of the call (and inherently attached parties) to the destination party, via a new call leg (which is implicitly created).

The extra address information (i.e., originalDestinationAddress, redirectingAddress, originatingAddress) is optional. If not present (i.e., the plan is set to P_ADDRESS_PLAN_NOT_PRESENT), the information provided in corresponding addresses from the route is used, otherwise the network or gateway provided numbers will be used.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.
responseRequested : in TpCallReportRequestSet

Specifies the set of observed events that will result in zero or more routeRes() being generated.
E.g., when both answer and disconnect is monitored the result can be received two times.
If the application wants to control the call (in whatever sense) it shall enable event reports
targetAddress : in TpAddress

Specifies the destination party to which the call should be routed.
originatingAddress : in TpAddress

Specifies the address of the originating (calling) party.
originalDestinationAddress : in TpAddress

Specifies the original destination address of the call.
redirectingAddress : in TpAddress

Specifies the address from which the call was last redirected.
appInfo : in TpCallAppInfoSet

Specifies application-related information pertinent to the call (such as alerting method, tele-service type, service identities and interaction indicators).

callLegSessionID : out TpSessionIDRef

Specifies the sessionID assigned by the gateway. This is the sessionID of the implicitly created call leg. The same ID will be returned in the routeRes or Err. This allows the application to correlate the request and the result.
 This parameter is only relevant when multiple routeReq() calls are executed in parallel, e.g., in the multi-party call control service.
Raises

TpGCCSException,TpGeneralException
Method

release()

This method requests the release of the call object and associated objects. The call will also be terminated in the network. If the application requested reports to be sent at the end of the call (e.g., by means of getCallInfoReq) these reports will still be sent to the application.

The application should always either release or deassign the call when it is finished with the call, unless a callFaultDetected is received by the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.
cause : in TpCallReleaseCause

Specifies the cause of the release.
Raises

TpGCCSException,TpGeneralException
Method

deassignCall()

This method requests that the relationship between the application and the call and associated objects be de-assigned. It leaves the call in progress, however, it purges the specified call object so that the application has no further control of call processing. If a call is de-assigned that has event reports, call information reports or call Leg information reports requested, then these reports will be disabled and any related information discarded.

The application should always either release or deassign the call when it is finished with the call, unless callFaultDetected is received by the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.
Raises

TpGCCSException,TpGeneralException
Method

getCallInfoReq()

This asynchronous method requests information associated with the call to be provided at the appropriate time (for example, to calculate charging). This method must be invoked before the call is routed to a target address. Two types of reports can be requested; a final report or intermediate reports.

A final call report is sent when the call is ended. The call object will exist after the call is ended if information is required to be sent to the application at the end of the call. The call information will be sent after any call event reports.

Intermediate reports are received when the destination leg or party terminates or when the call ends. In case the originating party is still available the application can still initiate a follow-on call using routeReq.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.
callInfoRequested : in TpCallInfoType

Specifies the call information that is requested.
Raises

TpGCCSException,TpGeneralException
Method

setCallChargePlan()

Set an operator specific charge plan for the call. The charge plan must be set before the call is routed to a target address. Depending on the operator the method can also be used to change the charge plan for ongoing calls.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.
callChargePlan : in TpCallChargePlan

Specifies the charge plan to use.
Raises

TpGCCSException,TpGeneralException
Method

setAdviceOfCharge()

This method allows for advice of charge (AOC) information to be sent to terminals that are capable of receiving this information.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.
aOCInfo : in TpAoCInfo

Specifies two sets of Advice of Charge parameter.
tariffSwitch : in TpDuration

Specifies the tariff switch interval that signifies when the second set of AoC parameters becomes valid.
Raises

TpGeneralException,TpGCCSException
Method

getMoreDialledDigitsReq()

This asynchronous method requests the call control service to collect further digits and return them to the application. Depending on the administered data, the network may indicate a new call to the gateway if a caller goes off-hook or dialled only a few digits. The application then gets a new call event which contains no digits or only the few dialled digits in the event data.

The application should use this method if it requires more dialled digits, e.g. to perform screening.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.
length : in TpInt32

Specifies the maximum number of digits to collect.
Raises

TpGeneralException, TpGCCSException
Method

superviseCallReq()

The application calls this method to supervise a call. The application can set a granted connection time for this call. If an application calls this function before it calls a routeReq() or a user interaction function the time measurement will start as soon as the call is answered by the B-party or the user interaction system.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.
time : in TpDuration

Specifies the granted time in milliseconds for the connection.
treatment : in TpCallSuperviseTreatment

Specifies how the network should react after the granted connection time expired.
Raises

TpGCCSException,TpGeneralException
6.3.4 Interface Class IpAppCall
Inherits from: IpInterface
The generic call application interface is implemented by the client application developer and is used to handle call request responses and state reports.
	<<Interface>>

IpAppCall

	

	routeRes (callSessionID : in TpSessionID, eventReport : in TpCallReport, callLegSessionID : in TpSessionID) : TpResult

routeErr (callSessionID : in TpSessionID, errorIndication : in TpCallError, callLegSessionID : in TpSessionID) : TpResult

getCallInfoRes (callSessionID : in TpSessionID, callInfoReport : in TpCallInfoReport) : TpResult

getCallInfoErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : TpResult

superviseCallRes (callSessionID : in TpSessionID, report : in TpCallSuperviseReport, usedTime : in TpDuration) : TpResult

superviseCallErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : TpResult

callFaultDetected (callSessionID : in TpSessionID, fault : in TpCallFault) : TpResult

getMoreDialledDigitsRes (callSessionID : in TpSessionID, digits : in TpString) : TpResult

getMoreDialledDigitsErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : TpResult

callEnded (callSessionID : in TpSessionID, report : in TpCallEndedReport) : TpResult

Method

routeRes()

This asynchronous method indicates that the request to route the call to the destination was successful, and indicates the response of the destination party (for example, the call was answered, not answered, refused due to busy, etc.).

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.
eventReport : in TpCallReport

Specifies the result of the request to route the call to the destination party. It also includes the network event, date and time, monitoring mode and event specific information such as release cause.
callLegSessionID : in TpSessionID

Specifies the sessionID of the associated call leg. This corresponds to the sesion ID returned at the routeReq() and can be used to correlate the response with the request.
Raises

TpGCCSException,TpGeneralException
Method

routeErr()

This asynchronous method indicates that the request to route the call to the destination party was unsuccessful - the call could not be routed to the destination party (for example, the network was unable to route the call, the parameters were incorrect, the request was refused, etc.).

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.
errorIndication : in TpCallError

Specifies the error which led to the original request failing.
callLegSessionID : in TpSessionID

Specifies the sessionID of the associated call leg. This corresponds to the sessionID returned at the routeReq() and can be used to correlate the error with the request.
Raises

TpGCCSException,TpGeneralException
Method

getCallInfoRes()

This asynchronous method reports time information of the finished call or call attempt as well as release cause depending on which information has been requested by getCallInfoReq. This information may be used e.g. for charging purposes. The call information will possibly be sent after routeRes in all cases where the call or a leg of the call has been disconnected or a routing failure has been encountered.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.
callInfoReport : in TpCallInfoReport

Specifies the call information requested.
Raises

TpGCCSException,TpGeneralException
Method

getCallInfoErr()

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.
errorIndication : in TpCallError

Specifies the error which led to the original request failing.
Raises

TpGCCSException,TpGeneralException
Method

superviseCallRes()

This asynchronous method reports a call supervision event to the application when it has indicated it's interest in these kind of events.

It is also called when the connection is terminated before the supervision event occurs. Furthermore, this method is invoked as a response to the request also when a tariff switch happens in the network during an active call.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call
report : in TpCallSuperviseReport

Specifies the situation which triggered the sending of the call supervision response.
usedTime : in TpDuration

Specifies the used time for the call supervision (in milliseconds).
Raises

TpGCCSException,TpGeneralException
Method

superviseCallErr()

This asynchronous method reports a call supervision error to the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.
errorIndication : in TpCallError

Specifies the error which led to the original request failing.
Raises

TpGCCSException,TpGeneralException
Method

callFaultDetected()

This method indicates to the application that a fault in the network has been detected. The call may or may not have been terminated.

The system deletes the call object. Therefore, the application has no further control of call processing. No report will be forwarded to the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call in which the fault has been detected.
fault : in TpCallFault

Specifies the fault that has been detected.
Raises

TpGCCSException,TpGeneralException
Method

getMoreDialledDigitsRes()

This asynchronous method returns the collected digits to the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.
digits : in TpString

Specifies the additional dialled digits if the string length is greater than zero.
Raises

TpGeneralException,TpGCCSException
Method

getMoreDialledDigitsErr()

This asynchronous method reports an error in collecting digits to the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.
errorIndication : in TpCallError

Specifies the error which led to the original request failing.
Raises

TpGeneralException,TpGCCSException
Method

callEnded()

This method indicates to the application that the call has terminated in the network. However, the application may still receive some results (e.g., getCallInfoRes) related to the call. The application is expected to deassign the call object after having received the callEnded.

Note that the event that caused the call to end might also be received separately if the application was monitoring for it.

Parameters

callSessionID : in TpSessionID

Specifies the call sessionID.
report : in TpCallEndedReport

Specifies the reason the call is terminated.
Raises

TpGeneralException,TpGCCSException
	

	

	

	

	

	

6.4 Generic Call Control Service State Transition Diagrams

6.4.1 State Transition Diagrams for IpCallControlManager

The state transition diagram shows the application view on the Call Control Manager object.

[image: image14.wmf]Active

Creation of

CallControlManager

by Service Factory

Notification terminated

"new"

enableCallNotification

disableCallNotification

"a call object has terminated abnormally" ^IpAppCallControlManager.callAborted

"arrival of call related event"[notification active for this call event] /

create a Call object ^IpAppCallControlManager.callEventNotify

disableCallNotification

"a call object has terminated abnormally"

^IpAppCallControlManager.callAborted

IpAccess.terminateServiceAgreement

"notifications possible again"

 ^IpAppCallControlManager.callNotificationContinued

IpAccess.terminateServiceAgreement

"notifications not possible"

 IpAppCallControlManager.callNotificationInterrupted

createCall / create a Call object

Figure : Application view on the Call Control Manager

6.4.1.1 Active State

In this state a relation between the Application and the Generic Call Control Service has been established. The state allows the applicatoin to indicate that it is interested in call related events. In case such an event occurs, the Call Control Manager will create a Call object and inform the application by invoking the operation callEventNotify() on the IpAppCallControlManager interface. The application can also indicate it is no longer interested in certain call related events by calling disableCallNotification().
6.4.1.2 Notification terminated State

When the Call Control Manager is in the Notification terminated state, events requested with enableCallNotification() will not be forwarded to the application. There can be multiple reasons for this: for instance it might be that the application receives more notifications from the network than defined in the Service Level Agreement. Another example is that the Service has detected it receives no notifications from the network due to e.g. a link failure. In this state no requests for new notifications will be accepted.

6.4.2 State Transition Diagrams for IpCall

The state transition diagram shows the application view on the Call object. This diagram shows only the part of the state transition diagram valid for 3GPP (UMTS) release 99.

[image: image15.wmf]Network Released

Finished

Application

Released

release

deassignCall

timeout ^callFaultDetected("timeout on release")

In state Idle a timer mechanism should

prevent that the object keeps occupying

resources. In case the timer expires, the

object should be destroyed and

callFaultDetected should be reported to

the application.

Active

2 Parties in

Call

1 Party in

Call

2 Parties in

Call

1 Party in

Call

setAdviceOfCharge

superviseCallReq

getCallInfoReq

setCallChargePlan

IpAppCallControlManager.callEventNotify

routeReq[number of routing requests < 2]

"disconnect from called party"[monitor mode = interrupt] ^routeRes,

getCallInfoRes, superviseCallRes

"answer"

"connection to called party unsuccessful"[monitor mode = interrupt] ^routeRes

"routing aborted or invalid address" ^routeErr

"network event received for which was monitored[routeRes]

"call supervision event" ^superviseCallRes

deassignCall

release

"call ends : calling party disconnects" ^callEnded

"call ends: calling party abandoned" ^callEnded

"call ends : called party disconnects"[monitor for this event] ^callEnded, routeRes(party disconnect)

"fault detected"[fault cannot be communicated with network event] ^callFaultDetected

"call ends: calling party disconnects"[no monitor for this event] ^callEnded

"requested information ready"

^getCallInfoRes, superviseCallRes

[no reports requested with

getCallInfoReq AND

superviseCallReq]

"fault in retrieval of information" ^callFaultDetected

deassignCall

[no reports requested with getCallInfoReq AND

superviseCallReq]

"requested information ready" ^getCallInfoRes,

superviseCallRes

release

"fault in retrieval of information" ^callFaultDetected

Figure : 3GPP

6.4.2.1 Network Released State

In this state the call has ended and the Gateway collects the possible call information requested with getCallInfoReq() and / or superviseCallReq(). In case the application has not requested additional call related information a transition to the Finished state is made immediately.
For 3GPP the following text applies:
In this state the call has ended and the Gateway collects the possible call information requested with getCallInfoReq() and / or superviseCallReq(). The information will be returned to the application by invoking the methods getCallInfoRes() and / or superviseCallRes() on the application. Also when a call was unsuccessful these methods are used.In case the application has not requested additional call related information immediately a transition is made to state Idle.
6.4.2.2 Finished State

In this state the call has ended and no call related information is to be send to the application. The application can only release the call object. Calling the deassignCall() operation has the same effect. Note that the application has to release the object itself as good OO practice requires that when an object was created on behalf of a certain entity, this entity is also responsible for destroying it when the object is no longer needed.
6.4.2.3 Application Released State

In this state the application has requested to release the Call object and the Gateway collects the possilbe call information requested with getCallInfoReq() and / or superviseCallReq(). In case the application has not requested additional call related information the Call object is destroyed immediately.
6.4.2.4 No Parties State

In this state the Call object has been created. The application can request the gateway for a certain type of charging of the call by calling setCallChargePlan(). The application can request for charging related information by calling getCallInfoReq(). Furthermore the application can request supervision of the call by calling superviseCallReq().
6.4.2.5 Active State

In this state a call between two parties is being setup or present. Refer to the substates for more details. The application can request the gateway for a certain type of charging of the call by calling setCallChargePlan(). The application can request for charging related information by calling getCallInfoReq(). Furthermore the application can request supervision of the call by calling superviseCallReq(). It is also allowed to send Advice of Charge information by calling setAdviceOfCharge().
6.4.2.6 1 Party in Call State

In this state there is one party in the call.
In case the call originated from the network the application can now request for more digits in case more digits are needed or the application can request a connection to a called party be established by calling the operation routeReq(). When the calling party abandons the call before the application has invoked the routeReq() operation, the application is informed with callFaultDetected() and also callEnded() will be invoked. When the calling party abandons the call after the application has invoked routeReq() but before the call has actually been established, the gateway informs the application by invoking callEnded().
In case the called party was reached by issueing a routeReq() the application can request a connection to a second call party by calling the operation routeReq() again.
Otherwise, it depends on the actual number of invoked (and still outstanding or successful) routing requests whether the application can still call the routeReq() operation in order to setup a connection to a called party. Also in this case the called party can disconnect before another party is reached. In this case depending on the actual configuration, the call is ended or a transition is made back to the Routing to Destinations substate.
When the second party answers the call, a transition will be made to the 2 Parties in Call state.
In this state user interaction is possible.
For 3GPP, the following text applies:
When the Call is in this state a calling party is present. The application can now request that a connection to a called party be established by calling the method routeReq(). When the calling party abandons the call before the application has invoked the routeReq() operation, the gateway informs the application by invoking callFaultDetected() and also the operation callEnded() will be invoked. When the calling party abandons the call after the application has invoked routeReq() but before the call has actually been established, the gateway informs the application by invoking callEnded().
When the calling party answers the call, a transition will be made to the 2 Parties in Call state. In case the call can not be established because the application supplied an invalid address or the connection to the called party was unsuccessful while the application was monitoring for the latter in interrupt mode, the Call object will stay in this state
In this state user interaction is possible unless there is an outstanding routing request.
6.4.2.7 2 Parties in Call State

In this state a successful connection between two parties is established.
In this state user interaction is possible, depending on the underlying network.
For 3GPP, the following text applies:
A connection between two parties has been established.
In case the calling party disconnects, the gateway informs the application by invoking callEnded().
When the called party disconnects different situations apply:
1.
the application is monitoring for this event in interrupt mode: a transition is made to the 1 Party in Call state, the application is informed with routeRes with indication that the called party has disconnected and all requested reports are sent to the application. The application now again has control of the call.
2.
the application is monitoring for this event but not in interrupt mode. In this case a transition is made to the Network Released state and the gateway informs the application by invoking the operation routeRes() and callEnded().
3.
the application is not monitoring for this event. In this case the application is informed by the gateway invoking the callEnded() operation and a transition is made to the Network Released state.
6.4.2.8 Routing to Destination(s) State

In this state there is at least one outstanding routeReq.
The state transition diagram shows the application view on the Call object.

