
3GPP TSG CN Plenary Meeting #19 NP-030020
12- 14 March 2003, Birmingham, UK

Source: CN5 (OSA)

Title: Rel-4 CRs 29.198-04 OSA API Part 4: Call control

Agenda item: 7.10

Document for: APPROVAL

Doc-1st-
Level

Spec CR Rev Phase Subject Cat Version-
Current

Doc-2nd-
Level

Workite
m

NP-030020 29.198-04 058 - Rel-4 Correction of status of methods to interfaces
in clause 6.3

F 4.5.0 N5-020888 OSA1

NP-030020 29.198-04-2 003 - Rel-5 Correction of status of GCC methods A 5.1.0 N5-020873 OSA2
NP-030020 29.198-04 059 - Rel-4 Correction to TpReleaseCauseSet in Multi

Party Call Control
F 4.5.0 N5-021052 OSA1

NP-030020 29.198-04-3 009 - Rel-5 Correction to TpReleaseCauseSet in Multi
Party Call Control IDL

A 5.1.0 N5-021053 OSA2

NP-030020 29.198-04 060 - Rel-4 Correction to Sequence Diagrams to remove
incorrect Framework references

F 4.5.0 N5-021063 OSA1

NP-030020 29.198-04 061 - Rel-4 Correction to User Interaction Prepaid
Sequence Diagrams

F 4.5.0 N5-021064 OSA1

NP-030020 29.198-04-2 004 - Rel-5 Correction to Prepaid Sequence Diagram A 5.1.0 N5-021065 OSA2
NP-030020 29.198-04 062 - Rel-4 Correction to remove unused

TpCallChargeOrder
F 4.5.0 N5-021079 OSA1

NP-030020 29.198-04-1 004 - Rel-5 Correction to remove unused
TpCallChargeOrder

A 5.1.0 N5-021080 OSA2

NP-030020 29.198-04 063 - Rel-4 Correction to TpCallEventCriteriaResult in
Generic Call Control

F 4.5.0 N5-021121 OSA1

NP-030020 29.198-04-2 005 - Rel-5 Correction to TpCallEventCriteriaResult in
Generic Call Control

A 5.1.0 N5-021122 OSA2

NP-030020 29.198-04 064 - Rel-4 Correction of status of methods to interfaces
in clause 7.3

F 4.5.0 N5-030048 OSA1

CR page 1

joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5) N5-021080
Meeting #21, Dublin, IRELAND, 28 – 31 October 2002

CR-Form-v7

CHANGE REQUEST

! 29.198-04-1 CR 004 ! rev - ! Current version: 5.1.0
!

For HELP on using this form, see bottom of this page or look at the pop-up text over the ! symbols.

Proposed change affects: UICC apps! ME Radio Access Network Core Network X

Title: ! Correction to remove unused TpCallChargeOrder

Source: ! N5

Work item code: ! OSA2 Date: ! 31/10/2002

Category: ! A Release: ! REL-5
 Use one of the following categories:

F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.

Use one of the following releases:
2 (GSM Phase 2)
R96 (Release 1996)
R97 (Release 1997)
R98 (Release 1998)
R99 (Release 1999)
Rel-4 (Release 4)
Rel-5 (Release 5)
Rel-6 (Release 6)

Reason for change: ! After the charging mechanism was re-worked for Release 4 / Parlay 3.0 in the

San Diego meeting, TpCallChargeOrder was no longer used. But it was not
removed from the specification.
Also TpCallChargePlan has an error in the description of its ChargePlan
element.

Summary of change: ! Remove the TpCallChargeOrder type (this is backwards compatible)

Correct the description associated with the ChargePlan element of
TpCallChargePlan

Consequences if !
not approved:

The description of TpCallChargePlan is very misleading and will confuse
developers.
Leaving unused types in the specification may confuse developers, who may not
be able to see as easily as we can that the type is unused. This is especially
true of the charging data types.

Clauses affected: ! 6.3, 6.6

 Y N
Other specs ! X Other core specifications !
affected: X Test specifications
 X O&M Specifications

Other comments: !

How to create CRs using this form:
Comprehensive information and tips about how to create CRs can be found at http://www.3gpp.org/specs/CR.htm.
Below is a brief summary:

1) Fill out the above form. The symbols above marked ! contain pop-up help information about the field that they are
closest to.

2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word
"revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be

CR page 2

downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name
with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of
the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to
the change request.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 3

CR page 3

6.3 TpCallChargePlan
Defines the Sequence of Data Elements that specify the charge plan for the call.

Sequence Element Name Sequence Element Type Description
ChargeOrderType TpCallChargeOrderCategory Charge order

TransparentCharge TpOctetSet Operator specific charge plan specification, e.g.
charging table name / charging table entry. The

associated charge plan data will be send
transparently to the charging records.

Only applicable when transparent charging is
selected.

ChargePlan TpInt32 Pre-defined charge plan. Example of the charge
plan set from which the application can choose
could be : (0 = normal user, 1 = silver card user,

2 = gold card user).

Only applicable when predefined change plan
transparent charging is selected.

AdditionalInfo TpOctetSet Descriptive string which is sent to the billing
system without prior evaluation. Could be

included in the ticket.

PartyToCharge TpCallPartyToChargeType Identifies the entity or party to be charged for the
call or call leg.

PartyToChargeAdditionalInfo TpCallPartyToChargeAdditionalInfo Contains additional information regarding the
charged party.

6.4 TpCallPartyToChargeAdditionalInfo
Defines the Tagged Choice of Data Elements that identifies the entity or party to be charged.

 Tag Element Type
 TpCallPartyToChargeType

Tag Element Value Choice Element
Type

Choice Element Name

P_CALL_PARTY_ORIGINATING, , NULL Undefined

P_CALL_PARTY_DESTINATION, NULL Undefined

P_CALL_PARTY_SPECIAL TpAddress CallPartySpecial

6.5 TpCallPartyToChargeType
Defines the type of call party to charge

Name Value Description
P_CALL_PARTY_ORIGINATING 0 Calling party, i.e. party that initiated the call. For application initiated calls this

indicates the first party of the call

P_CALL_PARTY_DESTINATION 1 Called party

P_CALL_PARTY_SPECIAL 2 An address identifying e.g. a third party, a service provider

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 4

CR page 4

6.6TpCallChargeOrder
Defines the Tagged Choice of Data Elements that specify the charge plan for the call.

