3GPP TSG CN Plenary Meeting #19

12- 14 March 2003, Birmingham, UK

Source: CN5 (OSA)

Title: Rel-5 CRs 29.198-04-3 OSA API Part 4: Call control;
Sub-part 3: Multi-Party Call Control SCF

NP-030031

Agenda item: 8.2
Document for: APPROVAL
Doc-1st- Spec CR |Rev| Phase Subject Cat |Version-| Doc-2nd- | Workite
Level Current Level m
NP-030031 29.198-04-3 007 - Rel-5 Correction of status of MPCC methods F 5.1.0 N5-020874 'OSA2
NP-030031 29.198-04-3 008 - Rel-5 Inconsistent description of use of secondary F 5.1.0 N5-021038 OSA2

callback

joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5) N5-020874
Meeting #20, Miami/ FL, USA, 23 — 27 September 2002

CHANGE REQUEST
® 29.198-04-3 CR 007 srey - % Cumentverson: 51 (%

CR-Form-v7

For HELP on using this form, see bottom of this page or look at the pop-up text over the ¥ symbols.

Proposed change affects: UICC apps&e|:| ME|:| Radio Access Network|:| Core Network
Title: ¥ Correction of status of MPCC methods
Source: ¥ N5
Work item code: 3 OSA2 Date: & 27/09/2002
Category: ¥ F Release: $ REL-5
Use one of the following categories: Use one of the following releases:
F (correction) 2 (GSM Phase 2)
A (corresponds to a correction in an earlier release) R96 (Release 1996)
B (addition of feature), R97 (Release 1997)
C (functional modification of feature) R98 (Release 1998)
D (editorial modification) R99 (Release 1999)
Detailed explanations of the above categories can Rel-4 (Release 4)
be found in 3GPP TR 21.900. Rel-5 (Release 5)

Rel-6 (Release 6)

Reason for change: 3 There is no requirement in the standard about the necessity to implement all or
only some of the methods defined for an interface.

Summary of change: 3 Clarify which methods are mandatory and which are optional.

Consequences if ¥ Application developers will not know which methods will actually be available.
not approved:

Clauses affected: ¥ 6 Multi Party Call Control Service Interface Classes

Y

Other core specifications 3
Test specifications
O&M Specifications

Other specs E:S
affected:

XX |X|Z

Other comments: S

How to create CRs using this form:
Comprehensive information and tips about how to create CRs can be found at http://www.3gpp.org/specs/CR.htm.
Below is a brief summary:

1) Fill out the above form. The symbols above marked 3 contain pop-up help information about the field that they are
closest to.

2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word
"revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be
downloaded from the 3GPP server under ftp://ftp.3gpp.ora/specs/ For the latest version, look for the directory name
with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of
the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to
the change request.

CR page 1

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 2

6 MultiParty Call Control Service Interface Classes

The Multi-party Call Control service enhances the functionality of the Generic Call Control Service with leg
management. It also allows for multi-party calls to be established, i.e., up to a service specific number of legs can be
connected simultaneously to the same call.

The Multi-party Call Control Serviceisrepresented by the |pMultiPartyCall ControlManager, IpMultiPartyCall,
IpCallLeg interfacesthat interface to services provided by the network. Some methods are asynchronous, in that they
do not lock athread into waiting whilst a transaction performs. In this way, the client machine can handle many more
calls, than one that uses synchronous message calls. To handle responses and reports, the devel oper must implement

I pAppMultiPartyCall Control Manager, IpAppM ultiPartyCall and IpAppCallLeg to provide the callback mechanism.

6.1 Interface Class IpMultiPartyCallControlManager

Inherits from: IpService

Thisinterface is the 'service manager' interface for the Multi-party Call Control Service. The multi-party call control
manager interface provides the management functions to the multi-party call control service. The application
programmer can use this interface to provide overload control functionality, create call objects and to enable or disable
call-related event notifications. The action table associated with the STD shows in what state the

I pMultiPartyCall ControlManager must be if a method can successfully complete. In other words, if the

I pMultiPartyCall ControlManager is in another state the method will throw an exception immediately.

Thisinterface shall be implemented by a Multi Party Call Control SCF. As aminimum requirement either the
createCall() method shall be implemented, or the createNotification() and destroyNotification() methods shall be
implemented, or the enableNotifications() and disableNotifications() methods shall be implemented.

<<Interface>>

IpMultiPartyCallControlManager

createCall (appCall : in IpAppMultiPartyCallRef) : TpMultiPartyCallldentifier

createNotification (appCallControlManager : in IpAppMultiPartyCallControlManagerRef, notificationRequest
: in TpCallNotificationRequest) : TpAssignmentID

destroyNotification (assignmentID : in TpAssignmentID) : void

changeNotification (assignmentID : in TpAssignmentID, notificationRequest : in TpCallNotificationRequest) :
void

<<deprecated>> getNotification () : TpNotificationRequestedSet

setCallLoadControl (duration : in TpDuration, mechanism : in TpCallLoadControlMechanism, treatment : in
TpCallTreatment, addressRange : in TpAddressRange) : TpAssignmentlD

<<new>> enableNotifications (appCallControlManager : in IpAppMultiPartyCallControlManagerRef) :
TpAssignmentID

<<new>> disableNotifications () : void

<<new>> getNextNotification (reset : in TpBoolean) : TpNotificationRequestedSetEntry

CR page 2

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 3

6.1.1 Method createCall()

This method is used to create anew call object. An IpAppMultiPartyCall ControlManager should already have been
passed to the IpMultiPartyCall Control M anager,

otherwise the call control will not be able to report a call Aborted() to the application (the application should invoke
setCallback() if it wishesto ensure this).

Returns callReference: Specifies the interface reference and sessionlD of the call created.

Parameters

appCall : in | pAppMilti PartyCall Ref
Specifies the application interface for callbacks from the call created.

Returns
TpMul tiPartyCallldentifier

Raises
TpComonExcepti ons, P_I NVALI D_| NTERFACE TYPE

6.1.2 Method createNotification()

This method is used to enable call notifications so that events can be sent to the application. Thisisthefirst step an
application has to do to get initial notifications of calls happening in the network. When such an event happens, the
application will be informed by reportNaotification(). In case the application is interested in other events during the
context of a particular call session it has to use the createAndRouteCallLegReq() method on the call object or the
eventReportReq() method on the call leg object. The application will get access to the call object when it receives the
reportNotification(). (Note that createNotification() is not applicable if the call is setup by the application).

The createNotification method is purely intended for applications to indicate their interest to be notified when certain
call eventstake place. It is possible to subscribe to a certain event for awhole range of addresses, e.g. the application
can indicate it wishes to be informed when a call is made to any number starting with 800.

If some application already requested notifications with criteria that overlap the specified criteria or the specified
criteria overlap with criteria already present in the network (when provisioned from within the network), the request is
refused with P_INVALID_CRITERIA. The criteria are said to overlap when it leads to more than one application
controlling the call or session at the same point in time during call or session processing.