[image: image16.wmf]Network Released

Finished

Application

Released

In state Finshed and No Parties a timer

mechanism should prevent that the object

keeps occupying resources. In case the

timer expires, the object should be

destroyed and callFaultDetected should be

reported to the application.

release

deassignCall

timeout ^callFaultDetected("timeout on release")

No Parties

setCallChargePlan

superviseCallReq

getCallInfoReq

setAdviceOfCharge

release

deassign

createCall

Active

Routing to

Destination(s)

2 Parties in

Call

1 Party in

Call

Routing to

Destination(s)

2 Parties in

Call

1 Party in

Call

setAdviceOfCharge

superviseCallReq

getCallInfoReq

setCallChargePlan

routeReq[number of routing requests < 2]

"disconnect from called party"[monitor mode = interrupt]

^routeRes, getCallInfoRes, superviseCallRes

IpAppCallControlManager.callEventNotify

IpAppCallControlManager.callEventNotify(Answer from call party)

routeReq[only 1 outstanding routeReq]

routeReq

getMoreDialledDigitsReq[no routeReq outstanding]

"connection to called party unsuccessful"[

monitor mode = interrupt] ^routeRes

"routing aborted or invalid address" ^routeErr

"answer"

"Digits collected" ^getMoreDialledDigitsRes

"Error in collecting digits" ^getMoreDialledDigitsErr

"party released"[release does not terminate the call]

"answer from called party"

"requests failed"[no more outstanding

routeReq operations] ^routeErr

"connection to called party unsuccessful"[no more

outstanding routeReq operations] ^routeRes

"network event received for which

was monitored[routeRes]

"call supervision event" ^superviseCallRes

release

deassignCall

"call ends : called party disconnects"[monitor for this event] ^callEnded, routeRes(party disconnect)

"call ends: calling party abandoned" ^callEnded

"call ends : calling party disconnects" ^callEnded

"fault detected"[fault cannot be communicated with network event] ^callFaultDetected

"call ends: calling party disconnects"[no monitor for this event] ^callEnded

deassignCall

[no reports requested with getCallInfoReq AND

superviseCallReq]

"requested information ready" ^getCallInfoRes,

superviseCallRes

release

"fault in retrieval of information" ^callFaultDetected

"requested information

ready" ^getCallInfoRes,

superviseCallRes

[no reports requested with

getCallInfoReq AND

superviseCallReq]

"fault in retrieval of information" ^callFaultDetected

Figure : Application view on the IpCall object

6.4.2.9 Network Released State

In this state the call has ended and the Gateway collects the possible call information requested with getCallInfoReq() and / or superviseCallReq(). In case the application has not requested additional call related information a transition to the Finished state is made immediately.
For 3GPP the following text applies:
In this state the call has ended and the Gateway collects the possible call information requested with getCallInfoReq() and / or superviseCallReq(). The information will be returned to the application by invoking the methods getCallInfoRes() and / or superviseCallRes() on the application. Also when a call was unsuccessful these methods are used.In case the application has not requested additional call related information immediately a transition is made to state Idle.
6.4.2.10 Finished State

In this state the call has ended and no call related information is to be send to the application. The application can only release the call object. Calling the deassignCall() operation has the same effect. Note that the application has to release the object itself as good OO practice requires that when an object was created on behalf of a certain entity, this entity is also responsible for destroying it when the object is no longer needed.
6.4.2.11 Application Released State

In this state the application has requested to release the Call object and the Gateway collects the possilbe call information requested with getCallInfoReq() and / or superviseCallReq(). In case the application has not requested additional call related information the Call object is destroyed immediately.
6.4.2.12 No Parties State

In this state the Call object has been created. The application can request the gateway for a certain type of charging of the call by calling setCallChargePlan(). The application can request for charging related information by calling getCallInfoReq(). Furthermore the application can request supervision of the call by calling superviseCallReq().
6.4.2.13 Active State

In this state a call between two parties is being setup or present. Refer to the substates for more details. The application can request the gateway for a certain type of charging of the call by calling setCallChargePlan(). The application can request for charging related information by calling getCallInfoReq(). Furthermore the application can request supervision of the call by calling superviseCallReq(). It is also allowed to send Advice of Charge information by calling setAdviceOfCharge().
6.4.2.14 1 Party in Call State

In this state there is one party in the call.
In case the call originated from the network the application can now request for more digits in case more digits are needed or the application can request a connection to a called party be established by calling the operation routeReq(). When the calling party abandons the call before the application has invoked the routeReq() operation, the application is informed with callFaultDetected() and also callEnded() will be invoked. When the calling party abandons the call after the application has invoked routeReq() but before the call has actually been established, the gateway informs the application by invoking callEnded().
In case the called party was reached by issueing a routeReq() the application can request a connection to a second call party by calling the operation routeReq() again.
Otherwise, it depends on the actual number of invoked (and still outstanding or successful) routing requests whether the application can still call the routeReq() operation in order to setup a connection to a called party. Also in this case the called party can disconnect before another party is reached. In this case depending on the actual configuration, the call is ended or a transition is made back to the Routing to Destinations substate.
When the second party answers the call, a transition will be made to the 2 Parties in Call state.
In this state user interaction is possible.
For 3GPP, the following text applies:
When the Call is in this state a calling party is present. The application can now request that a connection to a called party be established by calling the method routeReq(). When the calling party abandons the call before the application has invoked the routeReq() operation, the gateway informs the application by invoking callFaultDetected() and also the operation callEnded() will be invoked. When the calling party abandons the call after the application has invoked routeReq() but before the call has actually been established, the gateway informs the application by invoking callEnded().
When the calling party answers the call, a transition will be made to the 2 Parties in Call state. In case the call can not be established because the application supplied an invalid address or the connection to the called party was unsuccessful while the application was monitoring for the latter in interrupt mode, the Call object will stay in this state
In this state user interaction is possible unless there is an outstanding routing request.
6.4.2.15 2 Parties in Call State

In this state a successful connection between two parties is established.
In this state user interaction is possible, depending on the underlying network.
For 3GPP, the following text applies:
A connection between two parties has been established.
In case the calling party disconnects, the gateway informs the application by invoking callEnded().
When the called party disconnects different situations apply:
1.
the application is monitoring for this event in interrupt mode: a transition is made to the 1 Party in Call state, the application is informed with routeRes with indication that the called party has disconnected and all requested reports are sent to the application. The application now again has control of the call.
2.
the application is monitoring for this event but not in interrupt mode. In this case a transition is made to the Network Released state and the gateway informs the application by invoking the operation routeRes() and callEnded().
3.
the application is not monitoring for this event. In this case the application is informed by the gateway invoking the callEnded() operation and a transition is made to the Network Released state.
6.4.2.16 Routing to Destination(s) State

In this state there is at least one outstanding routeReq.

6.5 Generic Call Control Data Definitions

This document provides the generic call control data definitions necessary to support the API specification.

This document is written using Hypertext link, to aid navigation through the data structures. Underlined text represents Hypertext links.

The general format of a data definition specification is described below.

· Data Type

This shows the name of the data type.

· Description

This describes the data type.

· Tabular Specification

This specifies the data types and values of the data type.

· Example

If relevant, an example is shown to illustrate the data type.

6.5.1 Generic Call Control Event Notification Data Definitions

TpCallEventName

Defines the names of event being notified. The following events are supported. The values may be combined by a logical 'OR' function when requesting the notifications. Additional events that can be requested / received during the call process are found in the TpCallReportType data-type.

	Name
	Value
	Description

	P_EVENT_NAME_UNDEFINED
	0
	Undefined

	P_EVENT_GCCS_OFFHOOK_EVENT
	1
	GCCS – Offhook event
This can be used for hot-line features. In case this event is set in the TpCallEventCriteria, only the originating address(es) may be specified in the criteria.

	P_EVENT_GCCS_ADDRESS_COLLECTED_EVENT
	2
	GCCS – Address information collected
The network has collected the information from the A-party, but not yet analysed the information. The number can still be incomplete. Applications might set notifications for this event when part of the number analysis needs to be done in the application (see also the getMoreDialledDigits method on the call class).

	P_EVENT_GCCS_ADDRESS_ANALYSED_EVENT
	4
	GCCS – Address information is analysed
The dialled number is a valid and complete number in the network.

	P_EVENT_GCCS_CALLED_PARTY_BUSY
	8
	GCCS – Called party is busy

	P_EVENT_GCCS_CALLED_PARTY_UNREACHABLE
	16
	GCCS – Called party is unreachable (e.g., the called party has a mobile telephone that is currently switched off).

	P_EVENT_GCCS_NO_ANSWER_FROM_CALLED_PARTY
	32
	GCCS – No answer from called party

	P_EVENT_GCCS_ROUTE_SELECT_FAILURE
	64
	GCCS – Failure in routing the call

	P_EVENT_GCCS_ANSWER_FROM_CALL_PARTY
	128
	GCCS – Party answered call.

TpCallNotificationType

Defines the type of notification. Indicates whether it is related to the originating of the terminating user in the call.

	Name
	Value
	Description

	P_ORIGINATING
	1
	Indicates that the notification is related to the originating user in the call.

	P_TERMINATING
	2
	Indicates that the notification is related to the terminating user in the call.

TpCallMonitorMode

Defines the mode that the call will monitor for events, or the mode that the call is in following a detected event.

	Name
	Value
	Description

	P_CALL_MONITOR_MODE_INTERRUPT
	0
	The call event is intercepted by the call control service and call processing is interrupted. The application is notified of the event and call processing resumes following an appropriate API call or network event (such as a call release)

	P_CALL_MONITOR_MODE_NOTIFY
	1
	The call event is detected by the call control service but not intercepted. The application is notified of the event and call processing continues

	P_CALL_MONITOR_MODE_DO_NOT_MONITOR
	2
	Do not monitor for the event

TpCallEventCriteria

Defines the Sequence of Data Elements that specify the criteria for a event notification.

Of the addresses only the Plan and the AddrString are used for the purpose of matching the notifications against the criteria.

	Sequence Element Name
	Sequence Element Type
	Description

	DestinationAddress
	TpAddressRange
	Defines the destination address or address range for which the notification is requested.

	OriginatingAddress
	TpAddressRange
	Defines the origination address or a address range for which the notification is requested.

	CallEventName
	TpCallEventName
	Name of the event(s)

	CallNotificationType
	TpCallNotificationType
	Indicates whether it is related to the originating or the terminating user in the call.

	MonitorMode
	TpCallMonitorMode
	Defines the mode that the call is in following the notification.
Monitor mode P_CALL_MONITOR_MODE_DO_NOT_MONITOR is not a legal value here.

TpCallEventInfo

Defines the Sequence of Data Elements that specify the information returned to the application in a Call event notification.

	Sequence Element Name
	Sequence Element Type

	DestinationAddress
	TpAddress

	OriginatingAddress
	TpAddress

	OriginalDestinationAddress
	TpAddress

	RedirectingAddress
	TpAddress

	CallAppInfo
	TpCallAppInfoSet

	CallEventName
	TpCallEventName

	CallNotificationType
	TpCallNotificationType

	MonitorMode
	TpCallMonitorMode

6.5.2 Generic Call Control Data Definitions

IpCall

Defines the address of an IpCall Interface.

IpCallRef

Defines a Reference to type IpCall.

IpAppCall

Defines the address of an IpAppCall Interface.

IpAppCallRef

Defines a Reference to type IpAppCall

IpAppCallRefRef

Defines a Reference to type IpAppCallRef.

TpCallIdentifierRef

Defines a Reference to type TpCallIdentifier.

TpCallIdentifier

Defines the Sequence of Data Elements that unambiguously specify the Generic Call object

	Sequence Element Name
	Sequence Element Type
	Sequence Element Description

	CallReference
	IpCallRef
	This element specifies the interface reference for the call object.

	CallSessionID
	TpSessionID
	This element specifies the call session ID of the call.

IpAppCallControlManager

Defines the address of an IpAppCallControlManager Interface.

IpAppCallControlManagerRef

Defines a Reference to type IpAppCallControlManager.

IpCallControlManager

Defines the address of an IpCallControlManager Interface.

IpCallControlManagerRef

Defines a Reference to type IpCallControlManager.
TpAoCInfo

Defines the Sequence of Data Elements that specify the Advice Of Charge information to be sent to the terminal.

	Sequence Element Name
	Sequence Element Type
	Description

	ChargeOrder
	TpAoCOrder
	Charge order

	Currency
	TpString

	Currency unit according to ISO-4217:1995

TpAoCOrder

Defines the Tagged Choice of Data Elements that specify the charge plan for the call.

	
	Tag Element Type
	

	
	TpAoCOrderCategory
	

	Tag Element Value
	Choice Element Type
	Choice Element Name

	P_CHARGE_ADVICE_INFO
	TpChargeAdviceInfo
	ChargeAdviceInfo

	P_CHARGE_PER_TIME
	TpChargePerTime
	ChargePerTime

	P_CHARGE_NETWORK
	TpString
	NetworkCharge

TpCallAoCOrderCategory

Defines the type of AoC data.

	Name
	Value
	Description

	P_CHARGE_ADVICE_INFO
	0
	Set of GSM Charge Advice Information elements according to 3G TS 22.024

	P_CHARGE_PER_TIME
	1
	Charge per time

	P_CHARGE_NETWORK
	2
	Operator specific charge plan specification, e.g. charging table name / charging table entry

TpChargeAdviceInfo

Defines the Sequence of Data Elements that specify the two sets of Advice of Charge parameters. The first set defines the current tariff. The second set may be used in case of a tariff switch in the network.

	Sequence Element Name
	Sequence Element Type
	Description

	CurrentCAI
	TpCAIElements
	Current tariff

	NextCAI
	TpCAIElements
	Next tariff after tariff switch

TpCAIElements

Defines the Sequence of Data Elements that specify theCharging Advice Information elements according to 3G TS 22.024.

	Sequence Element Name
	Sequence Element Type
	Description

	UnitsPerInterval
	TpInt32
	Units per interval

	SecondsPerTimeInterval
	TpInt32
	Seconds per time interval

	ScalingFactor
	TpInt32
	Scaling factor

	UnitIncrement
	TpInt32
	Unit increment

	UnitsPerDataInterval
	TpInt32
	Units per data interval

	SegmentsPerDataInterval
	TpInt32
	Segments per data interval

	InitialSecsPerTimeInterval
	TpInt32
	Initial secs per time interval

TpChargePerTime
Defines the Sequence of Data Elements that specify the time based charging information.
	Sequence Element Name
	Sequence Element Type
	Description

	InitialCharge
	TpInt32
	Initial charge amount (in currency units * 0.0001)

	CurrentChargePerMinute
	TpInt32
	Current tariff (in currency units * 0.0001)

	NextChargePerMinute
	TpInt32
	Next tariff (in currency units * 0.0001) after tariff switch

Only used in setAdviceOfCharge()

TpCallAlertingMechanism

This data type is identical to a TpInt32, and defines the mechanism that will be used to alert a call party. The values of this data type are operator specific.

TpCallAppInfo

Defines the Tagged Choice of Data Elements that specify application-related call information.

	
	Tag Element Type
	

	
	TpCallAppInfoType
	

	Tag Element Value
	Choice Element Type
	Choice Element Name

	P_CALL_APP_ALERTING_MECHANISM
	TPCallAlertingMechanism
	CallAppAlertingMechanism

	P_CALL_APP_NETWORK_ACCESS_TYPE
	TpCallNetworkAccessType
	CallAppNetworkAccessType

	
	
	

	P_CALL_APP_TELE_SERVICE
	TpCallTeleService
	CallAppTeleService

	P_CALL_APP_BEARER_SERVICE
	TpCallBearerService
	CallAppBearerService

	P_CALL_APP_PARTY_CATEGORY
	TpCallPartyCategory
	CallAppPartyCategory

	P_CALL_APP_PRESENTATION_ADDRESS
	TpAddress
	CallAppPresentationAddress

	P_CALL_APP_GENERIC_INFO
	TpString
	CallAppGenericInfo

	P_CALL_APP_ADDITIONAL_ADDRESS
	TpAddress
	CallAppAdditionalAddress

TpCallAppInfoType

Defines the type of call application-related specific information.

	Name
	Value
	Description

	P_CALL_APP_UNDEFINED
	0
	Undefined

	P_CALL_APP_ALERTING_MECHANISM
	1
	The alerting mechanism or pattern to use

	P_CALL_APP_NETWORK_ACCESS_TYPE
	2
	The network access type (e.g. ISDN)

	
	
	

	P_CALL_APP_TELE_SERVICE
	3
	Indicates the tele-service (e.g. telephony)

	P_CALL_APP_BEARER_SERVICE
	4
	Indicates the bearer service (e.g. 64kb/s unrestricted data).

	P_CALL_APP_PARTY_CATEGORY
	5
	The category of the calling party

	P_CALL_APP_PRESENTATION_ADDRESS
	6
	The address to be presented to other call parties

	P_CALL_APP_GENERIC_INFO
	7
	Carries unspecified service-service information

	P_CALL_APP_ADDITIONAL_ADDRESS
	8
	Indicates an additional address

TpCallAppInfoSet

Defines a Numbered Set of Data Elements of TpCallAppInfo.

TpCallBearerService

This data type defines the type of call application-related specific information (Q.931: Information Transfer Capability, and 3G TS 22.002)
	Name
	Value
	Description

	P_CALL_BEARER_SERVICE_UNKNOWN
	0
	Bearer capability information unknown at this time

	P_CALL_BEARER_SERVICE_SPEECH
	1
	Speech

	P_CALL_BEARER_SERVICE_DIGITALUNRESTRICTED
	2
	Unrestricted digital information

	P_CALL_BEARER_SERVICE_DIGITALRESTRICTED
	3
	Restricted digital information

	P_CALL_BEARER_SERVICE_AUDIO
	4
	3.1 kHz audio

	P_CALL_BEARER_SERVICE_ DIGITALUNRESTRICTEDTONES
	5
	Unrestricted digital information with tomes/announcements

	P_CALL_BEARER_SERVICE_VIDEO
	6
	Video

TpCallChargePlan

Defines the Sequence of Data Elements that specify the charge plan for the call.

	Sequence Element Name
	Sequence Element Type
	Description

	ChargeOrderType
	TpCallChargeOrder
	Charge order

	Currency
	TpString

	Currency unit according to ISO-4217:1995

	AdditionalInfo
	TpString
	Descriptive string which is sent to the billing system without prior evaluation. Could be included in the ticket.

Valid Currencies are:

ADP, AED, AFA, ALL, AMD, ANG, AON, AOR, ARS, ATS, AUD, AWG, AZM, BAM,

BBD, BDT, BEF, BGL, BGN, BHD, BIF, BMD, BND, BOB, BOV, BRL, BSD, BTN,

BWP, BYB, BZD, CAD, CDF, CHF, CLF, CLP, CNY, COP, CRC, CUP, CVE, CYP,

CZK, DEM, DJF, DKK, DOP, DZD, ECS, ECV, EEK, EGP, ERN, ESP, ETB, EUR,

FIM, FJD, FKP, FRF, GBP, GEL, GHC, GIP, GMD, GNF, GRD, GTQ, GWP, GYD,

HKD, HNL, HRK, HTG, HUF, IDR, IEP, ILS, INR, IQD, IRR, ISK, ITL, JMD,

JOD, JPY, KES, KGS, KHR, KMF, KPW, KRW, KWD, KYD, KZT, LAK, LBP, LKR,

LRD, LSL, LTL, LUF, LVL, LYD, MAD, MDL, MGF, MKD, MMK, MNT, MOP, MRO,

MTL, MUR, MVR, MWK, MXN, MXV, MYR, MZM, NAD, NGN, NIO, NLG, NOK, NPR,

NZD, OMR, PAB, PEN, PGK, PHP, PKR, PLN, PTE, PYG, QAR, ROL, RUB, RUR,

RWF, SAR, SBD, SCR, SDD, SEK, SGD, SHP, SIT, SKK, SLL, SOS, SRG, STD,

SVC, SYP, SZL, THB, TJR, TMM, TND, TOP, TPE, TRL, TTD, TWD, TZS, UAH,

UGX, USD, USN, USS, UYU, UZS, VEB, VND, VUV, WST, XAF, XAG, XAU, XBA,

XBB, XBC, XBD, XCD, XDR, XFO, XFU, XOF, XPD, XPF, XPT, XTS, XXX, YER,

YUM, ZAL, ZAR, ZMK, ZRN, ZWD.

XXX is used for transactions where no currency is involved.

TpCallChargeOrder

Defines the Tagged Choice of Data Elements that specify the charge plan for the call.

	
	Tag Element Type
	

	
	TpCallChargeOrderCategory
	

	Tag Element Value
	Choice Element Type
	Choice Element Name

	P_CALL_CHARGE_PER_TIME
	TpChargePerTime
	ChargePerTime

	P_CALL_CHARGE_NETWORK
	TpString
	NetworkCharge

TpCallChargeOrderCategory

Defines the type of charging to be applied

	Name
	Value
	Description

	P_CALL_CHARGE_PER_TIME
	0
	Charge per time

	P_CALL_CHARGE_NETWORK
	1
	Operator specific charge plan specification, e.g. charging table name / charging table entry

TpCallError

Defines the Sequence of Data Elements that specify the additional information relating to acall error.

	Sequence Element Name
	Sequence Element Type

	ErrorTime
	TpDateAndTime

	ErrorType
	TpCallErrorType

	AdditionalErrorInfo
	TpCallAdditionalErrorInfo

TpCallAdditionalErrorInfo

Defines the Tagged Choice of Data Elements that specify additional call error and call error specific information. This is also used to specify call leg errors and information errors.

	
	Tag Element Type
	

	
	TpCallErrorType
	

	Tag Element Value
	Choice Element Type
	Choice Element Name

	P_CALL_ERROR_UNDEFINED
	NULL
	Undefined

	
	
	

	
	
	

	P_CALL_ERROR_INVALID_ADDRESS
	TpAddressError
	CallErrorInvalidAddress

	P_CALL_ERROR_INVALID_STATE
	NULL
	Undefined

	
	
	

TpCallErrorType

Defines a specific call error.