 Tag Element Type
 TpCallChargeOrderCategory

Tag Element Value Choice Element Type Choice Element Name
P_CALL_CHARGE_TRANSPARENT TpOctetSet TransparentCharge

P_CALL_CHARGE_PREDEFINED_SET TpInt32 ChargePlan

6.76.6 TpCallChargeOrderCategory
Defines the type of charging to be applied

Name Value Description
P_CALL_CHARGE_TRANSPARENT 0 Operator specific charge plan specification, e.g. charging table name /

charging table entry. The associated charge plan data will be send
transparently to the charging records

P_CALL_CHARGE_PREDEFINED_SET 1 Pre-defined charge plan. Example of the charge plan set from which the
application can choose could be : (0 = normal user, 1 = silver card user, 2 =

gold card user).

CR page 1

joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5) N5-030048
Meeting #22, Bangkok, THAILAND, 27 – 31 January 2003

CR-Form-v7

CHANGE REQUEST

! 29.198-04 CR 064 ! rev - ! Current version: 4.5.0
!

For HELP on using this form, see bottom of this page or look at the pop-up text over the ! symbols.

Proposed change affects: UICC apps! ME Radio Access Network Core Network X

Title: ! Correction of status of methods to interfaces in clause 7.3

Source: ! N5

Work item code: ! OSA1 Date: ! 31/01/2003

Category: ! F Release: ! REL-4
 Use one of the following categories:

F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.

Use one of the following releases:
2 (GSM Phase 2)
R96 (Release 1996)
R97 (Release 1997)
R98 (Release 1998)
R99 (Release 1999)
Rel-4 (Release 4)
Rel-5 (Release 5)
Rel-6 (Release 6)

Reason for change: ! There is no requirement in the standard about the necessity to implement all or

only some of the methods defined for an interface.

Summary of change: ! Clarify which methods are mandatory and which are optional.

Consequences if !
not approved:

Application developers will not know which methods will actually be available.

Clauses affected: ! 7.3 Multi Party Call Control Service Interface Classes

 Y N
Other specs ! X Other core specifications !
affected: X Test specifications
 X O&M Specifications

Other comments: !

How to create CRs using this form:
Comprehensive information and tips about how to create CRs can be found at http://www.3gpp.org/specs/CR.htm.
Below is a brief summary:

1) Fill out the above form. The symbols above marked ! contain pop-up help information about the field that they are
closest to.

2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word
"revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be
downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name
with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of
the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to
the change request.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 2

CR page 2

7.3 MultiParty Call Control Service Interface Classes
The Multi-party Call Control service enhances the functionality of the Generic Call Control Service with leg
management. It also allows for multi-party calls to be established, i.e., up to a service specific number of legs can be
connected simultaneously to the same call.

The Multi-party Call Control Service is represented by the IpMultiPartyCallControlManager, IpMultiPartyCall,
IpCallLeg interfaces that interface to services provided by the network. Some methods are asynchronous, in that they
do not lock a thread into waiting whilst a transaction performs. In this way, the client machine can handle many more
calls, than one that uses synchronous message calls. To handle responses and reports, the developer must implement
IpAppMultiPartyCallControlManager, IpAppMultiPartyCall and IpAppCallLeg to provide the callback mechanism.

7.3.1 Interface Class IpMultiPartyCallControlManager

Inherits from: IpService

This interface is the 'service manager' interface for the Multi-party Call Control Service. The multi-party call control
manager interface provides the management functions to the multi-party call control service. The application
programmer can use this interface to provide overload control functionality, create call objects and to enable or disable
call-related event notifications. The action table associated with the STD shows in what state the
IpMultiPartyCallControlManager must be if a method can successfully complete. In other words, if the
IpMultiPartyCallControlManager is in another state the method will throw an exception immediately.

This interface shall be implemented by a Multi Party Call Control SCF. As a minimum requirement either the
createCall() method shall be implemented, or the createNotification() and destroyNotification() methods shall be
implemented.

<<Interface>>

IpMultiPartyCallControlManager

createCall (appCall : in IpAppMultiPartyCallRef) : TpMultiPartyCallIdentifier

createNotification (appCallControlManager : in IpAppMultiPartyCallControlManagerRef, notificationRequest
: in TpCallNotificationRequest) : TpAssignmentID

destroyNotification (assignmentID : in TpAssignmentID) : void

changeNotification (assignmentID : in TpAssignmentID, notificationRequest : in TpCallNotificationRequest) :
void

getNotification () : TpNotificationRequestedSet

setCallLoadControl (duration : in TpDuration, mechanism : in TpCallLoadControlMechanism, treatment : in
TpCallTreatment, addressRange : in TpAddressRange) : TpAssignmentID

Method
createCall()

This method is used to create a new call object. An IpAppMultiPartyCallControlManager should already have been
passed to the IpMultiPartyCallControlManager,

otherwise the call control will not be able to report a callAborted() to the application (the application should invoke
setCallback() if it wishes to ensure this).

Returns callReference: Specifies the interface reference and sessionID of the call created.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 3

CR page 3

Parameters

appCall : in IpAppMultiPartyCallRef

Specifies the application interface for callbacks from the call created.

Returns

TpMultiPartyCallIdentifier

Raises

TpCommonExceptions, P_INVALID_INTERFACE_TYPE

Method
createNotification()

This method is used to enable call notifications so that events can be sent to the application. This is the first step an
application has to do to get initial notifications of calls happening in the network. When such an event happens, the
application will be informed by reportNotification(). In case the application is interested in other events during the
context of a particular call session it has to use the createAndRouteCallLegReq() method on the call object or the
eventReportReq() method on the call leg object. The application will get access to the call object when it receives the
reportNotification(). (Note that createNotification() is not applicable if the call is setup by the application).

The createNotification method is purely intended for applications to indicate their interest to be notified when certain
call events take place. It is possible to subscribe to a certain event for a whole range of addresses, e.g. the application
can indicate it wishes to be informed when a call is made to any number starting with 800.

If some application already requested notifications with criteria that overlap the specified criteria, the request is refused
with P_INVALID_CRITERIA. The criteria are said to overlap if both originating and terminating ranges overlap and
the same number plan is used.

If a notification is requested by an application with monitor mode set to notify, then there is no need to check the rest of
the criteria for overlapping with any existing request as the notify mode does not allow control on a call to be passed
over. Only one application can place an interrupt request if the criteria overlaps.

If the same application requests two notifications with exactly the same criteria but different callback references, the
second callback will be treated as an additional callback. Both notifications will share the same assignmentID. The
gateway will always use the most recent callback. In case this most recent callback fails the second most recent is used.
In case the enableCallNotification contains no callback, at the moment the application needs to be informed the gateway
will use as callback the callback that has been registered by setCallback().

Returns assignmentID: Specifies the ID assigned by the call control manager interface for this newly-enabled event
notification.