If anatification is requested by an application with monitor mode set to notify, then there is no need to check the rest of
the criteriafor overlapping with any existing request as the notify mode does not allow control on a call to be passed
over. Only one application can place an interrupt request if the criteria overlaps.

If the same application requests two notifications with exactly the same criteria but different callback references, the
second callback will be treated as an additional callback. Both notifications will share the same assignmentID. The
gateway will always use the most recent callback. In case this most recent callback fails the second most recent is used.
In case the createNotification contains no callback, at the moment the application needs to be informed the gateway will
use as callback the callback that has been registered by setCallback().

Returns assignmentl D: Specifiesthe ID assigned by the call control manager interface for this newly-enabled event
notification.

Parameters

appCal | Cont rol Manager : in | pAppMilti PartyCall Control Manager Ref

If this parameter is set (i.e. not NULL) it specifies areference to the application interface, which is used for callbacks. If
set to NULL, the application interface defaults to the interface specified via the setCallback() method.

CR page 3

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 4

notificati onRequest : in TpCall NotificationRequest

Specifies the event specific criteria used by the application to define the event required. Only events that meet these
criteria are reported. Examples of events are "incoming call attempt reported by network", "answer", "no answer",
"busy". Individual addresses or address ranges may be specified for destination and/or origination.

Returns
TpAssi gnment | D
Raises

TpConmonExcept i ons, P_I NVALI D CRI TERI A, P_I NVALI D_| NTERFACE_TYPE,
P | NVALI D_EVENT_TYPE

6.1.3 Method destroyNotification()

This method is used by the application to disable call notifications. This method only appliesto notifications created
with createNotification().

Parameters

assignment|I D : in TpAssignnentl D

Specifies the assignment ID given by the multi party call control manager interface when the previous
createNotification() was called. If the assignment ID does not correspond to one of the valid assignment 1Ds, the
exception P_INVALID_ASSIGNMENTID will be raised. If two callbacks have been registered under this assignment
ID both of them will be disabled.

Raises
TpComonExcepti ons, P_I NVALI D_ASSI GNVENT_I D

6.1.4 Method changeNoatification()

This method is used by the application to change the event criteriaintroduced with createNotification. Any stored
criteria associated with the specified assignmentID will be replaced with the specified criteria.

Parameters

assignnmentI D : in TpAssignnmentlD

Specifies the ID assigned by the multi party call control manager interface for the event notification. If two callbacks
have been registered under this assignment ID both of them will be changed.

notificati onRequest : in TpCall NotificationRequest

Specifies the new set of event specific criteria used by the application to define the event required. Only events that
meet these criteria are reported.

Raises

TpConmonExcept i ons, P_I NVALI D_ASSI GNVENT | D, P_I NVALI D_CRI TERI A,
P | NVALI D_EVENT_TYPE

6.1.5 Method <<deprecated>> getNotification()

This method is deprecated and replaced by getNextNotification(). It will be removed in alater release.

CR page 4

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 5

This method is used by the application to query the event criteria set with createNotification or changeNotification.

Returns notificationsRequested: Specifies the notifications that have been requested by the application. An empty setis
returned when no notifications exist.

Parameters
No Parameters were identified for this method

Returns

TpNoti fi cati onRequest edSet
Raises

TpComonExcept i ons

6.1.6 Method setCallLoadControl()

This method imposes or removes load control on calls made to a particular address range within the call control service.
The address matching mechanism is similar as defined for TpCallEventCriteria

Returns assignmentl D: Specifies the assignmentlI D assigned by the gateway to this request. This assignmentlD can be
used to correlate the call OverloadEncountered and call OverloadCeased methods with the request.

Parameters

duration : in TpDuration
Specifies the duration for which the load control should be set.

A duration of 0 indicates that the load control should be removed.
A duration of -1 indicates an infinite duration (i.e., until disabled by the application)
A duration of -2 indicates the network default duration.

mechani sm: in TpCal | LoadControl Mechani sm

Specifies the load control mechanism to use (for example, admit one call per interval), and any necessary parameters,
such as the call admission rate. The contents of this parameter are ignored if the load control duration is set to zero.

treatnent : in TpCall Treat nent
Specifies the treatment of callsthat are not admitted. The contents of this parameter are ignored if the load control

duration is set to zero.

addressRange : in TpAddressRange
Specifies the address or address range to which the overload control should be applied or removed.

CR page 5

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 6

Returns

TpAssi gnnent | D

Raises

TpCommonExcepti ons, P_I NVALI D ADDRESS, P_UNSUPPORTED ADDRESS PLAN

6.1.7 Method <<new>> enableNotifications()

This method is used to indicate that the application is able to receive notifications which are provisioned from within
the network (i.e. these notifications are NOT set using createNotification() but via, for instance, a network management
system). If notifications provisioned for this application are created or changed, the application is unaware of this until
the notification is reported.

If the same application requests to enable notifications for a second time with a different

I pAppMultiPartyCall Control Manager reference (i.e. without first disabling them), the second callback will be treated as
an additional callback. This means that the callback will only be used in cases when the first callback specified by the
application is unable to handle the callEventNotify (e.g. due to overload or failure).

When this method is used, it is still possible to use createNotification() for service provider provisioned notifications on
the same interface aslong as the criteriain the network and provided by createNotification() do not overlap. However, it
isNOT recommended to use both mechanisms on the same service manager.

The methods changeNotification(), getNotification(), and destroyNotification() do not apply to notifications provisoned
in the network and enabled using enableNoatifications(). These only apply to notifications created using
createNotification().

Returns assignmentl D: Specifies the ID assigned by the manager interface for this operation. ThisID is contained in
any reportNotification() that relates to notifications provisioned from within the networkRepeated calls to
enableNotifications() return the same assignment ID.

Parameters

appCal | Cont rol Manager : in | pAppMilti PartyCall Control Manager Ref

If this parameter is set (i.e. not NULL) it specifies areference to the application interface, which is used for callbacks. If
set to NULL, the application interface defaults to the interface specified via the setCallback() method.

Returns

TpAssi gnrent | D
Raises
TpComonExcept i ons

6.1.8 Method <<new>> disableNotifications()
This method is used to indicate that the application is not able to receive notifications for which the provisioning has

been done from within the network. (i.e. these notifications that are NOT set using createNotification() but via, for
instance, a network management system). After this method is called, no such notifications are reported anymore.

Parameters
No Parameters were identified for this method

CR page 6

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 7

Raises
TpComonExcept i ons

6.1.9 Method <<new>> getNextNotification()

This method is used by the application to query the event criteria set with createNotification or changeNotification.
Since alot of data can potentially be returned (which might cause problem in the middleware), this method must be
used in an iterative way. Each method invocation may return part of the total set of notificationsif the set istoo large to
return it at once. The reset parameter permits the application to indicate whether an invocation to getNextNotification is
requesting more notifications from the total set of notifications or is requesting that the total set of notifications shall be
returned from the beginning.

Returns notificationRequestedSetEntry: The set of notifications and an indication whether all off the notifications have
been obtained or if more notifications are available that have not yet been obtained by the application. If no
notifications exist, an empty set is returned and the final indication shall be set to TRUE.