	Name
	Value
	Description

	P_CALL_ERROR_UNDEFINED
	0
	Undefined; the method failed or was refused, but no specific reason can be given.

	
	
	

	
	
	

	P_CALL_ERROR_INVALID_ADDRESS
	1
	The operation failed because an invalid address was given

	P_CALL_ERROR_INVALID_STATE
	2
	The call was not in a valid state for the requested operation

	
	
	

TpCallFault

Defines the cause of the call fault detected.

	Name
	Value
	Description

	P_CALL_FAULT_UNDEFINED
	0
	Undefined

	
	
	

	P_CALL_TIMEOUT_ON_RELEASE
	1
	This fault occurs when the final report has been sent to the application, but the application did not explicitly release or deassign the call object, within a specified time.

The timer value is operator specific.

	P_CALL_TIMEOUT_ON_INTERRUPT
	2
	This fault occurs when the application did not instruct the gateway how to handle the call within a specified time, after the gateway reported an event that was requested by the application in interrupt mode.

The timer value is operator specific.

TpCallEndedReport

Defines the Sequence of Data Elements that specify the reason for the call ending.
	Sequence Element Name
	Sequence Element Type
	

	CallLegSessionID
	TpSessionID
	The leg that initiated the release of the call.

If the call release was not initiated by the leg, then this value is set to –1.

	Cause
	TpCallReleaseCause
	The cause of the call ending.

TpCallInfoReport

Defines the Sequence of Data Elements that specify the call information requested. Information that was not requested is invalid.
	Sequence Element Name
	Sequence Element Type
	Description

	CallInfoType
	TpCallInfoType
	The type of call report.

	CallInitiationStartTime
	TpDateAndTime
	The time and date when the call, or follow-on call, was started.

	CallConnectedToResourceTime
	TpDateAndTime
	The date and time when the call was connected to the resource.

This data element is only valid when information on user interaction is reported.

	CallConnectedToDestinationTime
	TpDateAndTime
	The date and time when the call was connected to the destination (i.e., when the destination answered the call). If the destination did not answer, the time is set to an empty string.

This data element is invalid when information on user interaction is reported with an intermediate report.

	CallEndTime
	TpDateAndTime
	The date and time when the call or follow-on call or user interaction was terminated.

	Cause
	TpCallReleaseCause
	The cause of the termination.

A callInfoReport will be generated at the end of user interaction and at the end of the connection with the associated address. This means that either the destination related information is present or the resource related information, but not both.
TpCallInfoType

Defines the type of call information requested and reported. The values may be combined by a logical 'OR' function.

	Name
	Value
	Description

	P_CALL_INFO_UNDEFINED
	00h
	Undefined

	P_CALL_INFO_TIMES
	01h
	Relevant call times

	P_CALL_INFO_RELEASE_CAUSE
	02h
	Call release cause

	P_CALL_INFO_INTERMEDIATE
	04h
	Send only intermediate reports. When this is not specified the information report will only be sent when the call has ended. When intermediate reports are requested a report will be generated between follow-on calls, i.e., when a party leaves the call.

TpCallNetworkAccessType

This data defines the bearer capabilities associated with the call. (3G TS 24.002) This information is network operator specific and may not always be available because there is no standard protocol to retrieve the information.

	Name
	Value
	Description

	P_CALL_NETWORK_ACCESS_TYPE_UNKNOWN
	0
	Network type information unknown at this time

	P_CALL_NETWORK_ACCESS_TYPE_POT
	1
	POTS

	P_CALL_NETWORK_ACCESS_TYPE_ISDN
	2
	ISDN

	P_CALL_NETWORK_ACCESS_TYPE_DIALUPINTERNET
	3
	Dial-up Internet

	P_CALL_NETWORK_ACCESS_TYPE_XDSL
	4
	xDLS

	P_CALL_NETWORK_ACCESS_TYPE_WIRELESS
	5
	Wireless

TpCallPartyCategory

This data type defines the category of a calling party. (Q.763: Calling Party Category / Called Party Category)

	Name
	Value
	Description

	P_CALL_PARTY_CATEGORY_UNKNOWN
	0
	calling party's category unknown at this time

	P_CALL_PARTY_CATEGORY_OPERATOR_F
	1
	operator, language French

	P_CALL_PARTY_CATEGORY_OPERATOR_E
	2
	operator, language English

	P_CALL_PARTY_CATEGORY_OPERATOR_G
	3
	operator, language German

	P_CALL_PARTY_CATEGORY_OPERATOR_R
	4
	operator, language Russian

	P_CALL_PARTY_CATEGORY_OPERATOR_S
	5
	operator, language Spanish

	P_CALL_PARTY_CATEGORY_ORDINARY_SUB
	6
	ordinary calling subscriber

	P_CALL_PARTY_CATEGORY_PRIORITY_SUB
	7
	calling subscriber with priority

	P_CALL_PARTY_CATEGORY_DATA_CALL
	8
	data call (voice band data)

	P_CALL_PARTY_CATEGORY_TEST_CALL
	9
	test call

	P_CALL_PARTY_CATEGORY_PAYPHONE
	10
	payphone

TpCallReleaseCause

Defines the Sequence of Data Elements that specify the cause of the release of a call.

	Sequence Element Name
	Sequence Element Type

	Value
	TpInt32

	Location
	TpInt32

Note: the Value and Location are specified as in ITU-T recommendation Q.850.

TpCallServiceCode

Defines the Sequence of Data Elements that specify the service code and type of service code received during a call. The service code type defines how the value string should be interpreted.

	Sequence Element Name
	Sequence Element Type

	CallServiceCodeType
	TpCallServiceCodeType

	ServiceCodeValue
	TpString

TpCallServiceCodeType

Defines the different types of service codes that can be received during the call.

	Name
	Value
	Description

	P_CALL_SERVICE_CODE_UNDEFINED
	0
	The type of service code is unknown. The corresponding string is operator specific.

	P_CALL_SERVICE_CODE_DIGITS
	1
	The user entered a digit sequence during the call. The corresponding string is an ascii representation of the received digits.

	P_CALL_SERVICE_CODE_FACILITY
	2
	A facility information element is received. The corresponding string contains the facility information element as defined in ITU Q.932

	P_CALL_SERVICE_CODE_U2U
	3
	A user-to-user message was received. The associated string contains the content of the user-to-user information element.

	P_CALL_SERVICE_CODE_HOOKFLASH
	4
	The user performed a hookflash, optionally followed by some digits. The corresponding string is an ascii representation of the entered digits.

	P_CALL_SERVICE_CODE_RECALL
	5
	The user pressed the register recall button, optionally followed by some digits. The corresponding string is an ascii representation of the entered digits.

TpCallTeleService

This data type defines the tele-service associated with the call. (Q.763: User Teleservice Information, Q.931: High Layer Compatitibility Information, and 3G TS 22.003)

	Name
	Value
	Description

	P_CALL_TELE_SERVICE_UNKNOWN
	0
	Teleservice information unknown at this time

	P_CALL_TELE_SERVICE_TELEPHONY
	1
	Telephony

	P_CALL_TELE_SERVICE_FAX_2_3
	2
	Facsimile Group 2/3

	P_CALL_TELE_SERVICE_FAX_4_I
	3
	Facsimile Group 4, Class I

	P_CALL_TELE_SERVICE_FAX_4_II_III
	4
	Facsimile Group 4, Classes II and III

	P_CALL_TELE_SERVICE_VIDEOTEX_SYN
	5
	Syntax based Videotex

	P_CALL_TELE_SERVICE_VIDEOTEX_INT
	6
	International Videotex interworking via gateways or interworking units

	P_CALL_TELE_SERVICE_TELEX
	7
	Telex service

	P_CALL_TELE_SERVICE_MHS
	8
	Message Handling Systems

	P_CALL_TELE_SERVICE_OSI
	9
	OSI application

	P_CALL_TELE_SERVICE_FTAM
	10
	FTAM application

	P_CALL_TELE_SERVICE_VIDEO
	11
	Videotelephony

	P_CALL_TELE_SERVICE_VIDEO_CONF
	12
	Videoconferencing

	P_CALL_TELE_SERVICE_AUDIOGRAPH_CONF
	13
	Audiographic conferencing

	P_CALL_TELE_SERVICE_MULTIMEDIA
	14
	Multimedia services

	P_CALL_TELE_SERVICE_CS_INI_H221
	15
	Capability set of initial channel of H.221

	P_CALL_TELE_SERVICE_CS_SUB_H221
	16
	Capability set of subsequent channel of H.221

	P_CALL_TELE_SERVICE_CS_INI_CALL
	17
	Capability set of initial channel associated with an active 3.1 kHz audio or speech call.

	P_CALL_TELE_SERVICE_DATATRAFFIC
	18
	Data traffic.

	P_CALL_TELE_SERVICE_EMERGENCY_CALLS
	19
	Emergency Calls

	P_CALL_TELE_SERVICE_SMS_MT_PP
	20
	Short message MT/PP

	P_CALL_TELE_SERVICE_SMS_MO_PP
	21
	Short message MO/PP

	P_CALL_TELE_SERVICE_CELL_BROADCAST
	22
	Cell Broadcast Service

	P_CALL_TELE_SERVICE_ALT_SPEECH_FAX_3
	23
	Alternate speech and facsimile group 3

	P_CALL_TELE_SERVICE_AUTOMATIC_FAX_3
	24
	Automatic Facsimile group 3

	P_CALL_TELE_SERVICE_VOICE_GROUP_CALL
	25
	Voice Group Call Service

	P_CALL_TELE_SERVICE_VOICE_BROADCAST
	26
	Voice Broadcast Service

TpCallSuperviseReport

Defines the responses from the call control service for calls that are supervised. The values may be combined by a logical 'OR' function.

	Name
	Value
	Description

	P_CALL_SUPERVISE_TIMEOUT
	01h
	The call supervision timer has expired

	P_CALL_SUPERVISE_CALL_ENDED
	02h
	The call has ended, either due to timer expiry or call party release. In case the called party disconnects but a follow-on call can still be made also this indication is used.

	P_CALL_SUPERVISE_TONE_APPLIED
	04h
	A warning tone has been applied. This is only sent in combination with P_CALL_SUPERVISE_TIMEOUT

	P_CALL_SUPERVISE_UI_FINISHED
	08h
	The user interaction has finished.

TpCallSuperviseTreatment

Defines the treatment of the call by the call control service when the call supervision timer expires. The values may be combined by a logical 'OR' function.

	Name
	Value
	Description

	P_CALL_SUPERVISE_RELEASE
	01h
	Release the call when the call supervision timer expires

	P_CALL_SUPERVISE_RESPOND
	02h
	Notify the application when the call supervision timer expires

	P_CALL_SUPERVISE_APPLY_TONE
	04h
	Send a warning tone to the originating party when the call supervision timer expires. If call release is requested, then the call will be released following the tone after an administered time period

TpCallReport

Defines the Sequence of Data Elements that specify the call report and call leg report specific information.
	Sequence Element Name
	Sequence Element Type

	MonitorMode
	TpCallMonitorMode

	CallEventTime
	TpDateAndTime

	CallReportType
	TpCallReportType

	AdditionalReportInfo
	TpCallAdditionalReportInfo

TpCallAdditionalReportInfo

Defines the Tagged Choice of Data Elements that specify additional call report information for certain types of reports..
	
	Tag Element Type
	

	
	TpCallReportType
	

	Tag Element Value
	Choice Element Type
	Choice Element Name

	P_CALL_REPORT_UNDEFINED
	NULL
	Undefined

	P_CALL_REPORT_PROGRESS
	NULL
	Undefined

	P_CALL_REPORT_ALERTING
	NULL
	Undefined

	P_CALL_REPORT_ANSWER
	NULL
	Undefined

	P_CALL_REPORT_BUSY
	TpCallReleaseCause
	Busy

	P_CALL_REPORT_NO_ANSWER
	NULL
	Undefined

	P_CALL_REPORT_DISCONNECT
	TpCallReleaseCause
	CallDisconnect

	P_CALL_REPORT_REDIRECTED
	TpAddress
	ForwardAddress

	P_CALL_REPORT_SERVICE_CODE
	TpCallServiceCode
	ServiceCode

	P_CALL_REPORT_ROUTING_FAILURE
	TpCallReleaseCause
	RoutingFailure

	
	
	

TpCallReportRequest

Defines the Sequence of Data Elements that specify the criteria relating to call report requests.

	Sequence Element Name
	Sequence Element Type

	MonitorMode
	TpCallMonitorMode

	CallReportType
	TpCallReportType

	AdditionalReportCriteria
	TpCallAdditionalReportCriteria

TpCallAdditionalReportCriteria

Defines the Tagged Choice of Data Elements that specify specific criteria.
	
	Tag Element Type
	

	
	TpCallReportType
	

	Tag Element Value
	Choice Element Type
	Choice Element Name

	P_CALL_REPORT_UNDEFINED
	NULL
	Undefined

	P_CALL_REPORT_PROGRESS
	NULL
	Undefined

	P_CALL_REPORT_ALERTING
	NULL
	Undefined

	P_CALL_REPORT_ANSWER
	NULL
	Undefined

	P_CALL_REPORT_BUSY
	NULL
	Undefined

	P_CALL_REPORT_NO_ANSWER
	TpDuration
	NoAnswerDuration

	P_CALL_REPORT_DISCONNECT
	NULL
	Undefined

	P_CALL_REPORT_REDIRECTED
	NULL
	Undefined

	P_CALL_REPORT_SERVICE_CODE
	TpCallServiceCode
	ServiceCode

	P_CALL_REPORT_ROUTING_FAILURE
	NULL
	Undefined

	
	
	

TpCallReportRequestSet

Defines a Numbered Set of Data Elements of TpCallReportRequest.

TpCallReportType

Defines a specific call event report type.

	Name
	Value
	Description

	P_CALL_REPORT_UNDEFINED
	0
	Undefined

	P_CALL_REPORT_PROGRESS
	1
	Call routing progress event:an indication from the network that progress has been made in routing the call to the requested call party.

	P_CALL_REPORT_ALERTING
	2
	Call is alerting at the call party

	P_CALL_REPORT_ANSWER
	3
	Call answered at address

	P_CALL_REPORT_BUSY
	4
	Called address refused call due to busy

	P_CALL_REPORT_NO_ANSWER
	5
	No answer at called address

	P_CALL_REPORT_DISCONNECT
	6
	The call party has disconnected.

	P_CALL_REPORT_REDIRECTED
	7
	Call redirected to new address: an indication from the network that the call has been redirected to a new address.

	P_CALL_REPORT_SERVICE_CODE
	8
	Mid-call service code received

	P_CALL_REPORT_ROUTING_FAILURE
	9
	Call routing failed - re-routing is possible

	
	
	

TpCallLoadControlMechanism

Defines the Tagged Choice of Data Elements that specify the applied mechanism and associated parameters.
	
	Tag Element Type
	

	
	TpCallLoadControlMechanismType
	

	Tag Element Value
	Choice Element Type
	Choice Element Name

	P_CALL_LOAD_CONTROL_PER_INTERVAL
	TpCallLoadControlIntervalRate
	CallLoadControlPerInterval

TpCallLoadControlIntervalRate

Defines the call admission rate of the call load control mechanism used. This data type indicates the interval (in milliseconds) between calls that are admitted.
	Name
	Value
	Description

	P_CALL_LOAD_CONTROL_ADMIT_NO_CALLS
	0
	Infinite interval

(do not admit any calls)

	
	1 - 60000
	Duration in milliseconds

TpCallLoadControlMechanismType

Defines the type of call load control mechanism to use.

	Name
	Value
	Description

	P_CALL_LOAD_CONTROL_PER_INTERVAL
	1
	admit one call per interval

TpCallTreatment

Defines the Sequence of Data Elements that specify the the treatment for calls that will be handled only by the network (for example, call which are not admitted by the call load control mechanism).
	Sequence Element Name
	Sequence Element Type

	ReleaseCause
	TpCallReleaseCause

	AdditionalTreatmentInfo
	TpCallAdditionalTreatmentInfo

TpCallAdditionalTreatmentInfo

Defines the Tagged Choice of Data Elements that specify the information to be sent to a call party.
	
	Tag Element Type
	

	
	TpCallTreatmentType
	

	Tag Element Value
	Choice Element Type
	Choice Element Name

	P_CALL_TREATMENT_DEFAULT
	NULL
	Undefined

	P_CALL_TREATMENT_RELEASE
	NULL
	Undefined

	P_CALL_TREATMENT_SIAR
	TpUICallInfoID
	InformationToSend

TpCallTreatmentType

Defines the treatment for calls that will be handled only by the network.
	Name
	Value
	Description

	P_CALL_TREATMENT_DEFAULT
	0
	Default treatment

	P_CALL_TREATMENT_RELEASE
	1
	Release the call

	P_CALL_TREATMENT_SIAR
	2
	Send information to the user, and release the call (Send Info & Release)

TpCallEventCriteriaResultSetRef

Defines a refernce to TpCallEventCriteriaResultSet.

TpCallEventCriteriaResultSet

Defines a set of TpCallEventCriteriaResult.

TpCallEventCriteriaResult

Defines a sequence of data elements that specify a requested call event notification criteria with the associated assignmentID.

	Sequence Element Name
	Sequence Element Type
	Sequence Element Description

	EventCriteria
	TpCallEventCriteria
	The event criteria that were specified by the application.

	AssignmentID
	TpInt32
	The associated assignmentID. This can be used to disable the notification.

7 MultiParty Call Control Service

7.1 Sequence Diagrams

7.1.1 Application initiated call setup

The following sequence diagram shows an application creating a call between party A and party B. Here, a call is created first. Then party A's call leg is created before triggers are set on it for answer and then routed to the call. On answer, an announcement is played indicating that the call is being set up to party B. While the announcement is being played, party B's call leg is created and then triggers are set on it for answer. On answer the announcement is cancelled and party B is routed to the call.

[image: image17.wmf]PartyB :

IpCallLeg

 : IpMultiPartyCallControlManager

 :

IpAppMultiPartyCall

 :

IpMultiPartyCall

PartyA :

IpCallLeg

 : (Logical

View::Ip...

4: setCallback()

1: new()

2: createCall()

3: new()

7: eventReportReq ()

 :

IpAppUICall

 : IpUICall

11: sendInfoReq()

15: eventReportReq ()

18: abortActionReq()

5: createCallLeg()

6: new()

13: createCallLeg()

14: new()

AppPartyA :

(IpAppMultiPartyCallLeg)

AppPartyB :

(IpAppMultiPartyCallLeg)

9: eventReportRes ()

17: eventReportRes ()

8: route ()

16: route ()

12: sendInfoRes()

 :

IpUIManager

10: createUICall()

19: deassignCall()

1:
This message is used to create an object implementing the IpAppMultiPartyCall interface.

2:
This message requests the object implementing the IpMultiPartyCallControlManager interface to create an object implementing the IpMultiPartyCall interface.

3:
Assuming that the criteria for creating an object implementing the IpMultiPartyCall interface (e.g. load control values not exceeded) is met it is created.

4:
Once the object implementing the IpMultiPartyCall interface is created it is used to pass the reference of the object implementing the IpAppMultiPartyCall interface as the callback reference to the object implementing the IpMultiPartyCall interface. Note that the reference to the callback interface could already have been passed in the createCall.