Parameters

appCallControlManager : in IpAppMultiPartyCallControlManagerRef

If this parameter is set (i.e. not NULL) it specifies a reference to the application interface, which is used for callbacks. If
set to NULL, the application interface defaults to the interface specified via the setCallback() method.

notificationRequest : in TpCallNotificationRequest

Specifies the event specific criteria used by the application to define the event required. Only events that meet these
criteria are reported. Examples of events are "incoming call attempt reported by network", "answer", "no answer",
"busy". Individual addresses or address ranges may be specified for destination and/or origination.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 4

CR page 4

Returns

TpAssignmentID

Raises

TpCommonExceptions, P_INVALID_CRITERIA, P_INVALID_INTERFACE_TYPE,
P_INVALID_EVENT_TYPE

Method
destroyNotification()

This method is used by the application to disable call notifications.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignment ID given by the generic call control manager interface when the previous enableNotification()
was called. If the assignment ID does not correspond to one of the valid assignment IDs, the exception
P_INVALID_ASSIGNMENTID will be raised. If two callbacks have been registered under this assignment ID both of
them will be disabled.

Raises

TpCommonExceptions, P_INVALID_ASSIGNMENT_ID

Method
changeNotification()

This method is used by the application to change the event criteria introduced with createNotification. Any stored
criteria associated with the specified assignmentID will be replaced with the specified criteria.

Parameters

assignmentID : in TpAssignmentID

Specifies the ID assigned by the generic call control manager interface for the event notification. If two callbacks have
been registered under this assignment ID both of them will be changed.

notificationRequest : in TpCallNotificationRequest

Specifies the new set of event specific criteria used by the application to define the event required. Only events that
meet these criteria are reported.

Raises

TpCommonExceptions, P_INVALID_ASSIGNMENT_ID, P_INVALID_CRITERIA,
P_INVALID_EVENT_TYPE

Method
getNotification()

This method is used by the application to query the event criteria set with createNotification or changeNotification.

Returns notificationsRequested: Specifies the notifications that have been requested by the application.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 5

CR page 5

Parameters
No Parameters were identified for this method

Returns

TpNotificationRequestedSet

Raises

TpCommonExceptions

Method
setCallLoadControl()

This method imposes or removes load control on calls made to a particular address range within the call control service.
The address matching mechanism is similar as defined for TpCallEventCriteria.

Returns assignmentID: Specifies the assignmentID assigned by the gateway to this request. This assignmentID can be
used to correlate the callOverloadEncountered and callOverloadCeased methods with the request.

Parameters

duration : in TpDuration

Specifies the duration for which the load control should be set.

A duration of 0 indicates that the load control should be removed.

A duration of -1 indicates an infinite duration (i.e., until disabled by the application)

A duration of -2 indicates the network default duration.

mechanism : in TpCallLoadControlMechanism

Specifies the load control mechanism to use (for example, admit one call per interval), and any necessary parameters,
such as the call admission rate. The contents of this parameter are ignored if the load control duration is set to zero.

treatment : in TpCallTreatment

Specifies the treatment of calls that are not admitted. The contents of this parameter are ignored if the load control
duration is set to zero.

addressRange : in TpAddressRange

Specifies the address or address range to which the overload control should be applied or removed.

Returns

TpAssignmentID

Raises

TpCommonExceptions, P_INVALID_ADDRESS, P_UNSUPPORTED_ADDRESS_PLAN

7.3.2 Interface Class IpAppMultiPartyCallControlManager

Inherits from: IpInterface

The Multi-Party call control manager application interface provides the application call control management functions
to the Multi-Party call control service.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 6

CR page 6

<<Interface>>

IpAppMultiPartyCallControlManager

reportNotification (callReference : in TpMultiPartyCallIdentifier, callLegReferenceSet : in
TpCallLegIdentifierSet, notificationInfo : in TpCallNotificationInfo, assignmentID : in TpAssignmentID) :
TpAppMultiPartyCallBack

callAborted (callReference : in TpSessionID) : void

managerInterrupted () : void

managerResumed () : void

callOverloadEncountered (assignmentID : in TpAssignmentID) : void

callOverloadCeased (assignmentID : in TpAssignmentID) : void

Method
reportNotification()

This method notifies the application of the arrival of a call-related event.

If this method is invoked with a monitor mode of P_CALL_MONITOR_MODE_INTERRUPT, then the APL has
control of the call. If the APL does nothing with the call (including its associated legs) within a specified time period
(the duration of which forms a part of the service level agreement), then the call in the network shall be released and
callEnded() shall be invoked, giving a release cause of P_TIMER_EXPIRY.

Returns appCallBack: Specifies references to the application interface which implements the callback interface for the
new call and/or new call leg. If the application has previously explicitly passed a reference to the callback interface
using a setCallback() invocation, this parameter may be set to P_APP_CALLBACK_UNDEFINED, or if supplied must
be the same as that provided during the setCallback().

This parameter will be set to P_APP_CALLBACK_UNDEFINED if the notification is in NOTIFY mode.

Parameters

callReference : in TpMultiPartyCallIdentifier

Specifies the reference to the call interface to which the notification relates. If the notification is being given in
NOTIFY mode, this parameter shall be ignored by the application client implementation, and consequently the
implementation of the SCS entity invoking reportNotification may populate this parameter as it chooses.

callLegReferenceSet : in TpCallLegIdentifierSet

Specifies the set of all call leg references. First in the set is the reference to the originating callLeg. It indicates the call
leg related to the originating party. In case there is a destination call leg this will be the second leg in the set. from the
notificationInfo can be found on whose behalf the notification was sent.

However, if the notification is being given in NOTIFY mode, this parameter shall be ignored by the application client
implementation, and consequently the implementation of the SCS entity invoking reportNotification may populate this
parameter as it chooses.

notificationInfo : in TpCallNotificationInfo

Specifies data associated with this event (e.g. the originating or terminating leg which reports the notification).

assignmentID : in TpAssignmentID

Specifies the assignment id which was returned by the createNotification() method. The application can use assignment
id to associate events with event specific criteria and to act accordingly.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 7

CR page 7

Returns

TpAppMultiPartyCallBack

Method
callAborted()

This method indicates to the application that the call object has aborted or terminated abnormally. No further
communication will be possible between the call and application.

Parameters

callReference : in TpSessionID

Specifies the sessionID of call that has aborted or terminated abnormally.

Method
managerInterrupted()

This method indicates to the application that event notifications and method invocations have been temporarily
interrupted (for example, due to network resources unavailable).

Note that more permanent failures are reported via the Framework (integrity management).