Note that the (maximum) number of items provided to the application is determined by the gateway.

Parameters

reset : in TpBool ean
TRUE: indicates that the application is intended to obtain the set of notifications starting at the beginning.

FALSE: indicates that the application requests the next set of notifications that have not (yet) been obtained since the
last call to this method with this parameter set to TRUE.

The first time this method isinvoked, reset shall be set to TRUE. Following the receipt of afinal indication in
TpNotificationRequestedSetEntry, for the next call to this method reset shall be set to TRUE. P_TASK_REFUSED may
be thrown if these conditions are not met.

Returns

TpNoti fi cati onRequest edSet Entry
Raises

TpComonExcept i ons

6.2 Interface Class IpAppMultiPartyCallControlManager
Inherits from: Ipinterface

The Multi-Party call control manager application interface provides the application call control management functions
to the Multi-Party call control service.

CR page 7

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 8

<<Interface>>

IpAppMultiPartyCallControlManager

reportNotification (callReference : in TpMultiPartyCallldentifier, callLegReferenceSet : in
TpCallLegldentifierSet, notificationinfo : in TpCallNotificationinfo, assignmentID : in TpAssignmentID) :
TpAppMultiPartyCallBack

callAborted (callReference : in TpSessionID) : void
managerinterrupted () : void

managerResumed () : void

callOverloadEncountered (assignmentID : in TpAssignmentID) : void

callOverloadCeased (assignmentID : in TpAssignmentID) : void

6.2.1 Method reportNotification()

This method notifies the application of the arrival of a call-related event.

If this method isinvoked with a monitor mode of P_CALL_MONITOR_MODE_INTERRUPT, then the APL has
control of the call. If the APL does nothing with the call (including its associated legs) within a specified time period
(the duration of which forms a part of the service level agreement), then the call in the network shall be released and
callEnded() shall be invoked, giving arelease cause of P_TIMER_EXPIRY.

Returns appCallBack: Specifies references to the application interface which implements the callback interface for the
new call and/or new call leg. If the application has previously explicitly passed a reference to the callback interface
using a setCallback() invocation, this parameter may be set to P_ APP_CALLBACK_UNDEFINED, or if supplied must
be the same as that provided during the setCallback().

This parameter will be set to P_APP_CALLBACK_UNDEFINED if the notification isin NOTIFY mode.

Parameters

call Reference : in TpMiltiPartyCallldentifier

Specifies the reference to the call interface to which the notification relates. If the notification is being givenin
NOTIFY mode, this parameter shall be ignored by the application client implementation, and consequently the
implementation of the SCS entity invoking reportNotification may populate this parameter asit chooses.

cal | LegRef erenceSet : in TpCall LegldentifierSet

Specifies the set of al call leg references. First in the set is the reference to the originating callLeg. It indicates the call
leg related to the originating party. In case there is a destination call leg this will be the second leg in the set. from the
notificationl nfo can be found on whose behal f the notification was sent.

However, if the notification is being given in NOTIFY mode, this parameter shall be ignored by the application client
implementation, and consequently the implementation of the SCS entity invoking reportNotification may populate this
parameter as it chooses.

notificationlnfo : in TpCall Notificationlnfo
Specifies data associated with this event (e.g. the originating or terminating leg which reports the notification).

assignment|I D : in TpAssignnentl D

Specifies the assignment id which was returned by the createNotification() method. The application can use assignment
id to associate events with event specific criteria and to act accordingly.

CR page 8

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 9

Returns
TpAppMul ti PartyCal | Back

6.2.2 Method callAborted()

This method indicates to the application that the call object has aborted or terminated abnormally. No further
communication will be possible between the call and application.

Parameters

cal |l Reference : in TpSessionlD
Specifiesthe sessionlD of cal that has aborted or terminated abnormally.

6.2.3 Method managerinterrupted()

This method indicates to the application that event notifications and method invocations have been temporarily
interrupted (for example, due to network resources unavailable).

Note that more permanent failures are reported via the Framework (integrity management).

Parameters
No Parameters were identified for this method

6.2.4 Method managerResumed()

This method indicates to the application that event notifications are possible and method invocations are enabled.

Parameters
No Parameters were identified for this method

6.2.5 Method callOverloadEncountered()

This method indicates that the network has detected overload and may have automatically imposed load control on calls
requested to a particular address range or calls made to a particular destination within the call control service.

Parameters

assignment|I D : in TpAssignnentl D

Specifies the assignmentI D corresponding to the associated setCallLoadControl. Thisimplies the addressrange for
within which the overload has been encountered.

6.2.6 Method callOverloadCeased()

This method indicates that the network has detected that the overload has ceased and has automatically removed any
load controls on calls requested to a particular address range or calls made to a particular destination within the call
control service.

CR page 9

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 10

Parameters

assignnmentI D : in TpAssignnmentlD

Specifies the assignmentI D corresponding to the associated setCallLoadControl. Thisimplies the addressrange for
within which the overload has been ceased

6.3 Interface Class IpMultiPartyCall

Inherits from: IpService

The Multi-Party Call provides the possibility to control the call routing, to request information from the call, control the
charging of the call, to release the call and to supervisethe call. It also givesthe possibility to manage call legs
explicitly. An application may create more then one call leg.

This interface shall be implemented by a Multi Party Call Control SCF. The release() and deassignCall() methods, and
either the createCallLeg() or the createAndRouteCallLegReq(), shall be implemented as a minimum requirement.

<<Interface>>

IpMultiPartyCall

getCallLegs (callSessionID : in TpSessionID) : TpCallLegldentifierSet
createCallLeg (callSessionID : in TpSessionID, appCallLeg : in IpAppCallLegRef) : TpCallLegldentifier

createAndRouteCallLegReq (callSessionID : in TpSessionID, eventsRequested : in
TpCallEventRequestSet, targetAddress : in TpAddress, originatingAddress : in TpAddress, applnfo : in
TpCallAppinfoSet, appLeglinterface : in IpAppCallLegRef) : TpCallLegldentifier

release (callSessionID : in TpSessionID, cause : in TpReleaseCause) : void

deassignCall (callSessionID : in TpSessionID) : void

getinfoReq (callSessionID : in TpSessionID, callinfoRequested : in TpCallinfoType) : void
setChargePlan (callSessionID : in TpSessionID, callChargePlan : in TpCallChargePlan) : void

setAdviceOfCharge (callSessionID : in TpSessionID, aOClInfo : in TpAoClnfo, tariffSwitch : in TpDuration) :
void

superviseReq (callSessionID : in TpSessionID, time : in TpDuration, treatment : in
TpCallSuperviseTreatment) : void

6.3.1 Method getCallLegs()

This method requests the identification of the call leg objects associated with the call object. Returnsthe legsin the
order of creation.

Returns callLegList: Specifies the call legs associated with the call. The set contains both the sessionlDs and the
interface references.

Parameters

call SessionlD : in TpSessionlD
Specifies the call session ID of the call.

CR page 10

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 11

Returns

TpCal | Legl denti fi er Set

Raises

TpComonExcepti ons, P_INVALID SESSION | D

6.3.2 Method createCallLeg()

This method requests the creation of anew call leg object.