5:
This message instructs the object implementing the IpMultiPartyCall interface to create a call leg for customer A.

6:
Assuming that the criteria for creating an object implementing the IpCallLeg interface is met, message 6 is used to create it.

7:
This message requests the call leg for customer A to inform the application when the call leg answers the call.

8:
The call is then routed to the originating call leg.

9:
Assuming the call is answered, the object implementing party A's IpCallLeg interface passes the result of the call being answered back to its callback object. This message is then forwarded via another message (not shown) to the object implementing the IpAppLogic interface.

10:
A UICall object is created and associated with the just created call leg.

11:
This message is used to inform party A that the call is being routed to party B.

12:
An indication that the dialogue with party A has commenced is returned via message 13 and eventually forwarded via another message (not shown) to the object implementing the IpAppLogic interface.

13:
This message instructs the object implementing the IpMultiPartyCall interface to create a call leg for customer B.

14:
Assuming that the criteria for creating a second object implementing the IpCallLeg interface is met, it is created.

15:
This message requests the call leg for customer B to inform the application when the call leg answers the call.

16:
The call is then routed to the call leg.

17:
Assuming the call is answered, the object implementing party B's IpCallLeg interface passes the result of the call being answered back to its callback object. This message is then forwarded via another message (not shown) to the object implementing the IpAppLogic interface.

18:
This message then instructs the object implementing the IpUICall interface to stop sending announcements to party A.

19:
The application deassigns the call. This will also deassign the associated user interaction.

7.1.2 Call Barring 2

The following sequence diagram shows a call barring service, initiated as a result of a prearranged event being received by the framework. Before the call is routed to the destination number, the calling party is asked for a PIN code. The code is rejected and the call is cleared.

[image: image18.wmf] : (Logical

View::IpA...

 :

IpAppMultiPartyCallControlManager

 :

IpAppMultiPartyCall

 :

IpMultiPartyCall

 : IpUICall

 :

IpUIManager

 : IpMultiPartyCallControlManager

 :

IpAppUICall

8: sendInfoAndCollectReq()

9: sendInfoAndCollectRes()

11: sendInfoReq()

12: sendInfoRes()

15: release ()

1: new()

3: callEventNotify()

4: 'forward event'

5: new()

10: 'forward event'

13: 'forward event'

2: enableCallNotification()

7: createUICall()

14: release()

6: getCallLegs()

1:
This message is used by the application to create an object implementing the IpAppMultiPartyCallControlManager interface.

2:
This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts a call barring service, it is likely that all new call events destined for a particular address or address range prompted for a password before the call is allowed to progress. When a new call, that matches the event criteria, arrives a message (not shown) is directed to the object implementing the IpMultiPartyCallControlManager. Assuming that the criteria for creating an object implementing the IpMultiPartyCall interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg object.

3:
This message is used to pass the new call event to the object implementing the IpAppMultiPartyCallControlManager interface.

4:
This message is used to forward message 3 to the IpAppLogic.

5:
This message is used by the application to create an object implementing the IpAppMultiPartyCall interface. The reference to this object is passed back to the object implementing the IpMultiPartyCallControlManager using the return parameter of the callEventNotify.

6:
The application requests an list of all the legs currently in the call.

7:
This message is used to create a UICall object that is associated with the incoming leg of the call.

8:
The call barring service dialogue is invoked.

9:
The result of the dialogue, which in this case is the PIN code, is returned to its callback object.

10:
This message is used to forward the previous message to the IpAppLogic

11:
Assuming an incorrect PIN is entered, the calling party is informed using additional dialogue of the reason why the call cannot be completed.

12:
This message passes the indication that the additional dialogue has been sent.

13:
This message is used to forward the previous message to the IpAppLogic.

14:
No more UI is required, so the UICall object is released.

15:
This message is used by the application to clear the call.

7.1.3 Complex Card Service

The following sequence diagram shows an advanced card service, initiated as a result of a prearranged event being received by the framework. Before the call is made, the calling party is asked for an ID and PIN code. If the ID and PIN code are accepted, the calling party is prompted to enter the address of the destination party. A trigger of '#5' is then set on the controlling leg (the calling party's leg) such that if the calling party enters a '#5' an event will be sent to the application. The call is then routed to the destination party. Sometime during the call the calling party enters '#5' which causes the called leg to be released. The calling party is now prompted to enter the address of a new destination party, to which it is then routed.

[image: image19.wmf] : (Logical

View::IpA...

 :

IpAppMultiPartyCallControlManager

 :

IpAppMultiPartyCall

 :

IpMultiPartyCall

 : IpUICall

 :

IpAppCallLeg

 :

IpUIManager

AppPartyA :

IpAppCallLeg

PartyB :

IpCallLeg

 :

IpMultiPartyCallControl...

PartyA :

IpCallLeg

 :

IpAppUICall

27: routeRes ()

26: routeReq ()

8: sendInfoAndCollectReq()

10: sendInfoAndCollectReq()

9: sendInfoAndCollectRes()

11: sendInfoAndCollectRes()

13: eventReportReq ()

1: new()

3: callEventNotify()

4: 'forward event'

5: new()

23: release ()

21: eventReportRes ()

24: sendInfoAndCollectReq()

25: sendInfoAndCollectRes()

12: setCallbackWithSessionID()

2: enableCallNotification()

7: createUICall()

6: getCallLegsf()

15: createCallLeg()

17: route()

16: eventReportReq()

14: new()

20: attachMedia()

18: eventReportRes()

19: "forward event"

22: "forward event"

28: eventReportRes()

29: "forward event"

30: callEnded()

31: "forward event"

32:

33: "forward event"

34: deassignCall()

1:
This message is used by the application to create an object implementing the IpAppMultiPartyCallControlManager interface.

2:
This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts a call barring service, it is likely that all new call events destined for a particular address or address range result in the caller being prompted for a password before the call is allowed to progress. When a new call, that matches the event criteria set in message 2, arrives a message (not shown) is directed to the object implementing the IpMultiPartyCallControlManager. Assuming that the criteria for creating an object implementing the IpMultiPartyCall interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg object.

3:
This message is used to pass the new call event to the object implementing the IpAppMultiPartyCallControlManager interface.

4:
: This message is used to forward message 3 to the IpAppLogic.

5:
This message is used by the application to create an object implementing the IpAppMultiPartyCall interface. The reference to this object is passed back to the object implementing the IpMultiPartyCallControlManager using the return parameter of message 3.

6:
This message retuns the call legs currently in the call.

7:
This message is used to associate a user interaction object with the calling party.

8:
The initial card service dialogue is invoked using this message..

9:
The result of the dialogue, which in this case is the ID and PIN code, is returned to its callback object using this message and eventually forwarded via another message (not shown) to the IpAppLogic.

10:
Assuming the correct ID and PIN are entered, the final dialogue is invoked.

11:
The result of the dialogue, which in this case is the destination address, is returned and eventually forwarded via another message (not shown) to the IpAppLogic.

12:
This message is used to forward the address of the callback object.

13:
The trigger for follow-on calls is set (on service code).

14:
A new AppCallLeg is created to receive callbacks for another leg. Alternatively, the already existing AppCallLeg object could be passed in the subsequent createCallLeg(). In that case the application has to use the sessionIDs of the legs to distinguish between callbacks destined for the A-leg and callbacks destined for the B-leg.

15:
This message is used to create a new call leg object. The object is created in the idle state and not yet routed in the network.

16:
The application requests to be notified when the leg is answered.

17:
The application routes the leg. As a result the network will try to reach the associated party.

18:
When the B-party answers the call, the application is notified.

19:
The event is forwarded to the application logic.

20:
Legs that are created and routed explicitly (i.e., not with routeReq on the call object) are by default in state detached. This means that the media is not connected to the other parties in the call. In order to allow inband communication between the new party and the other parties in the call the media have to be explicitly attached.

21:
At some time during the call the calling party enters '#5'. This causes this message to be sent to the object implementing the IpAppCallLeg interface, which forwards this event as a message (not shown) to the IpAppLogic.

22:
The event is forwarded to the application.

23:
This message releases the called party.

24:
Another user interaction dialogue is invoked.

25:
The result of the dialogue, which in this case is the new destination address is returned and eventually forwarded via another message (not shown) to the IpAppLogic.

26:
The call is then forward routed to the new destination party.

27:
This message passes the result of the call being answered to its callback object and is eventually forwarded via another message (not shown) to the IpAppLogic.

28:
When the A-party terminates the application is informed.

29:
The event is forwarded to the application logic.

30:
Since the release of the A-party will in this case terminate the entire call, the application is also notified with this message.

31:
The event is forwarded to the application logic.

32:
Since the user interaction object were not released at the moment that the call terminated, the application receives this message to indicate that the UI resources are released in the gateway and no further communication is possible.

33:
The event is forwarded to the application logic.

34:
The application deassigns the call object.

7.2 Class Diagrams

The multiparty call control service consists of two packages, one for the interfaces on the application side and one for interfaces on the service side.
The class diagrams in the following figures show the interfaces that make up the multi party call control application package and the multi party call control service package. This class diagram shows the interfaces of the multi-party call control application package and their relations to the interfaces of the multi-party call control service package.

[image: image20.wmf]IpAppMultiPartyCallControlManager

(from mpccs)

<<Interface>>

IpAppMultiPartyCall

(from mpccs)

<<Interface>>

IpAppCallControlManager

callAborted()

callEventNotify()

callNotificationInterrupted()

callNotificationContinued()

callOverloadEncountered()

callOverloadCeased()

(from gccs)

<<Interface>>

IpAppCall

routeRes()

routeErr()

getCallInfoRes()

getCallInfoErr()

superviseCallRes()

superviseCallErr()

callFaultDetected()

getMoreDialledDigitsRes()

getMoreDialledDigitsErr()

callEnded()

(from gccs)

<<Interface>>

IpMultiPartyCallControlManager

(from mpccs)

<<Interface>>

IpMultiPartyCall

getCallLegs()

createCallLeg()

(from mpccs)

<<Interface>>

IpCallLeg

route()

eventReportReq()

release()

getInfoReq()

getCall()

attachMedia()

detachMedia()

getLastRedirectedAddress()

(from mpccs)

<<Interface>>

1

0..n

<<uses>>

1

0..n

IpAppCallLeg

eventReportRes()

eventReportErr()

getInfoRes()

getInfoErr()

(from mpccs)

<<Interface>>

1

0..n

<<uses>>

1

0..n

<<uses>>

IpInterface

(from etsi)

<<Interface>>

Figure: Application Interfaces
This class diagram shows the interfaces of the multi-party call control service package.

[image: image21.wmf]IpMultiPartyCallControlManager

(from mpccs)

<<Interface>>

IpMultiPartyCall

getCallLegs()

createCallLeg()

(from mpccs)

<<Interface>>

1

0..n

IpCallLeg

route()

eventReportReq()

release()

getInfoReq()

getCall()

attachMedia()

detachMedia()

getLastRedirectedAddress()

(from mpccs)

<<Interface>>

1

0..n

IpCall

routeReq()

release()

deassignCall()

getCallInfoReq()

setCallChargePlan()

setAdviceOfCharge()

getMoreDialledDigitsReq()

superviseCallReq()

(from gccs)

<<Interface>>

IpCallControlManager

createCall()

enableCallNotification()

disableCallNotification()

setCallLoadControl()

changeCallNotification()

getCriteria()

(from gccs)

<<Interface>>

IpService

setCallback()

setCallbackWithSessionID()

(from etsi)

<<Interface>>

Figure: Service Interfaces

7.3 MultiParty Call Control Service Interface Classes

The Multi-party Call Control service enhances the functionality of the Generic Call Control Service with leg management. It also allows for multi-party calls to be established, i.e., up to a service specific number of legs can be connected simultaneously to the same call.
The Multi-party Call Control Service is represented by the IpMultiPartyCallControlManager, IpMultiPartyCall, IpCallLeg interfaces that interface to services provided by the network. Some methods are asynchronous, in that they do not lock a thread into waiting whilst a transaction performs. In this way, the client machine can handle many more calls, than one that uses synchronous message calls. To handle responses and reports, the developer must implement IpAppMultiPartyCallManager, IpAppMutliPartyCall and IpAppCallLeg to provide the callback mechanism.
	

	

	

7.3.1 Interface Class IpMultiPartyCallControlManager
Inherits from: IpCallControlManager
This interface is the 'service manager' interface for the Multi-party Call Control Service. The multi-party call control manager interface provides the management functions to the multi-party call control service. The application programmer can use this interface to provide overload control functionality, create call objects and to enable or disable call-related event notifications.
	<<Interface>>

IpMultiPartyCallControlManager

	

	

7.3.2 Interface Class IpAppMultiPartyCallControlManager
Inherits from: IpAppCallControlManager
The Multi-Party call control manager application interface provides the application call control management functions to the Multi-Party call control service.
	<<Interface>>

IpAppMultiPartyCallControlManager

	

	

7.3.3 Interface Class IpMultiPartyCall
Inherits from: IpCall
The Multi-Party Call provides the possibility to control the call routing, to request information from the call, control the charging of the call, to release the call and to supervise the call. It also gives the possibiltiy to manage call legs explicitly. Via the legs the application can also influence the media in multi-media calls. If an application uses the multi-party call control interface it may call the method routeReq several times without disconnecting already connected destination. Therefore, an application may implicitly create more then one passive (destination) call leg. However, there can only be at most one active (controlling) call leg at any time. In contrast to the conference service it is not possible to move legs to another call object.
	<<Interface>>

IpMultiPartyCall

	

	getCallLegs (callSessionID : in TpSessionID, callLegList : out TpCallLegIdentifierSetRef) : TpResult

createCallLeg (callSessionID : in TpSessionID, appCallLeg : in IpAppCallLegRef, targetAddress : in TpAddress, originatingAddress : in TpAddress, originalCalledAddress : in TpAddress, redirectingAddress : in TpAddress, appInfo : in TpCallAppInfoSet, callLeg : out TpCallLegIdentifierRef) : TpResult

Method

getCallLegs()

This method requests the identification of the call leg objects associated with the call object. Returns the legs in the order of creation.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.
callLegList : out TpCallLegIdentifierSetRef

Specifies the call legs associated with the call. The set contains both the sessionIDs and the interface references.
Raises

TpGeneralException,TpGCCSException
Method

createCallLeg()

This method requests the creation of a new call leg object The call leg will be associated with the call, but not attached. The call leg can be attached to the call (using attachMedia) when the call leg is in the connected state (i.e. it has been answered).

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.
appCallLeg : in IpAppCallLegRef

Specifies the application interface for callbacks from the call leg created.
targetAddress : in TpAddress

Specifies the destination party to which the call should be routed.
originatingAddress : in TpAddress

Specifies the address of the originating (calling) party.
originalCalledAddress : in TpAddress

Specifies the original address to which the call was initiated.
redirectingAddress : in TpAddress

Specifies the last address from which the call was redirected.
appInfo : in TpCallAppInfoSet

Specifies application-related information pertinent to the call leg (such as alerting method, tele-service type, service identities and interaction indicators).
callLeg : out TpCallLegIdentifierRef

Specifies the interface and sessionID of the call leg created.
Raises

TpGeneralException,TpGCCSException
7.3.4 Interface Class IpAppMultiPartyCall
Inherits from: IpAppCall
The Multi-Party call application interface is implemented by the client application developer and is used to handle call request responses and state reports.
	<<Interface>>

IpAppMultiPartyCall

	

	

7.3.5 Interface Class IpCallLeg
Inherits from: IpService
The call leg interface represents the logical call leg associating a call with an address. The call leg tracks its own states and allows charging summaries to be accessed. The leg represents the signalling relationship between the call and an address. An application that uses the IpCallLeg interface to set up connections has more control, e.g. by defining leg specific event request and can obtain call leg specific report and events.
	<<Interface>>

IpCallLeg

	

	route (callLegSessionID : in TpSessionID) : TpResult

eventReportReq (callLegSessionID : in TpSessionID, eventReportsRequested : in TpCallReportRequestSet) : TpResult

release (callLegSessionID : in TpSessionID, cause : in TpCallReleaseCause) : TpResult

getInfoReq (callLegSessionID : in TpSessionID, callLegInfoRequested : in TpCallLegInfoType) : TpResult

getCall (callLegSessionID : in TpSessionID, callReference : out TpCallIdentifierRef) : TpResult

attachMedia (callLegSessionID : in TpSessionID) : TpResult

detachMedia (callLegSessionID : in TpSessionID) : TpResult

getLastRedirectedAddress (callLegSessionID : in TpSessionID, redirectingAddress : out TpAddressRef) : TpResult

Method

route()

This is the leg equivalent to the method routeReq().

There can be multiple legs that are routed with this method. Each of these legs will become a passive leg.

 If the application developer does not want to deal with the redirectingAddress, originalDestinationAddress and originatingAddress than these parameter may be set to unavailable (by setting the plan to P_ADDRESS_PLAN_NOT_PRESENT) for convenience. In this case information provided when routing to the origination will be used if applicable. Otherwise network or gateway provided addresses will be used.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.
Raises

TpGeneralException,TpGCCSException
Method

eventReportReq()

This asynchronous method sets, clears or changes the criteria for the events that the call leg object will be set to observe.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.
eventReportsRequested : in TpCallReportRequestSet

Specifies the events that the call leg object will observe and report.
Raises

TpGeneralException,TpGCCSException
Method

release()

This method requests the release of the call leg. If successful, the associated address (party) will be released from the call, and the call leg deleted. Note that if the controlling leg is released, the entire call is released.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.
cause : in TpCallReleaseCause

Specifies the cause of the release.
Raises

TpGeneralException,TpGCCSException
Method

getInfoReq()

This asynchronous method requests information associated with the call leg to be provided at the appropriate time (for example, to calculate charging). Note: in the call leg information must be accessible before the objects of concern are deleted.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.
callLegInfoRequested : in TpCallLegInfoType

Specifies the call leg information that is requested.
Raises

TpGeneralException,TpGCCSException
Method

getCall()

This method requests the call associated with this call leg.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.
callReference : out TpCallIdentifierRef

Specifies the interface and sessionID of the call associated with this call leg.
Raises

TpGeneralException,TpGCCSException
Method

attachMedia()

This method requests that the call leg be attached to its call object. This will allow transmission on all associated bearer connections or media channels to and from other parties in the call. The call leg must be in the connected state for this method to complete successfully.

Parameters

callLegSessionID : in TpSessionID

Specifies the sessionID of the call leg to attach to the call.
Raises

TpGeneralException,TpGCCSException
Method

detachMedia()

This method will detach the call leg from its call, i.e., this will prevent transmission on any associated bearer connections or media channels to and from other parties in the call. The call leg must be in the connected state for this method to complete successfully.

Parameters

callLegSessionID : in TpSessionID

Specifies the sessionID of the call leg to detach from the call.
Raises

TpGeneralException,TpGCCSException
Method

getLastRedirectedAddress()

Queries the last address the leg has been redirected to.