Parameters
No Parameters were identified for this method

Method
managerResumed()

This method indicates to the application that event notifications are possible and method invocations are enabled.

Parameters
No Parameters were identified for this method

Method
callOverloadEncountered()

This method indicates that the network has detected overload and may have automatically imposed load control on calls
requested to a particular address range or calls made to a particular destination within the call control service.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignmentID corresponding to the associated setCallLoadControl. This implies the addressrange for
within which the overload has been encountered.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 8

CR page 8

Method
callOverloadCeased()

This method indicates that the network has detected that the overload has ceased and has automatically removed any
load controls on calls requested to a particular address range or calls made to a particular destination within the call
control service.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignmentID corresponding to the associated setCallLoadControl. This implies the addressrange for
within which the overload has been ceased

7.3.3 Interface Class IpMultiPartyCall

Inherits from: IpService

The Multi-Party Call provides the possibility to control the call routing, to request information from the call, control the
charging of the call, to release the call and to supervise the call. It also gives the possibility to manage call legs
explicitly. An application may create more then one call leg.

This interface shall be implemented by a Multi Party Call Control SCF. The release() and deassignCall() methods, and
either the createCallLeg() or the createAndRouteCallLegReq(), shall be implemented as a minimum requirement.

<<Interface>>

IpMultiPartyCall

getCallLegs (callSessionID : in TpSessionID) : TpCallLegIdentifierSet

createCallLeg (callSessionID : in TpSessionID, appCallLeg : in IpAppCallLegRef) : TpCallLegIdentifier

createAndRouteCallLegReq (callSessionID : in TpSessionID, eventsRequested : in
TpCallEventRequestSet, targetAddress : in TpAddress, originatingAddress : in TpAddress, appInfo : in
TpCallAppInfoSet, appLegInterface : in IpAppCallLegRef) : TpCallLegIdentifier

release (callSessionID : in TpSessionID, cause : in TpReleaseCause) : void

deassignCall (callSessionID : in TpSessionID) : void

getInfoReq (callSessionID : in TpSessionID, callInfoRequested : in TpCallInfoType) : void

setChargePlan (callSessionID : in TpSessionID, callChargePlan : in TpCallChargePlan) : void

setAdviceOfCharge (callSessionID : in TpSessionID, aOCInfo : in TpAoCInfo, tariffSwitch : in TpDuration) :
void

superviseReq (callSessionID : in TpSessionID, time : in TpDuration, treatment : in
TpCallSuperviseTreatment) : void

Method
getCallLegs()

This method requests the identification of the call leg objects associated with the call object. Returns the legs in the
order of creation.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 9

CR page 9

Returns callLegList: Specifies the call legs associated with the call. The set contains both the sessionIDs and the
interface references.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

Returns

TpCallLegIdentifierSet

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
createCallLeg()

This method requests the creation of a new call leg object.

Returns callLeg: Specifies the interface and sessionID of the call leg created.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

appCallLeg : in IpAppCallLegRef

Specifies the application interface for callbacks from the call leg created.

Returns

TpCallLegIdentifier

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_INTERFACE_TYPE

Method
createAndRouteCallLegReq()

This asynchronous operation requests creation and routing of a new callLeg. In case the connection to the destination
party is established successfully the CallLeg is attached to the call, i.e. no explicit attachMediaReq() operation is
needed. Requested events will be reported on the IpAppCallLeg interface. This interface the application must provide
through the appLegInterface parameter.

The extra address information such as originatingAddress is optional. If not present (i.e., the plan is set to
P_ADDRESS_PLAN_NOT_PRESENT), the information provided in corresponding addresses from the route is used,
otherwise the network or gateway provided numbers will be used.

If the application wishes that the call leg should be represented in the network as being a redirection it should include a
value for the field P_CALL_APP_ORIGINAL_DESTINATION_ADDRESS of TpCallAppInfo.

If this method is invoked, and call reports have been requested, yet the IpAppCallLeg interface parameter is NULL, this
method shall throw the P_NO_CALLBACK_ADDRESS_SET exception.

Returns callLegReference: Specifies the reference to the CallLeg interface that was created.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 10

CR page 10

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

eventsRequested : in TpCallEventRequestSet

Specifies the event specific criteria used by the application to define the events required. Only events that meet these
criteria are reported. Examples of events are "address analysed", "answer" and "release".

targetAddress : in TpAddress

Specifies the destination party to which the call should be routed.

originatingAddress : in TpAddress

Specifies the address of the originating (calling) party.

appInfo : in TpCallAppInfoSet

Specifies application-related information pertinent to the call (such as alerting method, tele-service type, service
identities and interaction indicators).

appLegInterface : in IpAppCallLegRef

Specifies a reference to the application interface that implements the callback interface for the new call leg. Requested
events will be reported by the eventReportRes() operation on this interface.

Returns

TpCallLegIdentifier

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_INTERFACE_TYPE,
P_INVALID_ADDRESS , P_UNSUPPORTED_ADDRESS_PLAN, P_INVALID_NETWORK_STATE,
P_INVALID_EVENT_TYPE, P_INVALID_CRITERIA

Method
release()

This method requests the release of the call object and associated objects. The call will also be terminated in the
network. If the application requested reports to be sent at the end of the call (e.g., by means of getInfoReq) these reports
will still be sent to the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

cause : in TpReleaseCause

Specifies the cause of the release.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 11

CR page 11

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE

Method
deassignCall()

This method requests that the relationship between the application and the call and associated objects be de-assigned. It
leaves the call in progress, however, it purges the specified call object so that the application has no further control of
call processing. If a call is de-assigned that has call information reports, call leg event reports or call Leg information
reports requested, then these reports will be disabled and any related information discarded.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
getInfoReq()

This asynchronous method requests information associated with the call to be provided at the appropriate time (for
example, to calculate charging). This method must be invoked before the call is routed to a target address.

A report is received when the destination leg or party terminates or when the call ends. The call object will exist after
the call is ended if information is required to be sent to the application at the end of the call. In case the originating party
is still available the application can still initiate a follow-on call using routeReq.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

callInfoRequested : in TpCallInfoType

Specifies the call information that is requested.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
setChargePlan()

Set an operator specific charge plan for the call.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

callChargePlan : in TpCallChargePlan

Specifies the charge plan to use.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 12

CR page 12

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
setAdviceOfCharge()

This method allows for advice of charge (AOC) information to be sent to terminals that are capable of receiving this
information.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

aOCInfo : in TpAoCInfo

Specifies two sets of Advice of Charge parameter.

tariffSwitch : in TpDuration

Specifies the tariff switch interval that signifies when the second set of AoC parameters becomes valid.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_CURRENCY,
P_INVALID_AMOUNT

Method
superviseReq()

The application calls this method to supervise a call. The application can set a granted connection time for this call. If
an application calls this operation before it routes a call or a user interaction operation the time measurement will start
as soon as the call is answered by the B-party or the user interaction system.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

time : in TpDuration

Specifies the granted time in milliseconds for the connection.

treatment : in TpCallSuperviseTreatment

Specifies how the network should react after the granted connection time expired.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

7.3.4 Interface Class IpAppMultiPartyCall

Inherits from: IpInterface

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 13

CR page 13

The Multi-Party call application interface is implemented by the client application developer and is used to handle call
request responses and state reports.