Returns callLeg: Specifies the interface and sessionl D of the call leg created.

Parameters

call SessionlD : in TpSessionlD
Specifies the call session ID of the call.

appCal Il Leg : in | pAppCal | LegRef
Specifies the application interface for callbacks from the call leg created.

Returns
TpCal | Legl dentifier

Raises
TpConmonExcepti ons, P_I NVALI D SESSION | D, P_I NVALI D_| NTERFACE_TYPE

6.3.3 Method createAndRouteCallLegReq()

This asynchronous operation requests creation and routing of a new callLeg. In case the connection to the destination
party is established successfully the CallLeg is attached to the call, i.e. no explicit attachM ediaReq() operation is
needed. Requested events will be reported on the IpAppCallLeg interface. This interface the application must provide
through the appL eglnterface parameter.

The extra address information such as originatingAddress is optional. If not present (i.e., the planis set to
P_ADDRESS PLAN_NOT_PRESENT), the information provided in corresponding addresses from the route is used,
otherwise the network or gateway provided numbers will be used.

If the application wishes that the call leg should be represented in the network as being a redirection it should include a
value for the field P_CALL_APP_ORIGINAL_DESTINATION_ADDRESS of TpCallApplnfo.

If this method isinvoked, and call reports have been requested, yet the IpAppCallLeg interface parameter isNULL, this
method shall throw the P_ NO_CALLBACK_ADDRESS SET exception.

Note that for application initiated calls in some networks the result of the first createAndRouteCallLegReq() hasto be
received before the next createAndRouteCallLegReq() can be invoked. The Service Property
P_PARALLEL_INITIAL_ROUTING_REQUESTS (see section 7.5) indicates how a specific implementation handles
theinitial createAndRouteCallLegReq(). This method shall throw P_TASK_REFUSED if an application is not allowed
to use parallel routing reguests.

Returns call LegReference: Specifies the reference to the CallLeg interface that was created.

Parameters

call SessionlD : in TpSessionlD
Specifiesthe call session ID of the call.

CR page 11

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 12

event sRequested : in TpCal |l Event Request Set

Specifies the event specific criteria used by the application to define the events required. Only events that meet these
criteria are reported. Examples of events are "address analysed"”, "answer" and "release’.

target Address : in TpAddress
Specifies the destination party to which the call should be routed.

ori gi nati ngAddress : in TpAddress
Specifies the address of the originating (calling) party.

applnfo : in TpCall Appl nf oSet

Specifies application-related information pertinent to the call (such as alerting method, tele-service type, service
identities and interaction indicators).

appLeglnterface : in | pAppCal | LegRef

Specifies areference to the application interface that implements the callback interface for the new call leg. Requested
events will be reported by the eventReportRes() operation on this interface.

Returns
TpCal | Legl denti fi er
Raises

TpConmonExcept i ons, P_I NVALI D_SESSI ON I D, P_I NVALI D_| NTERFACE_TYPE,
P I NVALI D_ADDRESS , P_UNSUPPORTED ADDRESS PLAN, P_I NVALI D_NETWORK_STATE,
P_I NVALI D_EVENT_TYPE, P_I NVALI D_CRI TERI A

6.3.4 Method release()

This method requests the release of the call object and associated objects. The call will also be terminated in the
network. If the application requested reports to be sent at the end of the call (e.g., by means of getinfoReq) these reports
will still be sent to the application.

Parameters

call SessionlD : in TpSessionlD
Specifies the call session ID of the call.

cause : in TpRel easeCause
Specifies the cause of the release.

Raises
TpConmmonExceptions, P_I NVALI D SESSION I D, P_I NVALI D NETWORK STATE

6.3.5 Method deassignCall()

This method requests that the relationship between the application and the call and associated objects be de-assigned. It
leaves the call in progress, however, it purges the specified call object so that the application has no further control of
call processing. If acal isde-assigned that has call information reports, call leg event reports or call Leg information
reports requested, then these reports will be disabled and any related information discarded.

When this method is invoked, all outstanding supervision regquests will be cancelled.

CR page 12

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 13

Parameters

call SessionlD : in TpSessionlD
Specifiesthe call session ID of the call.

Raises
TpComonExceptions, P_INVALID SESSION ID

6.3.6 Method getinfoReq()

This asynchronous method requests information associated with the call to be provided at the appropriate time (for
example, to calculate charging). This method must be invoked before the call is routed to atarget address.

A report is received when the destination leg or party terminates or when the call ends. The call object will exist after
the call isended if information is required to be sent to the application at the end of the call. In case the originating party
is still available the application can still initiate a follow-on call using routeReq.

Parameters

call SessionlD : in TpSessionlD
Specifies the call session ID of the call.

call I nfoRequested : in TpCalllnfoType
Specifiesthe call information that is requested.

Raises
TpComonExceptions, P_INVALID SESSION ID

6.3.7 Method setChargePlan()

Set an operator specific charge plan for the call.

Parameters

call SessionlD : in TpSessionlD
Specifiesthe call session ID of the call.

cal |l ChargePl an : in TpCall ChargePl an
Specifies the charge plan to use.

Raises
TpComonExceptions, P_INVALID SESSION I D

6.3.8 Method setAdviceOfCharge()

This method allows for advice of charge (AOC) information to be sent to terminals that are capable of receiving this
information.

CR page 13

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 14

Parameters

call SessionlD : in TpSessionlD
Specifies the call session ID of the call.

alClnfo : in TpAoCl nfo
Specifies two sets of Advice of Charge parameter.

tariffSwitch : in TpDuration
Specifies the tariff switch interval that signifies when the second set of AoC parameters becomes valid.

Raises

TpComonExcepti ons, P_I NVALI D SESSI ON | D, P_I NVALI D_CURRENCY,
P_1 NVALI D_AMOUNT

6.3.9 Method superviseReq()

The application calls this method to supervise a call. The application can set a granted connection time for this call. If
an application calls this operation before it routes a call or a user interaction operation the time measurement will start
as soon asthe call is answered by the B-party or the user interaction system.

Parameters

call SessionlD : in TpSessionlD
Specifiesthe call session ID of the call.

time : in TpDuration

Specifies the granted time in milliseconds for the connection. Measurement will start as soon as the call is connected in
the network, e.g. answered by the B-party or the user-interaction system.

treatment : in TpCall SuperviseTreat nent
Specifies how the network should react after the granted connection time expired.

Raises
TpComonExceptions, P_INVALID SESSION | D

6.4 Interface Class IpAppMultiPartyCall

Inherits from: Iplinterface

The Multi-Party call application interface is implemented by the client application developer and is used to handle call
request responses and state reports.