Parameters

callLegSessionID : in TpSessionID

Specifies the call session ID of the call leg.
redirectingAddress : out TpAddressRef

Specifies the last address where the call leg was redirected to.
7.3.6 Interface Class IpAppCallLeg
Inherits from: IpInterface
The application call leg interface is implemented by the client application developer and is used to handle responses and errors associated with requests on the call leg in order to be able to receive leg specific information and events.
	<<Interface>>

IpAppCallLeg

	

	eventReportRes (callLegSessionID : in TpSessionID, eventReport : in TpCallReport) : TpResult

eventReportErr (callLegSessionID : in TpSessionID, errorIndication : in TpCallError) : TpResult

getInfoRes (callLegSessionID : in TpSessionID, callLegInfoReport : in TpCallLegInfoReport) : TpResult

getInfoErr (callLegSessionID : in TpSessionID, errorIndication : in TpCallError) : TpResult

Method

eventReportRes()

This asynchronous method reports that an event has occurred that was requested to be reported (for example, a mid-call event, the party has requested to disconnect, etc.).

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.
eventReport : in TpCallReport

Specifies the result of the request to route the call to the destination party. It also includes the mode that the call object is in, the call leg generating the report (if applicable) and other related information.
Raises

TpGeneralException,TpGCCSException
Method

eventReportErr()

This asynchronous method indicates that the request to manage call leg reports was unsuccessful, and the reason (for example, the parameters were incorrect, the request was refused, etc.).

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.
errorIndication : in TpCallError

Specifies the error which led to the original request failing.
Raises

TpGeneralException,TpGCCSException
Method

getInfoRes()

This asynchronous method reports all the necessary information requested by the application, for example to calculate charging.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.
callLegInfoReport : in TpCallLegInfoReport

Specifies the call leg information requested.
Raises

TpGeneralException,TpGCCSException
Method

getInfoErr()

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.
errorIndication : in TpCallError

Specifies the error which led to the original request failing.
Raises

TpGeneralException,TpGCCSException
	

	

	

	

	

	

7.4 MultiParty Call Control Service State Transition Diagrams

7.4.1 State Transition Diagrams for IpMultiPartyCall

The state transition diagram shows the application view on the MultiParty Call object. The diagram is an extension to the state diagram of the Call object in the sense that more than 2 parties are allowed to participate in a call.

[image: image22.wmf]Active

2 .. n Parties in Call

1 Party in

Call

Routing to

Destination(s)

routeReq[number active + requested parties < max allowed number

parties in call] / increase number of active + requested parties

Network

Released

setCallChargePlan

superviseCallReq

getCallInfoReq

setAdviceOfCharge

No Parties

Application

Released

Finished

release

deassignCall

setCallChargePlan

superviseCallReq

getCallInfoReq

setAdviceOfCharge

2 .. n Parties in Call

1 Party in

Call

Routing to

Destination(s)

"disconnect from call party"

[monitor mode = interrupt && 2 parties in call]

In states:

- No Parties,

- Finished

a timer mechanism should prevent that

the object keeps occupying resources. In

case the timer expires, the object should

be destroyed and callFaultDetected

should be reported to the application.

All States

getCallLegs

"answer from called party"

"requests failed"[no more outstanding

routeReq operations] ^routeErr

"routing unsuccessfull[not more

outstanding routeReq operations]

^routeRes

"answer from called party"

"party released"["release does not terminate call"]

release

routeReq

deassign

getMoreDialledDigits[no outstanding routeReqs]

IpMultiPartyCallControlManager.createCall

IpAppMultiPartyCallControlManager.callEventNotify

IpAppMultiPartyCallControlManager.callEventNotify(answer

from called party)

"call ends : calling party abandoned" ^callEnded

release

deassignCall

"routing aborted or invalid address" / decrease number of requested + active parties ^routeErr

"network event received that was monitored" ^routeRes

"connection to called party unsuccessful" / decrease number of requested + active parties ^routeRes

"disconnect from called party" ^routeRes, getCallInfoRes(intermediate report)

"call supervision event" ^superviseCallRes

"call ends: calling party disconnects" ^callEnded

"call ends : called party disconnects"[1 or 2 parties in call AND monitor for this event] ^callEnded, routeRes(party disconnect)

"call ends : called party disconnects"[1 or 2 parties in call AND no monitor for this event] ^callEnded

"fault detected"[fault cannot be communicated with network event] ^callFaultDetected

"requested information ready" ^getCallInfoRes,

superviseCallRes

deassignCall

[no reports requested with getCallInfoReq AND

superviseCallReq]

release

"fault in information retrieval" ^callFaultDetected

"requested information ready" ^getCallInfoRes, superviseCallRes

[no reports requested with getCallInfoReq AND superviseCallReq]

"fault in information retrieval" ^callFaultDetected

Figure : Application view on the MultiParty Call object

7.4.1.1 Active State

In this state a call between two parties is being setup or present. Refer to the substates for more details.
The application can request the gateway for a certain type of charging of the call by calling setCallChargePlan(). The application can request for charging related information by calling getCallInfoReq(). Furthermore the application can request supervision of the call by calling superviseCallReq(). It is also allowed to send Advice of Charge information by calling setAdviceOfCharge().
7.4.1.2 Network Released State

In this state the call has ended and the Gateway collects the possible call information requested with getCallInfoReq() and / or superviseCallReq(). In case the application has not requested additional call related information a transition to the Idle state is made immediately.
7.4.1.3 No Parties State

In this state the Call object has been created. The application can request the gateway for a certain type of charging of the call by calling setCallChargePlan(). The application can request for charging related information by calling getCallInfoReq(). Furthermore the application can request supervision of the call by calling superviseCallReq().
7.4.1.4 Application Released State

In this state the application has requested to release the Call object and the Gateway collects the possilbe call information requested with getCallInfoReq() and / or superviseCallReq(). In case the application has not requested additional call related information the Call object is destroyed immediately.
7.4.1.5 Finished State

In this state the call has ended and no call related information is to be send to the application. The application can only release the call object. Calling the deassignCall() operation has the same effect. Note that the application has to release the object itself as good OO practice requires that when an object was created on behalf of a certain entity, this entity is also responsible for destroying it when the object is no longer needed.
7.4.1.6 2 .. n Parties in Call State

In this state a successful connection between at least two parties is established.
In this state user interaction is possible, depending on the underlying network.
7.4.1.7 1 Party in Call State

In this state there is one party in the call.
In case the call originated from the network the application can now request for more digits in case the address is not yet complete or the application can request for a connection to a called party be established by calling the operation routeReq().
In case the called party was reached by issueing a routing request, the application can request a connection to an additional party by calling the operation routeReq() again.
Otherwise, it depends on the actual number of invoked (and still outstanding or successful) routing requests whether the application can still call the routeReq() operation in order to setup a connection to a called party. Also in this case the called party can disconnect before another party is reached. In this case depending on the actual configuration, the call is ended or a transition is made back to the Routing to Destinations substate.
In case there are no outstanding routing request and the application releases the leg corresponding to the 1 party in call state, a transition is made to the Application Released state.
In this state user interaction is possible.
7.4.1.8 Routing to Destination(s) State

In this state there is at least one outstanding routeReq.

7.4.2 State Transition Diagrams for IpCallLeg

[image: image23.wmf]Idle

Routing

Progress

Alerting

Redirected

Connected

Attached

Detached

Failed or

Disconnected

All States

Attached

Detached

EventReportReq

getInfoReq

"call progress event"

^EventReportRes

"answer"

^EventReportRes

"midcall event" ^EventReportRes

"invalid address"

[when routed with routeReq]

^EventReportErr

"disconnect" ^EventReportRes

"routing failed, refused busy or

no answer" ^EventReportRes

"last report"

"call object is destructed"

release

getCall

detachMedia

attachMedia

[when routed with routeReq]

[when routed with route()]

Incoming

"answer from other party"

Progress

Alerting

Redirected

route

only send result

when monitor for

this event was

requested

getLastRedirectedAddress

eventReportReq

getInfoReq

IpMultiPartyCall.routeReq

IpMultiPartyCall.createCallLeg

"incoming call event" ^IpAppMultiPartyCallControlManager.callEventNotify

Figure : Application view on the CallLeg object

7.4.2.1 Idle State

In this state a new CallLeg object has been created and the application has not yet issued a routing request.
7.4.2.2 Routing State

In this state a connection to the call party is being established.
7.4.2.3 Connected State

In this state a connection to the call party is established.
In case the request for the connection was made by either routeReq() on the Call object, the call party is also attached to the Call.
In case the request was made by route() the call party still needs to be attached to the Call.
7.4.2.4 Failed or Disconnected State

In this state no connection to the call party could be established or the call party has disconnected.
The reason that no connection could be established can be that an invalid address was specified, the network aborted routing or the call party was busy.
7.4.2.5 Incoming State

This state is only valid for an incoming Call Leg in case and there is no call established to another party.
7.4.2.6 Progress State

In this sub-state the network has indicated there is progress in routing the CallLeg.
7.4.2.7 Alerting State

In this sub-state the network has indicated there the terminal of the party is alerting.
7.4.2.8 Redirected State

In this sub-state the network has indicated the call party has redirected calls to another address.
7.4.2.9 Attached State

In this sub-state the media of the Call Leg object is attached to a Call object.
7.4.2.10 Detached State

In this sub-state the media of the Call Leg object is not attached to a Call object.
7.4.2.11 Refused Busy State

7.4.2.12 Not Answered State

7.4.2.13 Routing Failed State

7.4.2.14 Disconnected State

7.4.2.15 Offhook State

7.4.2.16 Address Collected State

7.4.2.17 Address Analysed State

7.4.2.18 Party Busy State

7.4.2.19 Party Unreachable State

7.4.2.20 No Answer from Party State

7.4.2.21 Routing to Party Failed State

7.4.2.22 Party Answered State

7.5 Multi-Party Call Control Data Definitions

This document provides the generic call control data definitions necessary to support the API specification.

This document is written using Hypertext link, to aid navigation through the data structures. Underlined text represents Hypertext links.

The general format of a data definition specification is described below.

· Data Type

This shows the name of the data type.

· Description

This describes the data type.

· Tabular Specification

This specifies the data types and values of the data type.

· Example

If relevant, an example is shown to illustrate the data type.

7.5.1 Event Notification Data Definitions

No specific event notification data defined.

7.5.2 Multi-Party Call Control Data Definitions
IpCallLeg

Defines the address of an IpCallLeg Interface.

IpCallLegRef

Defines a Reference to type IpCallLeg.

IpCallLegRefRef

Defines a Reference to type IpCallLegRef.

IpAppCallLeg

Defines the address of an IpAppCallLeg Interface.

IpAppCallLegRef

Defines a Reference to type IpAppCallLeg.

TpCallLegIdentifierSet

Defines a Numbered Set of Data Elements of TpCallLegIdentifier.
TpCallLegIdentifierSetRef

Defines a Reference to type TpCallLegIdentifierSet.

TpCallLegIdentifierRef

Defines a Reference to type TpCallLegIdentifier.

TpCallLegIdentifier

Defines the Sequence of Data Elements that unambiguously specify the Call Leg object

	Sequence Element Name
	Sequence Element Type
	Sequence Element Description

	CallLegReference
	IpCallLegRef
	This element specifies the interface reference for the callLeg object.

	CallLegSessionID
	TpSessionID
	This element specifies the callLeg session ID.

TpCallLegInfoReport

Defines the Sequence of Data Elements that specify the call leg information requested.

	Sequence Element Name
	Sequence Element Type
	description

	CallLegInfoType
	TpCallLegInfoType
	The type of the call leg.

	CallLegStartTime
	TpDateAndTime
	The time and date when the call leg was started (i.e., the leg was routed).

	CallLegConnectedToResourceTime
	TpDateAndTime
	The date and time when the call leg was connected to the resource. If no resource was connected the time is set to an empty string.

Either this element is valid or the CallConnectedToAddressTime is valid, depending on whether the report is sent as a result of user interaction.

	CallLegConnectedToAddressTime
	TpDateAndTime
	The date and time when the call leg was connected to the destination (i.e., when the destination answered the call). If the destination did not answer, the time is set to an empty string.

Either this element is valid or the CallConnectedToResourceTime is valid, depending on whether the report is sent as a result of user interaction.

	CallLegEndTime
	TpDateAndTime
	The date and time when the call leg was released.

	ConnectedAddress
	TpAddress
	The address of the party associated with the leg. If during the call the connected address was received from the party then this is returned, otherwise the destination address (for legs connected to a destination) or the originating address (for legs connected to the origination) is returned.

	CallLegReleaseCause
	TpCallReleaseCause
	The cause of the termination. May be present with P_CALL_LEG_INFO_RELEASE_CAUSE was specified.

	CallAppInfo
	TpCallAppInfoSet
	Additional information for the leg. May be present with P_CALL_LEG_INFO_APPINFO was specified.

TpCallLegInfoType

Defines the type of call leg information requested and reported. The values may be combined by a logical 'OR' function.

	Name
	Value
	Description

	P_CALL_LEG_INFO_UNDEFINED
	00h
	Undefined

	P_CALL_LEG_INFO_TIMES
	01h
	Relevant call times

	P_CALL_LEG_INFO_RELEASE_CAUSE
	02h
	Call leg release cause

	P_CALL_LEG_INFO_ADDRESS
	04h
	Call leg connected address

	P_CALL_LEG_INFO_APPINFO
	08h
	Call leg application related information

8 MultiMedia Call Control Service

8.1 Sequence Diagrams

8.1.1 Barring for media combined with call routing, alternative 1

This sequence illustrates how one application can influence both the call routing and the media establishment of one call.

In this sequence there is one application handling both the media barring and the routing of the call.

[image: image24.wmf] : (Logical

View::IpApp...

 :

IpAppMultiMediaCallControlManager

 :

IpMultiMediaCallControlManager

 :

IpMultiMediaCall

 :

IpMultiMediaCallLeg

 :

IpAppMultiMediaCallLeg

1: new()

2: enableCallNotification()

3: callEventNotify()

4: "forward event"

10: routeReq ()

6: mediaChannelMonitorReq()

9: mediaChannelAllow()

7: mediaChannelMonitorRes ()

5: new()

8: "forward event"

11: mediaChannelMonitorRes ()

12: "forward event"

13: mediaChannelAllow()

1:
The application creates a AppMultiMediaCallControlManager interface in order to handle callback methods.

2:
The application expresses interest in all calls from subscriber A. Since enableCallNotification is used and not enableMediaNotification all calls are reported regardless of the media used.

3:
A makes a call with the H.323 faststart indicating video. The application is notified.

4:
The event is forwarded to the application.

5:
The application creates a new AppMultiMediaCallLeg interface to receive callbacks.

6:
The application sets a monitor on video media channel open for the controlling leg.

7:
Since video was included in the faststart, the media channels monitored will be returned in the monitor result.

8:
The event is forwarded to the application.

9:
The application denies the video channel, i.e., it is not included in the allowed channels. This corresponds to removing the channel from the setup.

10:
The application requests to reroute the call to a different destination (or the same one...)

There is a timing issue here: The outgoing setup should be delayed until both the mediaChannelAllow and the routeReq are received.

11:
Later in the call the A party tries to open a lower bandwidth video channel. This is again reported with MediaChannelMonitorRes.

12:
The event is forwarded.

13:
This time the application allows the setup of the channel by including the channel in the allowed list.

8.1.2 Barring for media combined with call routing, alternative 2

This sequence illustrates how one application can influence both the call routing and the media establishment of one call.

Media establishment and call establishment are regarded separately by the application.

From the gateway point of view it can actually be regarded as two separately triggered applications, one for media control and one for routing. This is also the way that it is shown here, for clarity.

However, an implementation of the application could combine the media logic and call logic in one object.

[image: image25.wmf]callLogic :

(Logical View:...

callAppLogic :

IpAppMultiMediaCallControlManager

 :

IpMultiMediaCallControlManager

 :

IpMultiMediaCall

 :

IpMultiMediaCallLeg

 :

IpAppMultiMediaCallLeg

mediaAppLogic :

IpAppMultiMediaCallControlManager

mediaLogic :

(Logical View::...

1: new()

2: enableCallNotification()

5: callEventNotify()

6: "forward event"

10: routeReq ()

15: deassignCall()

7: new()

13: routeRes()

14: "forward event"

8: mediaChannelEventNotify()

16: mediaChannelEventNotify()

3: new()

4: enableMediaChannelNotification()

9: "forward event"

11: mediaChannelAllow()

12: deassignCall()

17: "forward event"

18: mediaChannelAllow()

19: deassignCall()

1:
The application creates a new AppMultiMediaCallControlManager interface.

2:
The application expresses interest in all calls from subscriber A for rerouting purposes.

3:
The application creates a new AppMultiMediaCallControlManager interface. This is is to be used for the media control only.

4:
Separately the application expresses interest is some media channels for calls from and to A. The request indicates interrupt mode.

5:
Subscriber A makes a call with the H.323 faststart indicating video. Since the media establishment is combined with the setup in the case of faststart, both applications are triggered (not necessarily in the order shown).

Here the call application is notified about the call setup.

6:
The event is forwarded to the call control application.

7:
The call control application creates a new AppMultiMediaCall interface.

8:
The media application is notified about the call setup. All media channels from the setup will be indicated.

9:
The event is forwarded to the media application.

10:
The call application decides to reroute the call to another address. Included in the request are monitors on answer and call end.

However, since the media was also triggered in mode interrupt the call will not proceed until the media channels are confirmed or rejected.

11:
The application allows the audio channel, but refuses the high bandwidth video, by excluding it from the allowed list. Since both call processing and media handling is now acknowledged, the call routing can continue (with a changed faststart parameter reflecting the manipulated media).

12:
The Media application is no longer interested in the call.

13:
When the B subscriber answers the call application is notified.

14:
The event is forwarded to the call application.

15:
The call application is no longer interested in the call.

16:
When later in the call A tries to establish a lower bandwidth video channel the media application is triggered.

17:
The triggering is forwarded to the media application.

18:
The application now allows the establishment of the channel by including the channel in the mediaChannelAllow list.

19:
The media application is no longer interested in the call.

8.1.3 Barring for media, simple

This sequence illustrates how an application can block the establishment of video channels for a certain user.

[image: image26.wmf] : (Logical

View::IpApp...

 :

IpAppMultiMediaCallControlManager

 :

IpMultiMediaCallControlMan...

 :

IpMultiMediaCall

 :

IpMultiMediaCallLeg

1: new()

2: enableMediaChannelNotification()

3: mediaChannelEventNotify()

4: "forward event"

6: deassignCall()

5: mediaChannelAllow()

1:
The application starts a new AppMultiMedialCallControlManager interface for reception of callbacks.

2:
The application expresses interest in all calls from or to subscriber A that use video. The just created App interface is given as the callback interface.

3:
Subscriber A makes a call with the H.323 faststart indicating video.

4:
The message is forwarded to the application.

5:
The application indicates that the setup of the channel is not allowed by not including the channel in the allowed list. This has the effect of supressing the video capabilities in the setup.

6:
The application is no longer interested in the call.

New attempts to open video channels will again be indicated with an enableMediaNotification.

8.1.4 Call Volume charging supervision

This sequence illustrates how an application may supervise a call based on the number of bytes that are exchanged.

[image: image27.wmf] :

IpMultiMediaCallControlManager

 :

IpAppMultiMediaCall

 : (Logical

View::IpAppL...

 :

IpMultiMediaCall

 : IpUICall

IpUIManager :

IpUIManager

 :

IpAppMultiMediaCallContr...

 : IpAppUICall

4: createCall()

3: new()

5: routeReq()

8: routeReq ()

9: routeRes()

10: "forward event"

6: routeRes()

7: "forward event"

12: superviseVolumeRes()

13: "forward event"

15: sendInfoAndCollectReq()

16: sendInfoAndCollectRes()

17: "forward event"

19: superviseVolumeReq()

20: release ()

11: superviseVolumeReq()

18: release()

14: createUICall()

1: new()

2: setCallback()

1:
The application creates a new interface to receive callbacks on the call control manager.