<<Interface>>

IpAppMultiPartyCall

getInfoRes (callSessionID : in TpSessionID, callInfoReport : in TpCallInfoReport) : void

getInfoErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : void

superviseRes (callSessionID : in TpSessionID, report : in TpCallSuperviseReport, usedTime : in
TpDuration) : void

superviseErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : void

callEnded (callSessionID : in TpSessionID, report : in TpCallEndedReport) : void

createAndRouteCallLegErr (callSessionID : in TpSessionID, callLegReference : in TpCallLegIdentifier,
errorIndication : in TpCallError) : void

Method
getInfoRes()

This asynchronous method reports time information of the finished call or call attempt as well as release cause
depending on which information has been requested by getInfoReq. This information may be used e.g. for charging
purposes. The call information will possibly be sent after reporting of all cases where the call or a leg of the call has
been disconnected or a routing failure has been encountered.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

callInfoReport : in TpCallInfoReport

Specifies the call information requested.

Method
getInfoErr()

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 14

CR page 14

Method
superviseRes()

This asynchronous method reports a call supervision event to the application when it has indicated its interest in these
kind of events.

It is also called when the connection is terminated before the supervision event occurs. Furthermore, this method is
invoked as a response to the request also when a tariff switch happens in the network during an active call.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call

report : in TpCallSuperviseReport

Specifies the situation which triggered the sending of the call supervision response.

usedTime : in TpDuration

Specifies the used time for the call supervision (in milliseconds).

Method
superviseErr()

This asynchronous method reports a call supervision error to the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

Method
callEnded()

This method indicates to the application that the call has terminated in the network.

Note that the event that caused the call to end might have been received separately if the application was monitoring for
it.

Parameters

callSessionID : in TpSessionID

Specifies the call sessionID.

report : in TpCallEndedReport

Specifies the reason the call is terminated.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 15

CR page 15

Method
createAndRouteCallLegErr()

This asynchronous method indicates that the request to route the call leg to the destination party was unsuccessful - the
call leg could not be routed to the destination party (for example, the network was unable to route the call leg, the
parameters were incorrect, the request was refused, etc.). Note that the event cases that can be monitored and
correspond to an unsuccessful setup of a connection (e.g. busy, no_answer) will be reported by eventReportRes() and
not by this operation.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

callLegReference : in TpCallLegIdentifier

Specifies the reference to the CallLeg interface that was created.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

7.3.5 Interface Class IpCallLeg

Inherits from: IpService

The call leg interface represents the logical call leg associating a call with an address. The call leg tracks its own states
and allows charging summaries to be accessed. The leg represents the signalling relationship between the call and an
address. An application that uses the IpCallLeg interface to set up connections has good control, e.g. by defining leg
specific event request and can obtain call leg specific report and events.

This interface shall be implemented by a Multi Party Call Control SCF. The routeReq(), eventReportReq(), release(),
continueProcessing() and deassign() methods shall be implemented as a minimum requirement.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 16

CR page 16

<<Interface>>

IpCallLeg

routeReq (callLegSessionID : in TpSessionID, targetAddress : in TpAddress, originatingAddress : in
TpAddress, appInfo : in TpCallAppInfoSet, connectionProperties : in TpCallLegConnectionProperties) :
void

eventReportReq (callLegSessionID : in TpSessionID, eventsRequested : in TpCallEventRequestSet) : void

release (callLegSessionID : in TpSessionID, cause : in TpReleaseCause) : void

getInfoReq (callLegSessionID : in TpSessionID, callLegInfoRequested : in TpCallLegInfoType) : void

getCall (callLegSessionID : in TpSessionID) : TpMultiPartyCallIdentifier

attachMediaReq (callLegSessionID : in TpSessionID) : void

detachMediaReq (callLegSessionID : in TpSessionID) : void

getCurrentDestinationAddress (callLegSessionID : in TpSessionID) : TpAddress

continueProcessing (callLegSessionID : in TpSessionID) : void

setChargePlan (callLegSessionID : in TpSessionID, callChargePlan : in TpCallChargePlan) : void

setAdviceOfCharge (callLegSessionID : in TpSessionID, aOCInfo : in TpAoCInfo, tariffSwitch : in
TpDuration) : void

superviseReq (callLegSessionID : in TpSessionID, time : in TpDuration, treatment : in
TpCallLegSuperviseTreatment) : void

deassign (callLegSessionID : in TpSessionID) : void

Method
routeReq()

This asynchronous method requests routing of the call leg to the remote party indicated by the targetAddress.

In case the connection to the destination party is established successfully the CallLeg will be either detached or attached
to the call based on the attach Mechanism values specified in the connectionProperties parameter.

The extra address information such as originatingAddress is optional. If not present (i.e. the plan is set to
P_ADDRESS_PLAN_NOT_PRESENT), the information provided in the corresponding addresses from the route is
used, otherwise network or gateway provided addresses will be used.

If the application wishes that the call leg should be represented in the network as being a redirection it should include a
value for the field P_CALL_APP_ORIGINAL_DESTINATION_ADDRESS of TpCallAppInfo.

This operation continues processing of the call leg.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

targetAddress : in TpAddress

Specifies the destination party to which the call leg should be routed

originatingAddress : in TpAddress

Specifies the address of the originating (calling) party.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 17

CR page 17

appInfo : in TpCallAppInfoSet

Specifies application-related information pertinent to the call leg (such as alerting method, tele-service type, service
identities and interaction indicators).

connectionProperties : in TpCallLegConnectionProperties

Specifies the properties of the connection.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE,
P_INVALID_ADDRESS, P_UNSUPPORTED_ADDRESS_PLAN

Method
eventReportReq()

This asynchronous method sets, clears or changes the criteria for the events that the call leg object will be set to
observe.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

eventsRequested : in TpCallEventRequestSet

Specifies the event specific criteria used by the application to define the events required. Only events that meet these
criteria are reported. Examples of events are "address analysed", "answer" and "release".