CR page 14

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 15

<<Interface>>

IpAppMultiPartyCall

getinfoRes (callSessionID : in TpSessionID, callinfoReport : in TpCallinfoReport) : void
getinfoErr (callSessionID : in TpSessionID, errorindication : in TpCallError) : void

superviseRes (callSessionID : in TpSessionID, report : in TpCallSuperviseReport, usedTime : in
TpDuration) : void

superviseErr (callSessionID : in TpSessionID, errorindication : in TpCallError) : void
callEnded (callSessionID : in TpSessionID, report : in TpCallEndedReport) : void

createAndRouteCallLegErr (callSessionID : in TpSessionID, callLegReference : in TpCallLegldentifier,
errorindication : in TpCallError) : void

6.4.1 Method getinfoRes()

This asynchronous method reports time information of the finished call or call attempt as well as release cause
depending on which information has been requested by getlnfoReq. Thisinformation may be used e.g. for charging
purposes. The call information will possibly be sent after reporting of al cases where the call or aleg of the call has
been disconnected or a routing failure has been encountered.

Parameters

call SessionlD : in TpSessionlD
Specifies the call session ID of the call.

call I nfoReport : in TpCalllnfoReport
Specifies the call information requested.

6.4.2 Method getinfoErr()

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.

Parameters

call SessionlD : in TpSessionlD
Specifiesthe call session ID of the call.

errorindication : in TpCallError
Specifies the error which led to the original request failing.

6.4.3 Method superviseRes()

This asynchronous method reports a call supervision event to the application when it hasindicated itsinterest in these
kind of events.

It is also called when the connection is terminated before the supervision event occurs. Furthermore, this method is
invoked as a response to the request aso when atariff switch happens in the network during an active call.

CR page 15

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 16

Parameters

call SessionlD : in TpSessionlD
Specifiesthe call session ID of the call

report : in TpCall Supervi seReport
Specifies the situation which triggered the sending of the call supervision response.

usedTinme : in TpDuration
Specifies the used time for the call supervision (in milliseconds).

6.4.4 Method superviseErr()

This asynchronous method reports a call supervision error to the application.

Parameters

call SessionlD : in TpSessionlD
Specifiesthe call session ID of the call.

errorindication : in TpCallError
Specifies the error which led to the original request failing.

6.4.5 Method callEnded()

This method indicates to the application that the call has terminated in the network.

Note that the event that caused the call to end might have been received separately if the application was monitoring for
it.

Parameters

call SessionlD : in TpSessionlD
Specifies the call sessionID.

report : in TpCall EndedReport
Specifies the reason the call is terminated.

6.4.6 Method createAndRouteCallLegErr()

This asynchronous method indicates that the request to route the call leg to the destination party was unsuccessful - the
call leg could not be routed to the destination party (for example, the network was unable to route the call leg, the
parameters were incorrect, the request was refused, etc.). Note that the event cases that can be monitored and
correspond to an unsuccessful setup of a connection (e.g. busy, no_answer) will be reported by eventReportRes() and
not by this operation.

Parameters

call SessionlD : in TpSessionlD
Specifiesthe call session ID of the call.

CR page 16

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 17

call LegReference : in TpCallLegldentifier
Specifies the reference to the CallLeg interface that was created.

errorindication : in TpCallError
Specifies the error which led to the original request failing.

6.5 Interface Class IpCallLeg

Inherits from: IpService

The call leg interface represents the logical call leg associating a call with an address. The call leg tracks its own states
and allows charging summaries to be accessed. The leg represents the signalling relationship between the call and an
address. An application that uses the IpCallLeg interface to set up connections has good control, e.g. by defining leg
specific event request and can obtain call leg specific report and events.

Thisinterface shall be implemented by a Multi Party Call Control SCF. The routeReq(), eventReportReq(), release(),
continueProcessing() and deassign() methods shall be implemented as a minimum requirement.

<<Interface>>

IpCallLeg

routeReq (callLegSessionID : in TpSessionID, targetAddress : in TpAddress, originatingAddress : in
TpAddress, applnfo : in TpCallApplnfoSet, connectionProperties : in TpCallLegConnectionProperties) :
void

eventReportReq (callLegSessionID : in TpSessionID, eventsRequested : in TpCallEventRequestSet) : void
release (callLegSessionID : in TpSessionID, cause : in TpReleaseCause) : void

getinfoReq (callLegSessionID : in TpSessionID, callLeginfoRequested : in TpCallLegInfoType) : void
getCall (callLegSessionID : in TpSessionID) : TpMultiPartyCallldentifier

attachMediaReq (callLegSessionID : in TpSessionID) : void

detachMediaReq (callLegSessionID : in TpSessionID) : void

getCurrentDestinationAddress (callLegSessionID : in TpSessionID) : TpAddress

continueProcessing (callLegSessionID : in TpSessionID) : void

setChargePlan (callLegSessionID : in TpSessionID, callChargePlan : in TpCallChargePlan) : void

setAdviceOfCharge (callLegSessionID : in TpSessionID, aOClnfo : in TpAoClnfo, tariffSwitch : in
TpDuration) : void

superviseReq (callLegSessionID : in TpSessionID, time : in TpDuration, treatment : in
TpCallLegSuperviseTreatment) : void

deassign (callLegSessionID : in TpSessionID) : void

6.5.1 Method routeReq()

This asynchronous method requests routing of the call leg to the remote party indicated by the targetAddress.

In case the connection to the destination party is established successfully the CallLeg will be either detached or attached
to the call based on the attach M echanism values specified in the connectionProperties parameter.

CR page 17

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 18

The extra address information such as originatingAddressis optional. If not present (i.e. the plan is set to
P_ADDRESS PLAN_NOT_PRESENT), the information provided in the corresponding addresses from the route is
used, otherwise network or gateway provided addresses will be used.

If the application wishes that the call leg should be represented in the network as being a redirection it should include a
value for thefield P_CALL_APP_ORIGINAL_DESTINATION_ADDRESS of TpCallApplnfo.

This operation continues processing of the call leg.

Note that for application initiated callsin some networks the result of the first routeReq() has to be received before the
next routeReq() can be invoked. The Service Property P PARALLEL _INITIAL_ROUTING_REQUESTS (see section
7.5) indicates how a specific implementation handles the initial routeReq().This method shall throw
P_TASK_REFUSED if an application is not allowed to use parallel routing requests.

Parameters

call LegSessionlD : in TpSessionlD
Specifies the call leg session ID of the call leg.

target Address : in TpAddress
Specifies the destination party to which the call leg should be routed

origi nati ngAddress : in TpAddress
Specifies the address of the originating (calling) party.

applnfo : in TpCall Appl nf 0Set

Specifies application-related information pertinent to the call leg (such as alerting method, tele-service type, service
identities and interaction indicators).

connectionProperties : in TpCall LegConnecti onProperties
Specifies the properties of the connection.

Raises

TpConmonExcept i ons, P_I NVALI D_SESSI ON | D, P_I NVALI D_NETWORK_STATE,
P | NVALI D_ADDRESS, P_UNSUPPORTED ADDRESS PLAN

6.5.2 Method eventReportReq()

This asynchronous method sets, clears or changes the criteriafor the events that the call leg object will be set to
observe.

Parameters

cal |l LegSessionlD : in TpSessionlD
Specifiesthe call leg session ID of the call leg.

event sRequested : in TpCal |l Event Request Set

Specifies the event specific criteria used by the application to define the events required. Only events that meet these
criteria are reported. Examples of events are "address analysed"”, "answer" and "release”.