2:
The created interface is set as the callback interface for the call control manager.

3:
The application creates a new interface to receive callback on the call.

4:
The application requests the creation of a call.

5:
The application initiates the call by routing to the origination. This will implicitly create a call leg. The application requests a notification when the party answers.

6:
When the A party answers the application is notified.

7:
The message is forwarded to the logic.

8:
The application also routes the call to the destination. This implicitly creates a call leg. The application requests to be notified on answer of the B-party.

9:
When the B-party answers the application is notified.

10:
The message is forwarded to the logic.

11:
The application requests to supervise the call. In the request the application specifies a limit on the amount of bytes that may be transferred. The application specifies that if the limit is reached the application should be notified.

12:
When the limit is reached a notification is send to the application.

13:
The message is forwarded to the logic.

14:

15:
The application plays an announcement to the user, asking whether the user wants to end the call or continue the call.

16:
When the user answers whether the call should continue.

17:
The message is forwarded to the logic.

18:
The UIcall is released, since no further announcements are needed.

19:
In case the user answers that the call should continue, the supervision is reset with a new maximum number of allowed bytes. (note this might have charging consequences, not shown)

20:
If the user answered that the call should not continue, the call is released.

8.2 Class Diagrams

[image: image28.wmf]IpAppMultiMediaCall

superviseVolumeRes()

superviseVolumeErr()

(from mmccs)

<<Interface>>

IpAppMultiMediaCallControlManager

mediaChannelEventNotify()

(from mmccs)

<<Interface>>

IpAppMultiMediaCallLeg

mediaChannelMonitorRes()

(from mmccs)

<<Interface>>

IpAppCallLeg

eventReportRes()

eventReportErr()

getInfoRes()

getInfoErr()

(from mpccs)

<<Interface>>

IpAppMultiPartyCall

(from mpccs)

<<Interface>>

IpAppMultiPartyCallControlManager

(from mpccs)

<<Interface>>

1

0..n

1

0..n

IpMultiMediaCallLeg

mediaChannelAllow()

mediaChannelMonitorReq()

getMediaChannels()

(from mmccs)

<<Interface>>

<<uses>>

IpMultiMediaCall

superviseVolumeReq()

(from mmccs)

<<Interface>>

1

0..n

IpMultiMediaCallControlManager

enableMediaChannelNotification()

disableMediaChannelNotification()

(from mmccs)

<<Interface>>

1

0..n

<<uses>>

<<uses>>

Figure: Application Interfaces
[image: image29.wmf]IpMultiMediaCallControlManager

enableMediaChannelNotification()

disableMediaChannelNotification()

(from mmccs)

<<Interface>>

IpMultiMediaCall

superviseVolumeReq()

(from mmccs)

<<Interface>>

IpMultiMediaCallLeg

mediaChannelAllow()

mediaChannelMonitorReq()

getMediaChannels()

(from mmccs)

<<Interface>>

IpMultiMediaChannel

close()

(from mmccs)

<<Interface>>

IpCallLeg

route()

eventReportReq()

release()

getInfoReq()

getCall()

attachMedia()

detachMedia()

getLastRedirectedAddress()

(from mpccs)

<<Interface>>

IpMultiPartyCall

getCallLegs()

createCallLeg()

(from mpccs)

<<Interface>>

IpMultiPartyCallControlManager

(from mpccs)

<<Interface>>

1

0..n

1

0..n

1

0..n

Figure: Service Interfaces

8.3 MultiMedia Call Control Service Interface Classes

The MultiMedia Call Control service enhances the functionality of the MultiParty Call Control Service with multi-media capabilities.
The MultiMedia Call Control Service is represented by the IpMultiMediaCallControlManager, IpMultiMediaCall, IpMultiMediaCallLeg and IpMMchannel interfaces that interface to services provided by the network. Some methods are asynchronous, in that they do not lock a thread into waiting whilst a transaction performs. In this way, the client machine can handle many more calls, than one that uses synchronous message calls. To handle responses and reports, the developer must implement IpAppMultiMediaCallManager, IpAppMutliMediaCall and IpAppMultiMediaCallLeg to provide the callback mechanism.
To handle the multi-media aspects of a call the concept of media channel is introduced. A media channel is a unidirectional media stream that is associated with a call leg. These channels are usually negotiated between the terminals in the call. The multi-party Call Service gives the application control over the media-channels associated with the legs in a multi-media call in the following way:
· the application can be triggered on the establishment of a media channel that meets the application defined characteristics.
· the application can monitor on the establishment or release of media channels of an ongoing call.
· the application can allow or deny the establishment of media channels (provided the channel establishment was monitored/notified in interrupt mode).
· the application can explicitly close already established media channels.
· the application can request the media channels associated with a specific leg.
	

	

	

8.3.1 Interface Class IpMultiMediaCallControlManager
Inherits from: IpMultiPartyCallControlManager
The Multi Media Call Control Manager is the factory interface for creating multimedia calls. It also allows eventNotifications on the mediaChannel events.
	<<Interface>>

IpMultiMediaCallControlManager

	

	enableMediaChannelNotification (appInterface : in IpAppMultiMediaCallControlManagerRef, callEventCriteria : in TpCallEventCriteria, monitorMode : in TpCallMonitorMode, channelEventCriteria : in TpChannelRequestSet, assignmentID : out TpAssignmentIDRef) : TpResult

disableMediaChannelNotification (assignmentID : in TpAssignmentID) : TpResult

Method

enableMediaChannelNotification()

This method is used to enable media channel notifications so that events can be sent to the application.

This applies both to callsetup media (e.g., SIP initial INVITE or H.323 with faststart) and for media setup during the call.

Parameters

appInterface : in IpAppMultiMediaCallControlManagerRef

Specifies a reference to the application interface, which is used for callbacks.
callEventCriteria : in TpCallEventCriteria

Specifies the call event criteria used by the application to define the call event required. This is the call portion of the criteria. Only events that meet both the call- and the channelEventCriteria are reported.
monitorMode : in TpCallMonitorMode

Specifies the monitor mode. If in interrupt mode the application has to specify which channels are allowed by calling mediaChannelAllow on the callLeg.
channelEventCriteria : in TpChannelRequestSet

Specifies the event specific criteria used by the application to define the event required. This is the media portion of the criteria. Only events that meet both the call- and the channelEventCriteria are reported
assignmentID : out TpAssignmentIDRef

Specifies the ID assigned by the Multi-Party call control manager interface for this newly-enabled event notification. This can be used to correlate the received callbacks with the enable Notification request.
Raises

TpGeneralException,TpGCCSException
Method

disableMediaChannelNotification()

This method is used by the application to disable Multi Media Channel notifications

Parameters

assignmentID : in TpAssignmentID

Specifies the assignment ID given by the Multi Media call control manager interface when the previous enable..Notification was called. If the assignment ID does not correspond to one of the valid assignment IDs, the framework will return the error code P_INVALID_ASSIGNMENTID.
Raises

TpGeneralException,TpGCCSException
8.3.2 Interface Class IpAppMultiMediaCallControlManager
Inherits from: IpAppMultiPartyCallControlManager
The Multi Media call control manager application interface provides the application call control management functions to the multi media call control service.
	<<Interface>>

IpAppMultiMediaCallControlManager

	

	mediaChannelEventNotify (callReference : in TpMultiMediaCallIdentifier, callLeg : in TpMultiMediaCallLegIdentifier, channels : in TpChannelSet, type : in TpChannelEventType, assignmentID : in TpAssignmentID, appInterface : out IpAppMultiMediaCallRefRef) : TpResult

Method

mediaChannelEventNotify()

This method is used to inform the application about the establishment of media channels.

If the corresponding monitor was in interrupt mode, then the application has to allow or deny the channels using mediaChannelAllow.

Parameters

callReference : in TpMultiMediaCallIdentifier

Specifies the call interface on which the media channels were closed or requested to be opened. It also gives the corresponding sessionID.
callLeg : in TpMultiMediaCallLegIdentifier

Specifies the callLeg (interface and sessionID) for which the media channels were opened or closed.
channels : in TpChannelSet

Specifies all the media channels that are opened. Note that this can be more channels then requested in the enableMediaNotify, e.g., when faststart is used in H.323.
type : in TpChannelEventType

Refers to the type of event on the media channel, i.e., open or close.
assignmentID : in TpAssignmentID

Specifies the assignment id which was returned by the enableNotification() method. The application can use assignment id to associate events with event specific criteria and to act accordingly.
appInterface : out IpAppMultiMediaCallRefRef

Specifies a reference to the application interface which implements the callback interface for the new call.
Raises

TpGeneralException,TpGCCSException
8.3.3 Interface Class IpMultiMediaCall
Inherits from: IpMultiPartyCall
	<<Interface>>

IpMultiMediaCall

	

	superviseVolumeReq (callSessionID : in TpSessionID, volume : in TpCallSuperviseVolume, treatment : in TpCallSuperviseTreatment) : TpResult

Method

superviseVolumeReq()

The application calls this method to supervise a call. The application can set a granted data volume this call.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.
volume : in TpCallSuperviseVolume

Specifies the granted time in milliseconds for the connection.
treatment : in TpCallSuperviseTreatment

Specifies how the network should react after the granted volume expired.
Raises

TpGCCSException,TpGeneralException
8.3.4 Interface Class IpAppMultiMediaCall
Inherits from: IpAppMultiPartyCall
The application multi-media call interface contains the callbacks that will be used from the multi-media call interface for asynchronous results to requests performed by the application. The application should implement this interface.
	<<Interface>>

IpAppMultiMediaCall

	

	superviseVolumeRes (callSessionID : in TpSessionID, report : in TpCallSuperviseReport, usedVolume : in TpCallSuperviseVolume) : TpResult

superviseVolumeErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : TpResult

Method

superviseVolumeRes()

This asynchronous method reports a call supervision event to the application when it has indicated it's interest in these kind of events.

It is also called when the connection is terminated before the supervision event occurs. Furthermore, this method is invoked as a response to the request also when a tariff switch happens in the network during an active call.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call
report : in TpCallSuperviseReport

Specifies the situation which triggered the sending of the call supervision response.
usedVolume : in TpCallSuperviseVolume

Specifies the used time for the call supervision (in milliseconds).
Raises

TpGCCSException,TpGeneralException
Method

superviseVolumeErr()

This asynchronous method reports a call supervision error to the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.
errorIndication : in TpCallError

Specifies the error which led to the original request failing.
Raises

TpGCCSException,TpGeneralException
8.3.5 Interface Class IpMultiMediaCallLeg
Inherits from: IpCallLeg
The Multi-Media call leg represents the signalling relationship between the call and an address. Associcated with the signalling relationship there can be multiple media channels. Media channels can be started and stopped by the terminals themselves. The application can monitor on these changes and influence them.
	<<Interface>>

IpMultiMediaCallLeg

	

	mediaChannelAllow (callLegSessionID : in TpSessionID, channelList : in TpSessionIDSet) : TpResult

mediaChannelMonitorReq (callLegSessionID : in TpSessionID, channelEventCriteria : in TpChannelRequestSet, monitorMode : in TpCallMonitorMode) : TpResult

getMediaChannels (callLegSessionID : in TpSessionID, channels : out TpChannelSetRef) : TpResult

Method

mediaChannelAllow()

This method can be used to allow setup of a media channel that was reported by a mediaChannelMonitor.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.
channelList : in TpSessionIDSet

Refers to the channels (sessionIDs) as received in the mediaChannelMonitorRes() or in the mediaChannelEventNotify() that is allowed to be opened.
Raises

TpGeneralException,TpGCCSException
Method

mediaChannelMonitorReq()

With this method the application can set monitors on the opening and closing of media channels. The monitors can either be general or restricted to certain types of codecs.

Monitoring on open can be done in either interrupt of notify mode. In the first case the application has to allow or deny the establishment of the channel with mediaChannelAllow.

Monitoring on close is only allowed in notify mode.

Parameters

callLegSessionID : in TpSessionID

Specifies the session ID of the call leg.
channelEventCriteria : in TpChannelRequestSet

Specifies the event specific criteria used by the application to define the event required.
monitorMode : in TpCallMonitorMode

Specifies the monitor mode in which to monitor. This can be in interrupt or in notify mode. If in interrupt mode the application has to respond with mediaChannelAllow().
Raises

TpGeneralException,TpGCCSException
Method

getMediaChannels()

This method is used to return all currently open media channels for the leg,

Parameters

callLegSessionID : in TpSessionID

This method is used to return all currently open media channels for the leg,
channels : out TpChannelSetRef

Specifies all the media channels that are open.
Raises

TpGeneralException,TpGCCSException
8.3.6 Interface Class IpAppMultiMediaCallLeg
Inherits from: IpAppCallLeg
The application multi-media call leg interface contains the callbacks that will be called from the multi-media call leg for asynchronous results to requests performed by the application. The application should implement this interface.
	<<Interface>>

IpAppMultiMediaCallLeg

	

	mediaChannelMonitorRes (callLegSessionID : in TpSessionID, channels : in TpChannelSet, type : in TpChannelEventType) : TpResult

Method

mediaChannelMonitorRes()

This method is used to inform the application about the media channels that are being opened or closed.

If the corresponding request was done in interrupt mode, the application has to allow or deny the channels using mediaChannelAllow().

Parameters

callLegSessionID : in TpSessionID

Specifies the session ID of the call leg for which the media channels are opened or closed.
channels : in TpChannelSet

Specifies all the media channels that are opened. Note that this can be more channels than requested in the enableMediaNotify, e.g., when faststart is used in H.323.
type : in TpChannelEventType

Refers to the type of event on the media channel, i.e., open or close.
Raises

TpGeneralException,TpGCCSException
8.3.7 Interface Class IpMultiMediaChannel
Inherits from: The Multi Media Channel Interface represents a unidirectional data stream associated with a call leg. Currently, the only available method is to close the channel.
	<<Interface>>

IpMultiMediaChannel

	

	close (channelSessionID : in TpSessionID) : TpResult

Method

close()

This method can be used to close the multi-media channel.

Parameters

channelSessionID : in TpSessionID

Specifies the sessionID for the channel.
Raises

TpGeneralException,TpGCCSException
	

	

	

	

	

	

8.4 MultiMedia Call Control Service State Transition Diagrams

There are no State Transition Diagrams for the MultiMedia Call Control Service package

8.5 Multi-Media Call Control Data Definitions

This Section provides the Multi-Media call control data definitions necessary to support the API specification.

This document is written using Hypertext link, to aid navigation through the data structures. Underlined text represents Hypertext links.

The general format of a data definition specification is described below.

· Data Type

This shows the name of the data type.

· Description

This describes the data type.

· Tabular Specification

This specifies the data types and values of the data type.

· Example

If relevant, an example is shown to illustrate the data type.

8.5.1 Event Notification Data Definitions

TpChannelRequestSet

Defines a Numbered Set of Data Elements of TpChannelRequest
TpChannelRequest

Defines the Sequence of Data Elements that specify the type of channel.

	Sequence Element Name
	Sequence Element Type

	Direction
	TpChannelDirection

	DataTypeRequest
	TpChannelDataTypeRequest

TpChannelDirection

Defines the direction in which the channel is opened (as seen from the leg).

	Name
	Value
	Description

	P_INCOMING
	0
	Incoming to the leg (stream will be received)

	P_OUTGOING
	1
	Outgoing for the leg (stream will be sent)

TpMediaType

Defines the media type of a media stream. The values may be combined by a logical 'OR' function.

	Name
	Value
	Description

	P_AUDIO
	1
	Audio stream

	P_VIDEO
	2
	Video stream

	P_DATA
	4
	Data stream (e.g., T120)

TpChannelDataTypeRequest

Defines the Tagged Choice of Data Elements that specify the media type and associated codecs that are of interest.

	
	Tag Element Type
	

	
	TpMediaType
	

	Tag Element Value
	Choice Element Type
	Choice Element Name

	P_AUDIO
	TpAudioCapabilitiesType
	Audio

	P_VIDEO
	TpVideoCapabilitiesType
	Video

	P_DATA
	TpDataCapabilities
	Data

TpAudioCapabilitiesType

Defines the audio codec. The requested capabilities can be indicated by adding the values together (i.e., a logical OR function).E.g., 28 indicates interest in all G.722 codes (4+8+16).

	Name
	Value
	Description

	P_G711_64K
	1
	g.711 on 64k, both alaw and ulaw

	P_G711_56K
	2
	g.711 on 56k, both alaw and ulaw

	P_G722_64K
	4
	

	P_G722_56K
	8
	

	P_G722_48K
	16
	

	P_G7231
	32
	

	P_G728
	64
	

	P_G729
	128
	

	P_G729_ANNEX_A
	256
	

	P_IS1172
	512
	

	P_IS1318
	1024
	

	P_G729_ANNEXB
	2048
	

	P_G729_ANNEX_A_AND_B
	4096
	

	P_G7231_ANNEX_C
	8192
	

	P_GSM_FULLRATE
	16384
	

	P_GSM_HALFRATE
	32768
	

	P_GSM_ENHANCED
	65536
	

	
	
	

TpVideoCapabilitiesType

Defines the video codec. The requested capabilities can be indicated by adding the values together (i.e., a logical OR function). E.g., 3 indicates both H.261 and H.262 codecs.

	Name
	Value
	Description

	P_H261
	1
	

	P_H262
	2
	

	P_H263
	4
	

	P_IS11172
	8
	

TpDataCapabilities

A TpInt32 defining the minimum maxBitRate in bit/s. I.e., all data channels whose maxBitRate exceeds this number are reported.

TpChannelEventType

Defines the action performed on the channel.

	Name
	Value
	Description

	P_CHANNEL_OPEN
	0
	The channel is opened

	P_CHANNEL_CLOSE
	1
	The channel is closed.

TpChannelSet

Defines a Numbered Set of Data Elements of TpChannel

TpChannelSetRef

Defines a reference to type TpChannelSet
TpChannel

Defines the Sequence of Data Elements that specify the type of channel.

	Sequence Element Name
	Sequence Element Type

	Direction
	TpChannelDirection

	DataType
	TpChannelDataType

	ChannelSessionID
	TpSessionID

	Channel
	IpMMChannel

TpChannelDataType

Defines the type of the reported channel. It is identical to TpChannelDataTypeRequest, only now the values are not used as a mask, but as the actual codec should be indicated for audio and video. For data the actual maximum bitrate is indicated.

8.5.2 Multi-Media Call Control Data Definitions

IpMultiMediaCall

Defines the address of an IpMultiMediaCall Interface.

IpMultiMediaCallRef

Defines a Reference to type IpMultiMediaCall.

IpMultiMediaCallRefRef

Defines a Reference to type IpMultiMediaCallRef.

IpAppMultiMediaCall

Defines the address of an IpAppMultiMediaCall Interface.

IpAppMultiMediaCallRef

Defines a Reference to type IpAppMultiMediaCall.

IpMultiMediaCallLeg

Defines the address of an IpMultiMediaCallLeg Interface.

IpMultiMediaCallLegRef

Defines a Reference to type IpMultiMediaCallLeg.

IpAppMultiMediaCallLeg

Defines the address of an IpAppMultiMediaCallLeg Interface.

IpAppMultiMediaCallLegRef

Defines a Reference to type IpAppMultiMediaCallLeg.

TpMultiMediaCallIdentifierRef

Defines a Reference to type TpMultiMediaCallIdentifier.