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_EVENT_TYPE,
P_INVALID_CRITERIA

Method
release()

This method requests the release of the call leg. If successful, the associated address (party) will be released from the
call, and the call leg deleted. Note that in some cases releasing the party may lead to release of the complete call in the
network. The application will be informed of this with callEnded().

This operation continues processing of the call leg.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

cause : in TpReleaseCause

Specifies the cause of the release.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 18

CR page 18

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE

Method
getInfoReq()

This asynchronous method requests information associated with the call leg to be provided at the appropriate time (for
example, to calculate charging). Note that in the call leg information must be accessible before the objects of concern
are deleted.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

callLegInfoRequested : in TpCallLegInfoType

Specifies the call leg information that is requested.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
getCall()

This method requests the call associated with this call leg.

Returns callReference: Specifies the interface and sessionID of the call associated with this call leg.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

Returns

TpMultiPartyCallIdentifier

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
attachMediaReq()

This method requests that the call leg be attached to its call object. This will allow transmission on all associated bearer
connections or media streams to and from other parties in the call. The call leg must be in the connected state for this
method to complete successfully.

Parameters

callLegSessionID : in TpSessionID

Specifies the sessionID of the call leg to attach to the call.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 19

CR page 19

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE

Method
detachMediaReq()

This method will detach the call leg from its call, i.e., this will prevent transmission on any associated bearer
connections or media streams to and from other parties in the call. The call leg must be in the connected state for this
method to complete successfully.

Parameters

callLegSessionID : in TpSessionID

Specifies the sessionID of the call leg to detach from the call.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE

Method
getCurrentDestinationAddress()

Queries the current address of the destination the leg has been directed to.

Returns the address of the destination point towards which the call leg has been routed..

If this method is invoked on the Originating Call Leg, exception P_INVALID_STATE will be thrown.

Parameters

callLegSessionID : in TpSessionID

Specifies the call session ID of the call leg.

Returns

TpAddress

Raises

TpCommonExceptions,P_INVALID_SESSION_ID

Method
continueProcessing()

This operation continues processing of the call leg. Applications can invoke this operation after call leg processing was
interrupted due to detection of a notification or event the application subscribed its interest in.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 20

CR page 20

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE

Method
setChargePlan()

Set an operator specific charge plan for the call leg.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call party.

callChargePlan : in TpCallChargePlan

Specifies the charge plan to use.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
setAdviceOfCharge()

This method allows for advice of charge (AOC) information to be sent to terminals that are capable of receiving this
information.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call party.

aOCInfo : in TpAoCInfo

Specifies two sets of Advice of Charge parameter.

tariffSwitch : in TpDuration

Specifies the tariff switch interval that signifies when the second set of AoC parameters becomes valid.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_CURRENCY,
P_INVALID_AMOUNT

Method
superviseReq()

The application calls this method to supervise a call leg. The application can set a granted connection time for this call.
If an application calls this function before it calls a routeReq() or a user interaction function the time measurement will
start as soon as the call is answered by the B-party or the user interaction system.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call party.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 21

CR page 21

time : in TpDuration

Specifies the granted time in milliseconds for the connection.

treatment : in TpCallLegSuperviseTreatment

Specifies how the network should react after the granted connection time expired.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
deassign()

This method requests that the relationship between the application and the call leg and associated objects be de-
assigned. It leaves the call leg in progress, however, it purges the specified call leg object so that the application has no
further control of call leg processing. If a call leg is de-assigned that has event reports or call leg information reports
requested, then these reports will be disabled and any related information discarded.

The application should not release or deassign the call leg when received a callLegEnded() or callEnded(). This
operation continues processing of the call leg.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

7.3.6 Interface Class IpAppCallLeg

Inherits from: IpInterface

The application call leg interface is implemented by the client application developer and is used to handle responses and
errors associated with requests on the call leg in order to be able to receive leg specific information and events.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 22

CR page 22

<<Interface>>

IpAppCallLeg

eventReportRes (callLegSessionID : in TpSessionID, eventInfo : in TpCallEventInfo) : void

eventReportErr (callLegSessionID : in TpSessionID, errorIndication : in TpCallError) : void

attachMediaRes (callLegSessionID : in TpSessionID) : void

attachMediaErr (callLegSessionID : in TpSessionID, errorIndication : in TpCallError) : void

detachMediaRes (callLegSessionID : in TpSessionID) : void

detachMediaErr (callLegSessionID : in TpSessionID, errorIndication : in TpCallError) : void

getInfoRes (callLegSessionID : in TpSessionID, callLegInfoReport : in TpCallLegInfoReport) : void

getInfoErr (callLegSessionID : in TpSessionID, errorIndication : in TpCallError) : void

routeErr (callLegSessionID : in TpSessionID, errorIndication : in TpCallError) : void

superviseRes (callLegSessionID : in TpSessionID, report : in TpCallSuperviseReport, usedTime : in
TpDuration) : void

superviseErr (callLegSessionID : in TpSessionID, errorIndication : in TpCallError) : void

callLegEnded (callLegSessionID : in TpSessionID, cause : in TpReleaseCause) : void

Method
eventReportRes()

This asynchronous method reports that an event has occurred that was requested to be reported (for example, a mid-call
event, the party has requested to disconnect, etc.).

Depending on the type of event received, outstanding requests for events are discarded. The exact details of these so-
called disarming rules are captured in the data definition of the event type.

If this method is invoked for a report with a monitor mode of P_CALL_MONITOR_MODE_INTERRUPT, then the
application has control of the call leg. If the application does nothing with the call leg within a specified time period
(the duration which forms a part of the service level agreement), then the connection in the network shall be released
and callLegEnded() shall be invoked, giving a release cause of P_TIMER_EXPIRY.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg on which the event was detected.

eventInfo : in TpCallEventInfo

Specifies data associated with this event.

Method
eventReportErr()

This asynchronous method indicates that the request to manage call leg event reports was unsuccessful, and the reason
(for example, the parameters were incorrect, the request was refused, etc.).

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 23

CR page 23

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

Method
attachMediaRes()

This asynchronous method reports the attachment of a call leg to a call has succeeded. The media channels or bearer
connections to this leg is now available.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg to which the information relates.

Method
attachMediaErr()

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

Method
detachMediaRes()

This asynchronous method reports the detachment of a call leg from a call has succeeded. The media channels or bearer
connections to this leg is no longer available.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg to which the information relates.

Method
detachMediaErr()

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 24

CR page 24

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

Method
getInfoRes()

This asynchronous method reports all the necessary information requested by the application, for example to calculate
charging.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg to which the information relates.

callLegInfoReport : in TpCallLegInfoReport

Specifies the call leg information requested.