CR page 18

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 19

Raises

TpConmonExcept i ons, P_I NVALI D_SESSI ON_I D, P_I NVALI D_EVENT TYPE,
P_I NVALI D_CRI TERI A

6.5.3 Method release()

This method requests the release of the call leg. If successful, the associated address (party) will be released from the
call, and the call leg deleted. Note that in some cases releasing the party may lead to release of the complete call in the
network. The application will be informed of this with callEnded().

This operation continues processing of the call leg.

Parameters

call LegSessionlD : in TpSessionlD
Specifies the call leg session ID of the call leg.

cause : in TpRel easeCause

Specifies the cause of the release.

Raises

TpCommonExcepti ons, P_I NVALI D SESSI ON | D, P_I NVALI D_NETWORK_STATE

6.5.4 Method getinfoReq()

This asynchronous method requests information associated with the call leg to be provided at the appropriate time (for
example, to calculate charging). Note that in the call leg information must be accessible before the objects of concern
are deleted.

Parameters

call LegSessionlD : in TpSessionlD
Specifiesthe call leg session ID of the call leg.

cal | Legl nf oRequested : in TpCall Legl nfoType
Specifiesthe call leg information that is requested.

Raises
TpComonExcepti ons, P_I NVALI D SESSI ON_|I D

6.5.5 Method getCall()
This method requests the call associated with this call leg.

Returns cal|Reference: Specifies the interface and sessionl D of the call associated with this call leg.

Parameters

call LegSessionlD : in TpSessionlD
Specifiesthe call leg session ID of the call leg.

CR page 19

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 20

Returns

TpMul ti PartyCallldentifier

Raises

TpComonExceptions, P_INVALID SESSION ID

6.5.6 Method attachMediaReq()

This method requests that the call leg be attached to its call object. Thiswill alow transmission on all associated bearer
connections or media streams to and from other partiesin the call. The call leg must be in the connected state for this
method to compl ete successfully.

In case this method is invoked while thereis still arequest to detach the Media pending, the exception
"P_TASK_REFUSED" will be raised.

Parameters

call LegSessionlD : in TpSessionlD
Specifies the sessionl D of the call leg to attach to the call.

Raises
TpConmonExcepti ons, P_I NVALI D SESSI ON | D, P_I NVALI D NETWORK_STATE

6.5.7 Method detachMediaReq()

This method will detach the call leg fromitscall, i.e., thiswill prevent transmission on any associated bearer
connections or media streams to and from other partiesin the call. The call leg must be in the connected state for this
method to complete successfully.

In case this method isinvoked while thereis still arequest to attach the Media pending, the exception
"P_TASK_REFUSED" will be raised.

Parameters

cal |l LegSessionlD : in TpSessionlD
Specifies the sessionl D of the call leg to detach from the call.

Raises
TpConmonExcepti ons, P_I NVALI D SESSI ON | D, P_I NVALI D NETWORK_STATE

6.5.8 Method getCurrentDestinationAddress()
Queries the current address of the destination the leg has been directed to.
Returns the address of the destination point towards which the call leg has been routed..

If this method is invoked on the Originating Call Leg, exception P_INVALID_STATE will be thrown.

Parameters

call LegSessionlD : in TpSessionlD
Specifiesthe call session ID of the call leg.

CR page 20

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 21

Returns

TpAddr ess

Raises

TpComonExcepti ons, P_I NVALI D SESSI ON I D

6.5.9 Method continueProcessing()

This operation continues processing of the call leg. Applications can invoke this operation after call leg processing was
interrupted due to detection of a notification or event the application subscribed its interest in.

In case the operation isinvoked and call leg processing is not interrupted the exception
P_INVALID NETWORK_STATE will be raised.

Parameters

cal |l LegSessionlD : in TpSessionlD
Specifiesthe call leg session ID of the call leg.

Raises
TpConmonExcepti ons, P_I NVALI D SESSI ON | D, P_I NVALI D NETWORK_STATE

6.5.10 Method setChargePlan()

Set an operator specific charge plan for the call leg.

Parameters

call LegSessionlD : in TpSessionlD
Specifiesthe call leg session ID of the call party.

cal |l ChargePlan : in TpCall ChargePl an
Specifies the charge plan to use.

Raises
TpComonExceptions, P_INVALID SESSION | D

6.5.11 Method setAdviceOfCharge()

This method allows for advice of charge (AOC) information to be sent to terminals that are capable of receiving this
information.

Parameters

cal |l LegSessionlD : in TpSessionlD
Specifiesthe call leg session ID of the call party.

aCClnfo : in TpAoCinfo
Specifies two sets of Advice of Charge parameter.

CR page 21

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 22

tariffSwitch : in TpDuration
Specifies the tariff switch interval that signifies when the second set of AoC parameters becomes valid.

Raises

TpConmonExcept i ons, P_I NVALI D_SESSI ON I D, P_I NVALI D_CURRENCY,
P | NVALI D_AMOUNT

6.5.12 Method superviseReq()

The application calls this method to supervise acal leg. The application can set a granted connection time for this call.
If an application calls thisfunction before it calls arouteReq() or a user interaction function the time measurement will
start as soon as the call is answered by the B-party or the user interaction system.

Parameters

cal |l LegSessionlD : in TpSessionlD
Specifiesthe call leg session ID of the call party.

time : in TpDuration

Specifies the granted time in milliseconds for the connection. Measurement will start as soon asthe callLegis
connected in the network.

treatnent : in TpCall LegSuperviseTreat ment
Specifies how the network should react after the granted connection time expired.

Raises
TpComonExcepti ons, P_I NVALI D SESSI ON_|I D

6.5.13 Method deassign()

This method requests that the relationship between the application and the call leg and associated objects be de-
assigned. It leaves the call leg in progress, however, it purges the specified call leg object so that the application has no
further control of call leg processing. If acal leg is de-assigned that has event reports or call leg information reports
requested, then these reports will be disabled and any related information discarded.

The application should not release or deassign the call leg when received a callLegEnded() or callEnded(). This
operation continues processing of the call leg.

When this method is invoked, all outstanding supervision regquests will be cancelled.

Parameters

call LegSessionlD : in TpSessionlD
Specifiesthe call leg session ID of the call leg.

Raises
TpComonExcepti ons, P_I NVALI D SESSI ON_|I D

6.6 Interface Class IpAppCallLeg

Inherits from: Iplnterface

CR page 22

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 23

The application call leg interface isimplemented by the client application developer and is used to handle responses and
errors associated with requests on the call leg in order to be able to receive leg specific information and events.