TpMultiMediaCallLegIdentifierRef

Defines a Reference to type TpMultiMediaeCallLegIdentifier.

TpMultiMediaCallIdentifier

Defines the Sequence of Data Elements that unambiguously specify the Generic Call object

	Sequence Element Name
	Sequence Element Type
	Sequence Element Description

	MMCallReference
	IpMultiMediaCallRef
	This element specifies the interface reference for the call object.

	MMCallSessionID
	TpSessionID
	This element specifies the call session ID of the call created.

TpMultiMediaCallLegIdentifier

Defines the Sequence of Data Elements that unambiguously specify the Call Leg object

	Sequence Element Name
	Sequence Element Type
	Sequence Element Description

	MMCallLegReference
	IpMultiMediaCallLegRef
	This element specifies the interface reference for the callLeg object.

	MMCallLegSessionID
	TpSessionID
	This element specifies the callLeg session ID of the call created.

IpAppMultiMediaCallControlManager

Defines the address of an IpAppMultiMediaCallControlManager Interface.

IpAppMultiMediaCallControlManagerRef

Defines a Reference to type IpAppMultiMediaCallControlManager.

TpCallSuperviseVolume

Defines the Sequence of Data Elements that specify the amount of volume that is allowed to be transmitted for the specific connection.

	Sequence Element Name
	Sequence Element Type
	Sequence Element Description

	VolumeQuantity
	TpInt32
	This data type is identical to a TpInt32, and defines the quantity of the granted volume that can be transmitted for the specific connection.

	VolumeUnit
	TpInt32
	This data type is identical to a TpInt32, and defines the unit of the granted volume that can be transmitted for the specific connection.

Unit must be specified as 10^n number of bytes, where

n denotes the power.

When the unit is for example in kilobytes, VolumeUnit must be set to 3.

9 Conference Call Control Service

9.1 Sequence Diagrams

9.1.1 Meet-me conference without subconferencing

This sequence illustrates a pre-arranged meet-me conference for a specified time period. During this timeslot parties can 'call in to' the meet-me conference by dialling a special number.

For each participant joining the conference, the application can decide to accept the participant in to the conference.

The application can also be notified when parties are leaving the conference.

[image: image30.wmf] : (Logical

View::IpApp...

 :

IpAppConfCallControlManager

 :

IpAppConfCall

 :

IpConfCallControlManager

 : IpConfCall

1: new()

5: new()

2: reserveResources()

6: leaveMonitorReq ()

9: partyJoined ()

10: "forward event"

3: conferenceCreated ()

4: "forward event"

12: leaveMonitorRes ()

13: "forward event"

11: attachMedia ()

14: release ()

8: attachMedia ()

7: partyJoined ()

1:
The application creates a new object to receive the callbacks from the conference call control manager.

2:
The application reserves resources for some time in the future.

With this same method the application registers interest in the creation of the conference (e.g. when the first party to joins the conference or at the specified start time, this is implementation dependant).

The reservation also includes the conference policy. One of the elements is whether joined parties must be explicity attached. If so, this is treated as an implicit joinMonitorReq.

3:
The conference is created.

4:
The message is forwarded to the application.

5:
The application creates an object to receive the call back messages from the conference call.

6:
The application also requests to be notified when parties leave the conference.

7:
The application is notified of the first party that joined the conference

8:
When the party is allowed to join the conference, the party is added.

Alternatively, the party could have been rejected with a releaseCallLeg.

9:
A new party joins the conference and the application is notified.

10:
The message is forwarded to the application.

11:
This party also is allowed into the conference by attaching the leg.

12:
A party leaves the conference.

13:
The message is forwarded to the application.

14:
The application decides to release the entire conference.

9.1.2 Non-add hoc add-on with subconferencing

This sequence illustrates a prearranged add-on conference. The end user that initiates the call, communicates with the conference application via a web interface (not shown). By dragging and dropping names from the addressbook, the end-users adds parties to the conference.

Also via the web-interface, the end-user can group parties in subconferences. Only parties in the same subconference can talk to each other.

[image: image31.wmf] :

IpConfCallControlManager

 :

IpAppConfCall

 : (Logical

View::IpApp...

 : IpConfCall

first :

IpSubConfCall

second :

IpSubConfCall

2: OLDcreateConference ()

1: new()

3: getSubConferences()

4: routeReq

5: routeReq

6: routeReq

8: routeRes ()

10: routeRes ()

12: routeRes ()

9: "forward event"

11: "forward event"

13: "forward event"

16: splitSubConference()

7: routeReq

14: routeRes ()

15: "forward event"

17: moveCallLeg()

18: release ()

1:
The application creates a new interface to receive the callbacks from the conference call.

2:
The application initiates the conference. There has been no prior resource reservation, so there is a chance that no resources are available when parties are added to the conference.

The conferenceCall interface object is returned.

3:
Together with the conference a subconference is implicitly created.

However, the subconference is not returned as a result of the createConference, therefore the application uses this method to get the subconference.

4:
The application adds parties to the subconference.

Note that all the participants in the conference are called via the routeReq, the routeReq does not have to be used.

5:
The application adds parties to the subconference.

6:
The application adds parties to the subconference.

7:
The application adds parties to the subconference.

8:
When a party A answers the application is notified.

We assume that all parties answer.

9:
The message is forwarded to the application.

10:
When a party B answers the application is notified.

11:
The message is forwarded to the application.

12:
When a party C answers the application is notified.

13:
The message is forwarded to the application.

14:
When a party D answers the application is notified.

Now all four parties are in the same subconference and can communicate.

15:
The message is forwarded to the application.

16:
The application decides to split the conference. Party C&D are indicated in the message.

The parlay gateway will create a new subconference and move party C and D to the new subconference.

The configuration is A&B are in speech, C&D are in speech. There is no bearer connection between the two subconferences.

17:
The application moves on of the legs from the second subconference to the first. The configuration now is A,B&C are in speech configuration. D is alone in its own subconference.

18:
The second subconference is released. Since party D was in this subconference, this callleg is also released.

This leaves one subconference with A,B & C.

9.1.3 Non-addhoc add-on multimedia

This sequence illustrates a prearranged add-on multi-media conference. The end user that initiates the call, communicates with the conference application via a web interface (not shown). By dragging and dropping names from the addressbook, the end-users adds parties to the conference.

Also via the web-interface, the end-user can do things that normally the chair would be able to do, e.g., determine who has the floor (e.g., whose video is being broadcast to the other participants) or inspect the video of participants who do not have the floor (e.g., to see how they react to the current speaker).

[image: image32.wmf] :

IpConfCallControlManager

 : IpAppSubConfCall

 : (Logical

View::IpApp...

 : IpConfCall

 : IpSubConfCall

2: createConference()

1: new()

3: getSubConferences()

4: routeReq

5: routeReq

6: routeReq

8: routeRes ()

9: "forward event"

11: routeRes ()

12: "forward event"

13: routeRes ()

14: "forward event"

7: routeReq

15: routeRes ()

16: "forward event"

10: chairSelection()

17: appointSpeaker()

18: inspectVideo()

19: inspectVideo()

20: inspectVideoCancel()

21: floorRequest()

22: "forward event"

23: appointSpeaker()

1:
The application creates a new object for receiving callbacks from the MMSubConference.

2:
When the user selects the appropriate option in the web interface, the application will create a conference without resource reservation. The policy for video is set to 'chairperson switched.

3:
The application requests the subconference that was implicitly created together with the conference.

4:
The application add parties to the conference and monitors on success.

Note that all the participants in the conference are called via the routeReq, the routeReq does not have to be used.

5:
The application add parties to the conference and monitors on success.

6:
The application add parties to the conference and monitors on success.

7:
The application add parties to the conference and monitors on success.

8:
When a party A answers the application is notified.

We assume that all parties answer.

9:
The message is forwarded to the application logic.

10:
We assume that A was the initiating party.

The initiating end-user is assigned the chairpersonship.

This message is needed to synchonise the chairpersonship in the application with the MCU chairpersonship, since the chair can also use H.323 messages to control the conference.

11:
When a party B answers the application is notified.

12:
The message is forwarded to the application logic.

13:
When a party C answers the application is notified.

14:
The message is forwarded to the application logic.

15:
When a party D answers the application is notified.

16:
The message is forwarded to the application logic.

17:
Chairperson (A) decides via WWW interface that party B is the speaker. This means that the video of B is broadcast to the rest.

18:
The chairperson select the video of C in order to judge their reactions on B's proposal.

19:
The chairperson select the video of D in order to judge their reactions on B's proposal.

20:
The chairperson goes back to receiving the broadcasted videostream (B)

21:
User C requests the floor via the H.323 signals. The application is notified of this.

22:
The message is forwarded to the application logic.

23:
The chairperson (via the WWW interface) grants the request by appointing C as the speaker.

9.1.4 Resource Reservation

This sequence illustrates how an application can check and reserve resources for a meet-me conference.

[image: image33.wmf] : (Logical

View::IpApp...

 :

IpAppConfCallControlManager

 :

IpConfCallControlManager

 : IpConfCall

1: checkResources()

3: reserveResources()

4: freeResources()

5: reserveResources()

2: new()

6: conferenceCreated ()

7: "forward event"

1:
The application checks if enough conference resources are available in a given time period.

2:
The application creates a object to receive callback messages.

3:
The application reserves resources for the time period. The callback object is in order to receive a notification when the conference is started.

4:
Because the time was wrong by accident, the application cancels the earlier reservation.

5:
 The application makes a new reservation.

6:
At the specified time, or when the first party joins the conference the application is notified.

7:
The event is forwarded to the application.

9.2 Class Diagrams

The conference call control service consists of two packages, one for the interfaces on the application side and one for interfaces on the service side. The class diagrams in the following figures show the interfaces that make up the conference call control application package and the conference call control service package.
This class diagram shows the interfaces that make up the application conference call control service package and the relation to the interfaces in the conference call control service package.
The diagram also shows the inheritance relation between the multi-party call application interfaces and the conference call application interfaces; the conference interfaces are specialisations of the corresponding multi-party call interfaces.
Communication between the application and service packages is done via the <<uses>> relations; the interfaces can communicate with callback methods in the corresponding application interfaces.

[image: image34.wmf]IpAppConfCall

partyJoined()

leaveMonitorRes()

(from cccs)

<<Interface>>

IpAppConfCallControlManager

conferenceCreated()

(from cccs)

<<Interface>>

IpAppSubConfCall

chairSelection()

floorRequest()

(from cccs)

<<Interface>>

IpConfCall

getSubConferences()

createSubConference()

leaveMonitorReq()

(from cccs)

<<Interface>>

IpSubConfCall

splitSubConference()

mergeSubConference()

moveCallLeg()

inspectVideo()

inspectVideoCancel()

appointSpeaker()

chairSelection()

changeConferencePolicy()

(from cccs)

<<Interface>>

IpConfCallControlManager

createConference()

checkResources()

reserveResources()

freeResources()

(from cccs)

<<Interface>>

1

0..n

1

0..n

<<uses>>

IpAppMultiMediaCallControlManager

mediaChannelEventNotify()

(from mmccs)

<<Interface>>

IpAppMultiMediaCall

superviseVolumeRes()

superviseVolumeErr()

(from mmccs)

<<Interface>>

IpMultiMediaCallLeg

mediaChannelAllow()

mediaChannelMonitorReq()

getMediaChannels()

(from mmccs)

<<Interface>>

IpAppMultiMediaCallLeg

mediaChannelMonitorRes()

(from mmccs)

<<Interface>>

1

0..n

1

0..n

1

0..n

<<uses>>

<<uses>>

1

0..n

1

0..n

<<uses>>

1

0..n

Figure: Application Interfaces
This class diagram shows the interfaces that make up the conference call control service package.
The diagram also shows the inheritance relation between the multi-party call interfaces and the conference call interfaces; the conference interfaces are specialisations of the corresponding multi-party call interfaces.
Furtermore, the class diagram illustrates that the conference call control manager can instantiate or be associated with zero or more conference calls. Each conference call can have one or more subconferences associated with it. Each subconference contains zero or more call legs associated. Detached legs are not associated with any specific subconference, instead they are associated with the conference call itself.

[image: image35.wmf]IpConfCall

getSubConferences()

createSubConference()

leaveMonitorReq()

(from cccs)

<<Interface>>

IpConfCallControlManager

createConference()

checkResources()

reserveResources()

freeResources()

(from cccs)

<<Interface>>

1

0..n

IpSubConfCall

splitSubConference()

mergeSubConference()

moveCallLeg()

inspectVideo()

inspectVideoCancel()

appointSpeaker()

chairSelection()

changeConferencePolicy()

(from cccs)

<<Interface>>

IpMultiMediaCallControlManager

enableMediaChannelNotification()

disableMediaChannelNotification()

(from mmccs)

<<Interface>>

IpMultiMediaCall

superviseVolumeReq()

(from mmccs)

<<Interface>>

IpMultiMediaCallLeg

mediaChannelAllow()

mediaChannelMonitorReq()

getMediaChannels()

(from mmccs)

<<Interface>>

1

0..n

1

0..n

1

0..n

Figure: Service Interfaces

9.3 Conference Call Control Service Interface Classes

The Conference Call Control Service enhances the multi-media call control service. The conference call control service gives the application the ability to manipulate subconferences within a conference. A subconference defines the grouping of legs within the overall conference call. Only parties in the same subconference have a bearer connection (or media channel connection) to each other (e.g., can speak to each other). The application can:
· create new subconferences within the conference, either as an empty subconference or by splitting an existing subconference in two subconferences.
· move legs between subconferences.
· merge subconferences.
· get a list of all subconferences in the call.
The generic conference also gives the possibility to manipulate typical multi-media conference details, such as:
· interworking with network signalled conference protocols (e.g., H.323)
· manipulation of the media in the MCU, e.g., broadcasting of video.
· handling of multi-media conference policies, e.g., how video should be handled, voice controlled switched or chair controlled.
Furthermore the conference call control service adds support for the reservation of resources needed for conferencing. The application can:
· reserve resources for a predefined time period.
· free reserved resources.
· search for the availability of conference resources based on a number of criteria.
There are two ways to initiate a conference:
· the conferences can be started on the pre-arranged time by the service, at the start time indicated in the reservation. The application is notified about this. The application can then add parties to the conference and/or parties can dial-in to the conference using the address provided during reserveration.
· the conference can be created directly on request of the application using the createConference method to the IpConferenceCallControlManager interface.
	

	

	

9.3.1 Interface Class IpConfCallControlManager
Inherits from: IpMultiMediaCallControlManager
The conference Call Control Manager is the factory interface for creating conferences. Additionally it takes care of resource management.
	<<Interface>>

IpConfCallControlManager

	

	createConference (appConferenceCall : in IpAppConfCallRef, numberOfSubConferences : in TpInt32, conferencePolicy : in TpConfPolicy, numberOfParticipants : in TpInt32, duration : in TpDuration, conference : out TpConfCallIdentifierRef) : TpResult

checkResources (searchCriteria : in TpConfSearchCriteria, result : out TpConfSearchResultRef) : TpResult

reserveResources (appInterface : in IpAppConfCallControlManagerRef, startTime : in TpDateAndTime, numberOfParticipants : in TpInt32, duration : in TpDuration, conferencePolicy : in TpConfPolicy, resourceID : out TpAddressRef) : TpResult

freeResources (resourceID : in TpAddress) : TpResult

Method

createConference()

This method is used to create a new conference. If the specified resources are not available for the indicated duration the creation is rejected with P_RESOURCES_UNAVAILBLE.

Parameters

appConferenceCall : in IpAppConfCallRef

Specifies the callback interface for the conference created
numberOfSubConferences : in TpInt32

Specifies the number of subconferences that the user wants to create automatically. The references to the interfaces of the subconferences can later be requested with getSubConferences.
The number of subconferences should be at least 1.
conferencePolicy : in TpConfPolicy

Specifies the policy to be applied for the conference, e.g., are parties allowed to join (call into) the conference?
Note that if parties are allowed to join the conference, the application can expect partyJoined() messages on the IpAppConfCall interface.
numberOfParticipants : in TpInt32

Specifies the number of participants in the conference. The actual number of participants may exceed this, but these resources are not guaranteed, i.e., anything exceeding this will be best effort only and the conference service may drop or reject participants in order to fulfil other committed resource requests. By specifying 0, the application can request a best effort conference.
duration : in TpDuration

Specifies the duration for which the conference resources are reserved. The duration of the conference may exceed this, but after the duration, the resources are no longer guaranteed, i.e., parties may be dropped or rejected by the service in order to satisfy other committed resource requests. When the conference is released before the allocated duration, the reserved resources are released and can be used to satisfy other resource requests. By specifying 0, the application requests a best effort conference.
conference : out TpConfCallIdentifierRef

Specifies the interface reference and sessionID of the created conference.
Raises

TpGeneralException,TpGCCSException
Method

checkResources()

This method is used to check for the availability of conference resources.

The input is the search period (start and stop time and date) - mandatory.

Furthermore, a conference duration and number of participants can be specified - optional.

The search algorithm will search the specified period for availability of conference resources and tries to find an optimal solution.

When a match is found the actual number of available resources, the actual start and the actual duration for which these are available is returned. These values can exceed the requested values.

When no match is found a best effort is returned, still the actual start time, duration, number of resources are returned, but these values now indicate the best that the conference bridge can offer, e.g., one or more of these values will not reach the requested values.

Parameters

searchCriteria : in TpConfSearchCriteria

Specifies the boundary conditions of the search. E.g., the time period that should be searched, the number of participants.
result : out TpConfSearchResultRef

Specifies the result of the search. It indicates if a match was found. If no exact match was found the best attempt is returned.
Raises

TpGeneralException,TpGCCSException
Method

reserveResources()

This method is used to reserve conference resources for a given time period. Conferences can be created without first reserving resources, but in that case no guarantees can be made.

Parameters

appInterface : in IpAppConfCallControlManagerRef

Specifies the callback interface to be used when the conference is created in the network. The applicaiton will receive the ConferenceCreated message when a conference is created in the network.
startTime : in TpDateAndTime

Specifies the time at which the conference resources should be reserved, i.e., the start time of the conference.
numberOfParticipants : in TpInt32

Specifies the number of participants in the conference. The actual number of participants may exceed this, but these resources are not guaranteed, i.e., anything exceeding this will be best effort only and the conference service may drop or reject participants in order to fulfil other committed resource requests.
duration : in TpDuration

Specifies the duration for which the conference resources are reserved. The duration of the conference may exceed this, but after the duration, the resources are no longer guaranteed, i.e., parties may be dropped or rejected by the service in order to satisfy other committed resource requests. When the conference is released before the allocated duration, the reserved resources are released and can be used to satisfy other resource requests.
conferencePolicy : in TpConfPolicy

The policy to be applied for the conference, e.g., are parties allowed to join (call into) the conference? Note that if parties are allowed to join the conference, the application can expect partyJoined() messages on the appConfCall.
resourceID : out TpAddressRef

Specifies the address with which the conference can be addressed, both in the methods of the interface and in the network, i.e., if joinAllowed is TRUE, parties can use this address to join the conference.
If no match is found the resourceID contains an empty address.
Raises

TpGeneralException,TpGCCSException
Method

freeResources()

This method can be used to cancel an earlier made reservation of conference resources.

This also means that no ConferenceCreated events will be received for this conference.