Method
getInfoErr()

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

Method
routeErr()

This asynchronous method indicates that the request to route the call leg to the destination party was unsuccessful - the
call leg could not be routed to the destination party (for example, the network was unable to route the call leg, the
parameters were incorrect, the request was refused, etc.).

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 25

CR page 25

Method
superviseRes()

This asynchronous method reports a call leg supervision event to the application when it has indicated its interest in
these kind of events.

It is also called when the connection to a party is terminated before the supervision event occurs. Furthermore, this
method is invoked as a response to the request also when a tariff switch happens in the network during an active call.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg

report : in TpCallSuperviseReport

Specifies the situation which triggered the sending of the call leg supervision response.

usedTime : in TpDuration

Specifies the used time for the call leg supervision (in milliseconds).

Method
superviseErr()

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

Method
callLegEnded()

This method indicates to the application that the leg has terminated in the network. The application has received all
requested results (e.g., getInfoRes) related to the call leg. The call leg will be destroyed after returning from this
method.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

cause : in TpReleaseCause

Specifies the reason the connection is terminated.

CR page 1

joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5) N5-021121
Meeting #21, Dublin, IRELAND, 28 – 31 October 2002

CR-Form-v7

CHANGE REQUEST

! 29.198-04 CR 063 ! rev - ! Current version: 4.5.0
!

For HELP on using this form, see bottom of this page or look at the pop-up text over the ! symbols.

Proposed change affects: UICC apps! ME Radio Access Network Core Network X

Title: ! Correction to TpCallEventCriteriaResult in Generic Call Control

Source: ! N5

Work item code: ! OSA1 Date: ! 31/10/2002

Category: ! F Release: ! REL-4
 Use one of the following categories:

F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.

Use one of the following releases:
2 (GSM Phase 2)
R96 (Release 1996)
R97 (Release 1997)
R98 (Release 1998)
R99 (Release 1999)
Rel-4 (Release 4)
Rel-5 (Release 5)
Rel-6 (Release 6)

Reason for change: ! The text description for TpCallEventCriteriaResult contains a name of an element

in a struct data type which contradicts the IDL description of the same data type
in gcc_data.idl:

Summary of change: ! Change text description to match current IDL description of

TpCallEventCriteriaResult

Consequences if !
not approved:

A contradiction will exist between the IDL and the Word document. If no
alignment is made, some developers will chose one name, others the other, and
interworking problems will arise.

Clauses affected: ! 6.6.2.25

 Y N
Other specs ! X Other core specifications !
affected: X Test specifications
 X O&M Specifications

Other comments: !

How to create CRs using this form:
Comprehensive information and tips about how to create CRs can be found at http://www.3gpp.org/specs/CR.htm.
Below is a brief summary:

1) Fill out the above form. The symbols above marked ! contain pop-up help information about the field that they are
closest to.

2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word
"revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be
downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name
with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of
the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to
the change request.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 2

CR page 2

6.6.2.25 TpCallEventCriteriaResult

Defines a sequence of data elements that specify a requested call event notification criteria with the associated
assignmentID.

Sequence Element
Name

Sequence Element
Type

Sequence Element
Description

CallEventCriteria TpCallEventCriteria The event criteria that were specified by the application.
AssignmentID TpInt32 The associated assignmentID. This can be used to disable the notification.

"============================= MODIFIED SECTION ============================#

Annex A (normative):
OMG IDL Description of Call Control SCF
The OMG IDL representation of this interface specification is contained in text files (contained in archive
2919804IDL.ZIP) which accompany the present document.

In file gcc_data.idl:

 struct TpCallEventCriteriaResult {
 TpCallEventCriteria CallEventCriteria;
 TpInt32 AssignmentID;
 };

"========================== END MODIFIED SECTION ============================#

CR page 1

joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5) N5-021079
Meeting #21, Dublin, IRELAND, 28 – 31 October 2002

CR-Form-v7

CHANGE REQUEST

! 29.198-04 CR 062 ! rev - ! Current version: 4.5.0
!

For HELP on using this form, see bottom of this page or look at the pop-up text over the ! symbols.

Proposed change affects: UICC apps! ME Radio Access Network Core Network X

Title: ! Correction to remove unused TpCallChargeOrder

Source: ! N5

Work item code: ! OSA1 Date: ! 31/10/2002

Category: ! F Release: ! REL-4
 Use one of the following categories:

F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.

Use one of the following releases:
2 (GSM Phase 2)
R96 (Release 1996)
R97 (Release 1997)
R98 (Release 1998)
R99 (Release 1999)
Rel-4 (Release 4)
Rel-5 (Release 5)
Rel-6 (Release 6)

Reason for change: ! After the charging mechanism was re-worked for Release 4 / Parlay 3.0 in the

San Diego meeting, TpCallChargeOrder was no longer used. But it was not
removed from the specification.
Also TpCallChargePlan has an error in the description of its ChargePlan
element.

Summary of change: ! Remove the TpCallChargeOrder type (this is backwards compatible)

Correct the description associated with the ChargePlan element of
TpCallChargePlan

Consequences if !
not approved:

The description of TpCallChargePlan is very misleading and will confuse
developers.
Leaving unused types in the specification may confuse developers, who may not
be able to see as easily as we can that the type is unused. This is especially
true of the charging data types.

Clauses affected: ! 8.3, 8.6

 Y N
Other specs ! X Other core specifications !
affected: X Test specifications
 X O&M Specifications

Other comments: !

How to create CRs using this form:
Comprehensive information and tips about how to create CRs can be found at http://www.3gpp.org/specs/CR.htm.
Below is a brief summary:

1) Fill out the above form. The symbols above marked ! contain pop-up help information about the field that they are
closest to.

2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word
"revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be

CR page 2

downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name
with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of
the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to
the change request.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 3

CR page 3

8.3 TpCallChargePlan
Defines the Sequence of Data Elements that specify the charge plan for the call.

Sequence Element Name Sequence Element Type Description
ChargeOrderType TpCallChargeOrderCategory Charge order

TransparentCharge TpOctetSet Operator specific charge plan specification,
e.g. charging table name / charging table entry.

The associated charge plan data will be send
transparently to the charging records.

Only applicable when transparent charging is
selected.

ChargePlan TpInt32 Pre-defined charge plan. Example of the
charge plan set from which the application can
choose could be : (0 = normal user, 1 = silver

card user, 2 = gold card user).

Only applicable when transparent
chargingpredefined change plan is selected.

AdditionalInfo TpOctetSet Descriptive string which is sent to the billing
system without prior evaluation. Could be

included in the ticket.