<<Interface>>

IpAppCallLeg

eventReportRes (callLegSessionID : in TpSessionID, eventinfo : in TpCallEventinfo) : void
eventReportErr (callLegSessionID : in TpSessionlD, errorindication : in TpCallError) : void
attachMediaRes (callLegSessionID : in TpSessionID) : void

attachMediaErr (callLegSessionID : in TpSessionID, errorindication : in TpCallError) : void
detachMediaRes (callLegSessionID : in TpSessionID) : void

detachMediaErr (callLegSessionID : in TpSessionID, errorindication : in TpCallError) : void
getinfoRes (callLegSessionID : in TpSessionID, callLeginfoReport : in TpCallLeglnfoReport) : void
getinfoErr (callLegSessionID : in TpSessionID, errorindication : in TpCallError) : void

routeErr (callLegSessionID : in TpSessionID, errorindication : in TpCallError) : void

superviseRes (callLegSessionID : in TpSessionID, report : in TpCallSuperviseReport, usedTime : in
TpDuration) : void

superviseErr (callLegSessionID : in TpSessionlID, errorindication : in TpCallError) : void

callLegEnded (callLegSessionID : in TpSessionID, cause : in TpReleaseCause) : void

6.6.1 Method eventReportRes()

This asynchronous method reports that an event has occurred that was requested to be reported (for example, a mid-call
event, the party has requested to disconnect, etc.).

Depending on the type of event received, outstanding requests for events are discarded. The exact details of these so-
called disarming rules are captured in the data definition of the event type.

If this method isinvoked for areport with a monitor mode of P_CALL_MONITOR_MODE_INTERRUPT, then the
application has control of the call leg. If the application does nothing with the call leg within a specified time period
(the duration which forms a part of the service level agreement), then the connection in the network shall be released
and callLegEnded() shall be invoked, giving arelease cause of P_ TIMER_EXPIRY..

Parameters

call LegSessionlD : in TpSessionlD
Specifiesthe call leg session ID of the call leg on which the event was detected.

eventinfo : in TpCall Eventlnfo
Specifies data associated with this event.

6.6.2 Method eventReportErr()

This asynchronous method indicates that the request to manage call leg event reports was unsuccessful, and the reason
(for example, the parameters were incorrect, the request was refused, etc.).

CR page 23

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 24

Parameters

call LegSessionlD : in TpSessionlD
Specifiesthe call leg session ID of the call leg.

errorindication : in TpCallError
Specifies the error which led to the original request failing.

6.6.3 Method attachMediaRes()

This asynchronous method reports the attachment of acall leg to a call has succeeded. The media channels or bearer
connections to thisleg is now available.

Parameters

call LegSessionlD : in TpSessionlD
Specifies the call leg session ID of the call leg to which the information relates.

6.6.4 Method attachMediaErr()

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.

Parameters

cal |l LegSessionlD : in TpSessionlD
Specifies the call leg session ID of the call leg.

errorindication : in TpCallError
Specifies the error which led to the original request failing.

6.6.5 Method detachMediaRes()

This asynchronous method reports the detachment of acall leg from a call has succeeded. The media channels or bearer
connections to thisleg isno longer available.

Parameters

call LegSessionlD : in TpSessionlD
Specifiesthe call leg session ID of the call leg to which the information relates.

6.6.6 Method detachMediaErr()

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.

Parameters

cal |l LegSessionlD : in TpSessionlD
Specifiesthe call leg session ID of the call leg.

CR page 24

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 25

errorindication : in TpCallError
Specifies the error which led to the original request failing.

6.6.7 Method getinfoRes()

This asynchronous method reports all the necessary information regquested by the application, for example to calculate
charging.

Parameters

call LegSessionlD : in TpSessionlD
Specifies the call leg session ID of the call leg to which the information relates.

cal | Legl nfoReport : in TpCall Legl nfoReport
Specifies the call leg information requested.

6.6.8 Method getinfoErr()

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.

Parameters

cal |l LegSessionlD : in TpSessionlD
Specifiesthe call leg session ID of the call leg.

errorindication : in TpCallError
Specifies the error which led to the original request failing.

6.6.9 Method routeErr()

This asynchronous method indicates that the request to route the call leg to the destination party was unsuccessful - the
call leg could not be routed to the destination party (for example, the network was unable to route the call leg, the
parameters were incorrect, the request was refused, etc.).

Parameters

cal |l LegSessionlD : in TpSessionlD
Specifiesthe call leg session ID of the call leg.

errorindication : in TpCallError
Specifies the error which led to the original request failing.

6.6.10 Method superviseRes()

This asynchronous method reports a call leg supervision event to the application when it has indicated itsinterest in
these kind of events.

It is also called when the connection to a party is terminated before the supervision event occurs. Furthermore, this
method is invoked as a response to the request also when atariff switch happensin the network during an active call.

CR page 25

3GPP TS aa.bbb vX.Y.Z (YYYY-MM)

Parameters

call LegSessionlD : in TpSessionlD
Specifies the call leg session ID of the call leg

report : in TpCall Supervi seReport

Specifies the situation which triggered the sending of the call leg supervision response.

usedTinme : in TpDuration
Specifies the used time for the call leg supervision (in milliseconds).

6.6.11 Method superviseErr()

Parameters

call LegSessionlD : in TpSessionlD
Specifies the call leg session ID of the call leg.

errorindication : in TpCallError
Specifies the error which led to the original request failing.

6.6.12 Method callLegEnded()

CR page 26

This method indicates to the application that the leg has terminated in the network. The application has received all
requested results (e.g., getlnfoRes) related to the call leg. The call leg will be destroyed after returning from this

method.

Parameters

cal |l LegSessionlD : in TpSessionlD
Specifiesthe call leg session ID of the call leg.

cause : in TpRel easeCause
Specifies the reason the connection is terminated.

CR page 26

joint API group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5) N5-021038
Meeting #21, Dublin, IRELAND, 28 — 31 October 2002

CHANGE REQUEST
3 29.198-04-3 CR 008 greyv _ & Current version: 510 3

CR-Form-v5

For HELP on using this form, see bottom of this page or look at the pop-up text over the ¥ symbols.

Proposed change affects: (U)SIM|:| ME/UE|:| Radio Access Network|:| Core Network

Title: ¥ Inconsistent description of use of secondary callback
Source: ¥ N5
Work item code: 3 OSA2 Date: 3 10/10/2002
Category: ¥ F Release: $ REL-5
Use one of the following categories: Use one of the following releases:
F (correction) 2 (GSM Phase 2)
A (corresponds to a correction in an earlier release) R96 (Release 1996)
B (addition of feature), R97 (Release 1997)
C (functional modification of feature) R98 (Release 1998)
D (editorial modification) R99 (Release 1999)
Detailed explanations of the above categories can REL-4 (Release 4)
be found in 3GPP TR 21.900. REL-5 (Release 5)

Reason for change: ¥ OSA Specification describes use of secondary callback interface inconsistently
between the different parts which confuses application developers.

Summary of change: 3 Describe that most recent call back will be used as the callback interface. Only if
this one does not work, the initially provided callback interface is used.

Consequences if ¥ Interoperability problems.
not approved:

Clauses affected: E23
Other specs E23 Other core specifications E23
affected: Test specifications

O&M Specifications

Other comments: S

How to create CRs using this form:
Comprehensive information and tips about how to create CRs can be found at: http://www.3gpp.org/3G_Specs/CRs.htm.
Below is a brief summary:

1) Fill out the above form. The symbols above marked 3 contain pop-up help information about the field that they are
closest to.