Parameters

resourceID : in TpAddress

Specifies the resourceID that was received during the reservation.
Raises

TpGeneralException,TpGCCSException
9.3.2 Interface Class IpAppConfCallControlManager
Inherits from: IpAppMultiMediaCallControlManager
The conference call control manager application interface provides the application with additional callbacks when a conference is created by the network (based on an earlier reservation)
	<<Interface>>

IpAppConfCallControlManager

	

	conferenceCreated (conferenceCall : in TpConfCallIdentifier, appInterface : out IpAppConfCallRefRef) : TpResult

Method

conferenceCreated()

This method is called when a conference is created from an earlier resource reservation.

Parameters

conferenceCall : in TpConfCallIdentifier

Specifies the reference to the conference call interface to which the notification relates and the associated sessionID.
appInterface : out IpAppConfCallRefRef

Specifies a reference to the application interface which implements the callback interface for the new conference.
Raises

TpGeneralException,TpGCCSException
9.3.3 Interface Class IpConfCall
Inherits from: IpMultiMediaCall
The conference call manages the subconferences. It also provides some convenience methods to hide the fact of multiple subconferences from the applications that do not need it. Note that the conference call always contains one subconference. The following inherited method call methods apply to the conference as a whole, with the specified semantics:

- setCallback; changes the callback interface reference.

- release; releases the entire conference, including all the subconferences and detached legs.

- deassignCall; de-assigns the complete conference. No callbacks will be received by the application, either on the conference, or on any of the contained subconferences or call legs.

- getCallInfoReq; request information over the complete conference. The conference duration is defined as the time when the first party joined the conference until when the last party leaves the conference or the conference is released.
- setCallChargePlan; set the chargeplan for the conference. This chargeplan will apply to all the subconferences, unless another chargeplan is explicitly overridden on the subconference.

- superviseCallReq; supervise the duration of the complete conference.

- getCallLegs; return all the call legs used within the conference.

Other methods apply to the default subconference. When using multiple subconference, it is recommended that the application calls these methods directly on the subconference since this makes it more explicit what the effect of the method is:

- routeReq

- createCallLeg
	<<Interface>>

IpConfCall

	

	getSubConferences (conferenceSessionID : in TpSessionID, subConferenceList : out TpSubConfCallIdentifierSetRef) : TpResult

createSubConference (conferenceSessionID : in TpSessionID, appSubConference : in IpAppSubConfCallRef, conferencePolicy : in TpConfPolicy, subConference : out TpSubConfCallIdentifierRef) : TpResult

leaveMonitorReq (conferenceSessionID : in TpSessionID) : TpResult

Method

getSubConferences()

This method returns all the subconferences of the conference.

Parameters

conferenceSessionID : in TpSessionID

Specifies the sessionID of the conference.
subConferenceList : out TpSubConfCallIdentifierSetRef

Specifies the list of all the subconferences of the conference.
Raises

TpGeneralException,TpGCCSException
Method

createSubConference()

This method is used to create a new subconference. Note that one subconference is already created together with the conference.

Parameters

conferenceSessionID : in TpSessionID

Specifies the sessionID of the conference.
appSubConference : in IpAppSubConfCallRef

Specifies the call back interface for the created subconference.
conferencePolicy : in TpConfPolicy

Conference Policy to be used in the subconference. Optional; if undefined, the policy of the conference is used. Note that not all policy elements have to be applicable for subconferences.
subConference : out TpSubConfCallIdentifierRef

Specifies the created subconference (interface and sessionID).
Raises

TpGeneralException,TpGCCSException
Method

leaveMonitorReq()

This method is used to request a notification when a party leaves the conference.

Parameters

conferenceSessionID : in TpSessionID

Specifies the session ID of the conference.
Raises

TpGeneralException,TpGCCSException
9.3.4 Interface Class IpAppConfCall
Inherits from: IpAppMultiMediaCall
The Conference Call application interface allows the application to handle call responses and state reports. Additionally it allows the application to handle parties entering and leaving the conference.
	<<Interface>>

IpAppConfCall

	

	partyJoined (conferenceSessionID : in TpSessionID, callLeg : in TpCallLegIdentifier, eventInfo : in TpJoinEventInfo, appCallLeg : out IpAppCallLegRefRef) : TpResult

leaveMonitorRes (conferenceSessionID : in TpSessionID, callLeg : in TpSessionID) : TpResult

Method

partyJoined()

This asynchronous method indicates that a new party (leg) has joined the conference. This can be used in, e.g., a meetme conference where the participants dial in to the conference using the address returned during reservation of the conference.

The Leg will be assigned to the default subconference object and will be in a detached state. The application may move the call Leg to a different subconference before attaching the media.

The method will only be called when joinAllowed is indicated in the conference policy.

Parameters

conferenceSessionID : in TpSessionID

Specifies the session ID of the confererence that the party wants to join.
callLeg : in TpCallLegIdentifier

Specifies the interface and sessionID of the call leg that joined the conference.
eventInfo : in TpJoinEventInfo

Specifies the address information of the party that wants to join the conference.
appCallLeg : out IpAppCallLegRefRef

Specifies the call back interface that should be used for callbacks from the new call Leg.
Raises

TpGeneralException,TpGCCSException
Method

leaveMonitorRes()

This asynchronous method indicates that a party (leg) has left the conference.

Parameters

conferenceSessionID : in TpSessionID

Specifies the session ID of the conference that the party wants to leaves.
callLeg : in TpSessionID

Specifies the sessionID of the call leg that left the conference.
Raises

TpGeneralException,TpGCCSException
9.3.5 Interface Class IpSubConfCall
Inherits from: IpMultiMediaCall
The subconference is an additional grouping mechanism within a conference. Parties (legs) that are in the same subconference have a speech connection with each other. The following inherited method call methods apply to the subconference as a whole, with the specified semantics:

- setCallback; changes the callback interface reference.

-· release; releases the subconference, including all currently attached legs. When the last subconference in the conference is released, the conference is implicitly released as well.

-· deassignCall; de-assigns the subconference. No callbacks will be received by the application on this subconference, nor will the gateway accept any methods on this subconference or accept any methods using the subconfernece as a parameter (e.g., merge). When the subconference is the last subconference in the conference, the conference is deassigned as well. In general it is recommended to only use deassignCall for the complete conference.

-· getCallInfoReq; request information over the subconference. The subconference duration is defined as the time when the first party joined the subconference until when the last party leaves the subconference or the subconference is released.

-· setCallChargePlan; set the charge plan for the subconference.

-· superviseCallReq; supervise the duration of the subconference. It is recommended that this method is only used on the complete conference.

-· getCallLegs; return all the call legs in the subconference.

-· createCallLeg; create a call leg in detached state.

-· routeReq; implicitly create a leg and route the leg to the specified destination.
	<<Interface>>

IpSubConfCall

	

	splitSubConference (subConferenceSessionID : in TpSessionID, callLegList : in TpSessionIDSet, appSubConferenceCall : in IpAppSubConfCallRef, newSubConferenceCall : out TpSubConfCallIdentifierRef) : TpResult

mergeSubConference (subConferenceCallSessionID : in TpSessionID, targetSubConferenceCall : in TpSessionID) : TpResult

moveCallLeg (subConferenceCallSessionID : in TpSessionID, targetSubConferenceCall : in TpSessionID, callLeg : in TpSessionID) : TpResult

inspectVideo (subConferenceSessionID : in TpSessionID, inspectedCallLeg : in TpSessionID) : TpResult

inspectVideoCancel (subConferenceSessionID : in TpSessionID) : TpResult

appointSpeaker (subConferenceSessionID : in TpSessionID, speakerCallLeg : in TpSessionID) : TpResult

chairSelection (subConferenceSessionID : in TpSessionID, chairCallLeg : in TpSessionID) : TpResult

changeConferencePolicy (subConferenceSessionID : in TpSessionID, conferencePolicy : in TpConfPolicy) : TpResult

Method

splitSubConference()

This method is used to create a new subconference and move some of the legs to it.

Parameters

subConferenceSessionID : in TpSessionID

Specifies the session ID of the subconference.
callLegList : in TpSessionIDSet

Specifies the sessionIDs of the legs that will be moved to the new subconference.
appSubConferenceCall : in IpAppSubConfCallRef

Specifies the application call back interface for the new subconference.
newSubConferenceCall : out TpSubConfCallIdentifierRef

Specifies the new subconference that is implicitly created as a result of the method.
Raises

TpGeneralException,TpGCCSException
Method

mergeSubConference()

This method is used to merge two subconferences, i.e., move all our legs from this subconference to the other subconference followed by a release of this subconference.

Parameters

subConferenceCallSessionID : in TpSessionID

Specifies the session ID of the subconference.
targetSubConferenceCall : in TpSessionID

The session ID of target subconference with which the current subconference will be merged.
Raises

TpGeneralException,TpGCCSException
Method

moveCallLeg()

This method moves one leg from this subconference to another subconference.

Parameters

subConferenceCallSessionID : in TpSessionID

Specifies the session ID of the source subconference.
targetSubConferenceCall : in TpSessionID

Specifies the sessionID of the target subconference.
callLeg : in TpSessionID

Specifies the sessionID of the call leg to be moved.
Raises

TpGeneralException,TpGCCSException
Method

inspectVideo()

This method can be used by the application to select which video should be sent to the party that is currently selected as the chair.

Whether this method can be used depends on the selected conference policy.

Parameters

subConferenceSessionID : in TpSessionID

Specifies the session ID of the multi media subconference.
inspectedCallLeg : in TpSessionID

Specifies the sessionID of call leg of the party whose video stream should be sent to the chair.
Raises

TpGeneralException,TpGCCSException
Method

inspectVideoCancel()

This method cancels a previous inspectVideo. The chair will receive the broadcasted video.

Whether this method can be used depends on the selected conference policy.

Parameters

subConferenceSessionID : in TpSessionID

Specifies the session ID of the multi media subconference.
Raises

TpGeneralException,TpGCCSException
Method

appointSpeaker()

This method indicates which of the participants in the conference has the floor. The video of the speaker will be broadcast to the other parties.

Whether this method can be used depends on the selected conference policy.

Parameters

subConferenceSessionID : in TpSessionID

Specifies the session ID of the multi media subconference.
speakerCallLeg : in TpSessionID

Specifies the sessionID of the call leg of the party whose video stream should be broadcast.
Raises

TpGeneralException,TpGCCSException
Method

chairSelection()

This method is used to indicate which participant in the conference is the chair. E.g., the terminal of this participant will be the destination of the video of the inspectVideo method.

Whether this method can be used depends on the selected conference policy.

Parameters

subConferenceSessionID : in TpSessionID

Specifies the session ID of the multi media subconference.
chairCallLeg : in TpSessionID

Specifies the sessionID of the call leg of the party that will become the chair.
Raises

TpGeneralException,TpGCCSException
Method

changeConferencePolicy()

This method can be used to change the conference policy in an ongoing conference.

· Multi media conference policy options available. E.g.;

· chair controlled video / voice switched video

· closed conference / open conference

· Composite video (different types) / only speaker

Parameters

subConferenceSessionID : in TpSessionID

Specifies the session ID of the multi media subconference.
conferencePolicy : in TpConfPolicy

New Conference Policy to be used in the subconference.
Raises

TpGeneralException,TpGCCSException
9.3.6 Interface Class IpAppSubConfCall
Inherits from: IpAppMultiMediaCall
The Sub Conference Call application interface allows the application to handle call responses and state reports from a sub conference.
	<<Interface>>

IpAppSubConfCall

	

	chairSelection (subConferenceSessionID : in TpSessionID, chair : out TpCallLegIdentifierRef) : TpResult

floorRequest (subConferenceSessionID : in TpSessionID, floorRequester : out TpCallLegIdentifierRef) : TpResult

Method

chairSelection()

This method is used to inform the application about the chair selection requests from the network. It is used to interwork with H.323 conference signalling. The application can grant the request by calling the selectChair method on the subconference.

Parameters

subConferenceSessionID : in TpSessionID

Specifies the session ID of the subconference where the chair request originates.
chair : out TpCallLegIdentifierRef

Specifies the reference to the interface of the leg that wants to become the chair.
Raises

TpGeneralException,TpGCCSException
Method

floorRequest()

This method is used to inform the application about the floor requests from the network. It is used to interwork with H.323 conference signalling. The application can grant the request by calling the appointSpeaker method.

Parameters

subConferenceSessionID : in TpSessionID

Specifies the session ID of the subconference where the floor request originates.
floorRequester : out TpCallLegIdentifierRef

Specifies the reference to the interface of the leg that requests the floor.
Raises

TpGeneralException,TpGCCSException
	

	

	

	

	

	

9.4 Conference Call Control Service State Transition Diagrams

There are no State Transition Diagrams for the Conference Call Control Service package

9.5 Conference Call Control Data Definitions

This Section provides the Conference call control data definitions necessary to support the API specification.

This document is written using Hypertext link, to aid navigation through the data structures. Underlined text represents Hypertext links.

The general format of a data definition specification is described below.

· Data Type

This shows the name of the data type.

· Description

This describes the data type.

· Tabular Specification

This specifies the data types and values of the data type.

· Example

If relevant, an example is shown to illustrate the data type.

9.5.1 Event Notification Data Definitions

No specific event notification data.

9.5.2 Conference Call Control Data Definitions
IpConfCall

Defines the address of an IpConferenceCall Interface.

IpConfCallRef

Defines a Reference to type IpConfCall.

IpAppConfCall

Defines the address of an IpAppConfCall Interface.

IpAppConfCallRef

Defines a Reference to type IpAppConfCall.

IpSubConfCall

Defines the address of an IpSubConfCall Interface.

IpSubConfCallRef

Defines a Reference to type IpSubConfCall.

IpAppSubConfCall

Defines the address of an IpAppSubConfCall Interface.

IpAppSubConfCallRef

Defines a Reference to type IpAppSubConfCall.

TpConfCallIdentifierRef

Defines a Reference to type TpConfCallIdentifier.

TpSubConfCallIdentifierSet

Defines a Numbered Set of Data Elements of IpSubConfCallIdentifier.
TpSubConfCallIdentifierSetRef

Defines a Reference to type IpSubConfCallIdentifierSet.

TpSubConfCallIdentifierRef

Defines a Reference to type TpSubConfCallIdentifier.

TpConfCallIdentifier

Defines the Sequence of Data Elements that unambiguously specify the Conference Call object

	Sequence Element Name
	Sequence Element Type
	Sequence Element Description

	ConfCallReference
	IpConfCallRef
	This element specifies the interface reference for the conference call object.

	ConfCallSessionID
	TpSessionID
	This element specifies the session ID of the conference call.

TpSubConfCallIdentifier

Defines the Sequence of Data Elements that unambiguously specify the SubConfernece Call object

	Sequence Element Name
	Sequence Element Type
	Sequence Element Description

	SubConfCallReference
	IpSubConfCallRef
	This element specifies the interface reference for the subconference call object.

	SubConfCallSessionID
	TpSessionID
	This element specifies the session ID of the subconference call.

IpAppConfCallControlManager

Defines the address of an IpAppConfCallControlManager Interface.

IpAppConfCallControlManagerRef

Defines a Reference to type IpAppConfCallControlManager.

TpConfPolicyType

Defines policy type for the conference.

If undefined the gateway will select an appropriate default.

If a mono media conference policy is specified for a multi-media conference, the gateway will select appropriate defaults for the multi-media policy items.

If a mulit-media policy is selected for a mono-media (voice-only) conference, the multi-meda conference items will be ignored.

	Name
	Value
	Description

	P_CONFERENCE_POLICY_UNDEFINED
	0
	Undefined

	P_CONFERENCE_POLICY_MONOMEDIA
	1
	CCCS – monomedia conference policy

	P_CONFERENCE_POLICY_MULTIMEDIA
	2
	MMCCS – mulitmedia conference policy

TpConfPolicy

Defines the Tagged Choice of Data Elements that specify the policy that needs adhered to by the conference.

	
	Tag Element Type
	

	
	TpConfPolicyType
	

	Tag Element Value
	Choice Element Type
	Choice Element Name

	P_CONFERENCE_POLICY_MONOMEDIA
	TpMonoMediaConfPolicy
	MonoMedia

	P_CONFERENCE_POLICY_MULTIMEDIA
	TpMultiMediaConfPolicy
	MultiMedia

TpMonoMediaConfPolicy

Defines the type of conference policy as a sequence of Policy Items and their values.

 For mono media there are only two types of conference policies; specified, i.e., the application provides the policy, or undefined, i.e., the GW may choose a default conference policy.

	Sequence Element Name
	Sequence Element Type
	description

	JoinAllowed
	TpBoolean
	Specifies if dial-in to the conference is allowed. Parties can dial-in to the conference using the address returned during reservation. If this is specified the application will receive partyJoined for each participant dialling into the conference.

TpJoinEventInfo

Defines the Sequence of Data Elements that specify the information returned to the application in a Join event notification.

	Sequence Element Name
	Sequence Element Type

	DestinationAddress
	TpAddress

	OriginatingAddress
	TpAddress

	OriginalDestinationAddress
	TpAddress

	RedirectingAddress
	TpAddress

	CallAppInfo
	TpCallAppInfoSet

TpConfSearchCriteria

Defines the Sequence of Data Elements that specify the criteria for doing a search for available conference resources.

	Sequence Element Name
	Sequence Element Type

	StartSearch
	TpDateAndTime

	StopSearch
	TpDateAndTime

	RequestedResources
	TpInt32

	RrequestedDuration
	TpDuration

TpConfSearchResultRef

Defines a reference to type TpConfSearchResult.

TpConfSearchResult

Defines the Sequence of Data Elements that specifies the result of a search for available conference resources.

	Sequence Element Name
	Sequence Element Type

	MatchFound
	TpBoolean

	ActualStartTime
	TpDateAndTime

	ActualResources
	TpInt32

	ActualDuration
	TpDuration

TpMultiMediaConfPolicy

Sequence of items for multi-media conferences.

	Sequence Element Name
	Sequence Element Type
	description

	JoinAllowed
	TpBoolean
	Specifies if dial-in to the conference is allowed. Parties can dial-in to the conference using the address returned during reservation. If this is specified the application will receive partyJoined for each participant dialling into the conference.

	MediaAllowed
	TpMediaType
	Specifies the media that are allowed to be used by the participants. E.g., this can be used to limit the conference to audio only, even when all participants support video.

	Chaired
	TpBoolean
	Specifies whether the conference is chaired or free. In a chaired conference the application or one of the participants acting as chair has special privileges; e.g., can control the video distribution.

	VideoHandling
	TpVideoHandlingType
	Specifies how the video should be handled.

TpVideoHandlingType

Defines how video should be handled in the conference.

	Name
	Value
	Description

	P_MIXED_VIDEO
	0
	Video is mixed, no special treatement of speaker

	P_SWITCHED_VIDEO_CHAIR_CONTROLLED
	1
	Video is switched, chair determines the speaker

	P_SWITCHED_VIDEO_VOICE_CONTROLLED
	2
	Video is switched automatically based on audio output of the speaker

	

	

	

Annex A (normative):
OMG IDL Description of Call Control SCF

The OMG IDL representation of this interface specification is contained in a text file (callcontrol.idl contained in archive ??????.ZIP) which accompanies the present document.
Annex <zz> (informative):
Bibliography

The annex entitled "Bibliography" is optional.

Exception: Please use style"Heading 9" and no indication of (informative) or (normative) within a Technical Report.

Bibliography format

· <Publication>: "<Title>".

OR

<Publication>: "<Title>".

History

	Document history

	<Version>
	<Date>
	<Milestone>

	
	
	

	
	
	

	
	
	

	
	
	

[image: image36.png]