2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word
"revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be
downloaded from the 3GPP server under ftp://ftp.3gpp.ora/specs/ For the latest version, look for the directory name
with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of
the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to
the change request.

CR page 1

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 2

Introduction

The OSA Specifications contains the following descriptions about the use of a secondary callback interface:

Part 1:

7.12 Notification Handling

It is possible to recreate a (set of) notification(s) or re-register for notifications. Thisis only useful when providing a
different callback interface reference. In this case, the last provided interface is used for reporting notifications. The
earlier provided callback interfaceis used as “backup” interface (this can be the one provided with setCallback() or
setCallbackWithSessionI D() if NULL was provided initially). Notifications are reported on this interface when calls
to the most recent provided callback interface fail (object providing the interfaceis crashed or overloaded). When re-
creating or re-registering, the same assignment 1D is returned.

Part 4-2:

6.1.2 Method enableCallNotification()

If the same application requests two notifications with exactly the same criteria but different callback references, the
second callback will be treated as an additional callback. Both notifications will share the same assignmentID. The
gateway will always use the most recent callback. I n case this most recent callback fails the second most recent is
used. In case the enableCallNotification contains no callback, at the moment the application needs to be informed the
gateway will use as callback the callback that has been registered by setCallback().

Part 4-3:

6.1.2 Method createNotification()

If the same application requests two notifications with exactly the same criteria but different callback references, the
second callback will be treated as an additional callback. Both notifications will share the same assignmentID. The
gateway will always use the most recent callback. I n case this most recent callback fails the second most recent is
used. In case the createNotification contains no callback, at the moment the application needs to be informed the
gateway will use as callback the callback that has been registered by setCallback().

6.1.7 Method <<new>> enableNoaotifications()

If the same application requests to enable notifications for a second time with a different

I pAppM ultiPartyCall Control Manager reference (i.e. without first disabling them), the second callback will be treated
asan additional callback. This meansthat the callback will only be used in cases when thefirst callback specified by
the application is unable to handle the call EventNotify (e.g. due to overload or failure).

Part 4-4:

6.1.1 Method createMediaNotification()

If the same application requests two notifications with exactly the same criteria but different callback references, the
second callback will be treated as an additional callback. Both notifications will share the same assignmentID. The
gateway will always use the most recent callback. I n case this most recent callback fails the second most recent is
used. In case the createM ediaNotification contains no callback, at the moment the application needs to be informed the
gateway will use as callback the one that has been registered by setCallback().

CR page 2

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 3

Part 5:

8.1.3 Method createNotification()

If the same application requests two notifications with exactly the same criteria but different callback references, the
second callback will be treated as an additional callback. This means that the callback will only be used in case when
the first callback specified by the application is unable to handle the reportNotification (e.g., due to overload or
failure).

8.1.7 Method <<new>> enableNoaotifications()

If the same application requests to enable notifications for a second time with a different IpAppUIManager reference
(i.e. without first disabling them), the second callback will be treated as an additional callback. This meansthat the
callback wil only be used in cases when the first callback specified by the application is unable to handle the
callEventNotify (e.g. due to overload or failure).

Part 8:

8.4.1 Method <<deprecated>> createNotification()

If the same application requests two notifications with exactly the same criteria but different callback references, the
second callback will be treated as an additional callback. Both notifications will share the same assignmentID. The
gateway will always use the most recent callback. I n case this most recent callback fails the second most recent is
used. In case the createNotification contains no callback, at the moment the application needs to be informed the
gateway will use as callback the callback that has been registered by setCallback().

8.4.5 Method <<new>> enableNotifications()

If the same application requests to enable notifications for a second time with a different

I pAppDataSessionControlManager reference (i.e. without first disabling them), the second callback will be treated as
an additional callback. This means that the callback wil only be used in cases when the first callback specified by the
application isunable to handle the callEventNotify (e.g. due to overload or failure).

8.4.8 Method <<new>> createNotifications()

If the same application requests two notifications with exactly the same criteria but different callback references, the
second callback will be treated as an additional callback. Both notifications will share the same assignmentID. The
gateway will always use the most recent callback. I n case this most recent callback fails the second most recent is
used. In case the createNotification contains no callback, at the moment the application needs to be informed the
gateway will use as callback the callback that has been registered by setCallback().

Part 11:

8.1.1 Method createNotification()

If the same application requests two notifications with exactly the same criteria but different callback references, the
second callback will be treated as an additional callback. Both notifications will share the same assignmentID. The
gateway will always use the most recent callback. I n case this most recent callback fails the second most recent is
used. In case the enableCallNotification contains no callback, at the moment the application needs to be informed the
gateway will use as callback the callback that has been registered by setCallback().

CR page 3

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 4

8.1.7 Method <<new>> enableNotifications()

If the same application requests to enable notifications for a second time with a different | pAppAccountM anager
reference (i.e. without first disabling them), the second callback will be treated as an additional callback. This means
that the callback will only be used in cases when thefirst callback specified by the application is unable to handle the
reportNotification (e.g. due to overload or failure).

Solution

The intended use of the 2™ callback interface is as described in part 1, therfore the changes to the following method
descriptions are proposed:

— Part 4-3, method enableNotifications()
- Part 5, method createNotification()

— Part 5, method enableNotifications()
— Part 8, method enableNotifications()
- Part 11, method enableNotifications()

This contribution proposes the changes for Part 4-3.

Proposed Changes

6.1.7 Method <<new>> enableNoaotifications()

This method is used to indicate that the application is able to receive notifications which are provisioned from within
the network (i.e. these notifications are NOT set using createNotification() but via, for instance, a network management
system). If notifications provisioned for this application are created or changed, the application is unaware of this until
the notification is reported.

If the same application requests to enable notifications for a second time with a different

I pAppMultiPartyCall Control Manager reference (i.e. without first disabling them), the second callback will be treated as
an additional callback. The qateway will alwavs use the most recent callback In case this most recent caIIback fallsthe
second most recent is used ! ASES lba

When this method is used, it is still possible to use createNotification() for service provider provisioned notifications on
the same interface aslong as the criteriain the network and provided by createNotification() do not overlap. However, it
isNOT recommended to use both mechanisms on the same service manager.

The methods changeNotification(), getNotification(), and destroyNotification() do not apply to notifications provisoned
in the network and enabled using enableNatifications(). These only apply to notifications created using
createNotification().

Returns assignmentl D: Specifiesthe ID assigned by the manager interface for this operation. ThisID is contained in
any reportNotification() that relates to notifications provisioned from within the networkRepeated calls to
enableNotifications() return the same assignment ID.

Parameters

appCal | Cont rol Manager : in | pAppMilti PartyCall Control Manager Ref

If this parameter is set (i.e. not NULL) it specifies areference to the application interface, which is used for callbacks. If
set to NULL, the application interface defaults to the interface specified via the setCallback() method.

CR page 4

3GPP TS aa.bbb vX.Y.Z (YYYY-MM)

Returns
TpAssi gnnent | D

Raises
TpComonExcept i ons

CR page 5

CR page 5

	NP-030031.doc
	29198-04-3CR007.doc
	29198-04-3CR008.doc