PartyToCharge TpCallPartyToChargeType Identifies the entity or party to be charged for
the call or call leg.

PartyToChargeAdditionalInfo TpCallPartyToChargeAdditionalInfo Contains additional information regarding the
charged party.

8.4 TpCallPartyToChargeAdditionalInfo
Defines the Tagged Choice of Data Elements that identifies the entity or party to be charged.

 Tag Element Type
 TpCallPartyToChargeType

Tag Element Value Choice Element
Type

Choice Element Name

P_CALL_PARTY_ORIGINATING NULL Undefined

P_CALL_PARTY_DESTINATION NULL Undefined

P_CALL_PARTY_SPECIAL TpAddress CallPartySpecial

8.5 TpCallPartyToChargeType
Defines the type of call party to charge

Name Value Description
P_CALL_PARTY_ORIGINATING 0 Calling party, i.e. party that initiated the call. For application initiated calls this

indicates the first party of the call

P_CALL_PARTY_DESTINATION 1 Called party

P_CALL_PARTY_SPECIAL 2 An address identifying e.g. a third party, a service provider

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 4

CR page 4

8.6TpCallChargeOrder
Defines the Tagged Choice of Data Elements that specify the charge plan for the call.

 Tag Element Type
 TpCallChargeOrderCategory

Tag Element Value Choice Element Type Choice Element Name
P_CALL_CHARGE_TRANSPARENT TpOctetSet TransparentCharge

P_CALL_CHARGE_PREDEFINED_SET TpInt32 ChargePlan

8.78.6 TpCallChargeOrderCategory
Defines the type of charging to be applied

Name Value Description
P_CALL_CHARGE_TRANSPARENT 0 Operator specific charge plan specification, e.g. charging table name /

charging table entry. The associated charge plan data will be send
transparently to the charging records

P_CALL_CHARGE_PREDEFINED_SET 1 Pre-defined charge plan. Example of the charge plan set from which the
application can choose could be : (0 = normal user, 1 = silver card user, 2 =

gold card user).

CR page 1

joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5) N5-021064
Meeting #21, Dublin, IRELAND, 28 – 31 October 2002

CR-Form-v7

CHANGE REQUEST

! 29.198-04 CR 061 ! rev - ! Current version: 4.5.0
!

For HELP on using this form, see bottom of this page or look at the pop-up text over the ! symbols.

Proposed change affects: UICC apps! ME Radio Access Network Core Network X

Title: ! Correction to User Interaction Prepaid Sequence Diagrams

Source: ! N5

Work item code: ! OSA1 Date: ! 31/10/2002

Category: ! F Release: ! REL-4
 Use one of the following categories:

F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.

Use one of the following releases:
2 (GSM Phase 2)
R96 (Release 1996)
R97 (Release 1997)
R98 (Release 1998)
R99 (Release 1999)
Rel-4 (Release 4)
Rel-5 (Release 5)
Rel-6 (Release 6)

Reason for change: ! The description of the Prepaid and Prepaid with Advice of Charge sequence

diagrams in Generic Call Control is incorrect.
They both indicate that an announcement is played only to party A in a call
controlled by a GCC application, when both A and B parties are connected.
The announcement will in fact be played to both parties, since there is no means
in GCC to separate the two parties in the call.
This error has been partially corrected in GCC for Release 5 (N5-020500). This
CR introduces the changes made in N5-020500 for Release 4, and completes
them.

Summary of change: ! Change the Prepaid and Prepaid with Advice of Charge sequence diagrams to

indicate that the announcement is played to both parties.

Consequences if !
not approved:

Developers use these sequence diagrams as examples of how OSA/Parlay
really behaves. Since they consider that these examples are provided by the
real experts, they consider they must be right and should be followed. If we don't
correct such errors, we are deliberately misleading developers, and can only
expect interoperability problems at later stages.

Clauses affected: ! 6.1.11, 6.1.12

 Y N
Other specs ! X Other core specifications !
affected: X Test specifications
 X O&M Specifications

Other comments: !

How to create CRs using this form:
Comprehensive information and tips about how to create CRs can be found at http://www.3gpp.org/specs/CR.htm.
Below is a brief summary:

CR page 2

1) Fill out the above form. The symbols above marked ! contain pop-up help information about the field that they are
closest to.

2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word
"revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be
downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name
with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of
the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to
the change request.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 3

CR page 3

6.1.11 Prepaid

This sequence shows a Pre-paid application.

The subscriber is using a pre-paid card or credit card to pay for the call. The application each time allows a certain
timeslice for the call. After the timeslice, a new timeslice can be started or the application can terminate the call. In the
following sequence the end-user will receive an announcement before his final timeslice.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 4

CR page 4

Prepaid : (Logical
View::IpAppLogic)

 : IpAppCallControlManager : IpCallControlManager : IpCall : IpUICall : IpUIManager : IpAppUICall : IpAppCall

1: new()

2: enableCallNotification()

3: callEventNotify()4: "forward event"

7: routeReq()

8 : superviseCallRes()
9: "forward event"

10: superviseCallReq()

11: superviseCallRes()
12: "forward event"

13: superviseCallReq()

14: superviseCallRes()

15: "forward event"

6: superviseCallReq()

17: sendInfoReq()

18: s endInfoRes()
19: "forward event"

21: superviseCallReq()

22: superviseCallRes()
23: "forward event:

24: release()

16: createUICall ()

20: release()

5: new()

1: This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts
a pre-paid service, it is likely that only new call events within a certain address range will be enabled. When a new call,

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 5

CR page 5

that matches the event criteria, arrives a message (not shown) is directed to the object implementing the
IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load
control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg
object.

3: The incoming call triggers the Pre-Paid Application (PPA).

4: The message is forwarded to the application.

5: A new object on the application side for the Generic Call object is created

6: The Pre-Paid Application (PPA) requests to supervise the call. The application will be informed after the period
indicated in the message. This period is related to the credits left on the account of the pre-paid subscriber.

7: Before continuation of the call, PPA sends all charging information, a possible tariff switch time and the call
duration supervision period, towards the GW which forwards it to the network.

8: At the end of each supervision period the application is informed and a new period is started.

9: The message is forwarded to the application.

10: The Pre-Paid Application (PPA) requests to supervise the call for another call duration.

11: At the end of each supervision period the application is informed and a new period is started.

12: The message is forwarded to the application.

13: The Pre-Paid Application (PPA) requests to supervise the call for another call duration. When the timer expires it
will indicate that the user is almost out of credit.

14: When the user is almost out of credit an announcement is played to inform about this. The announcement is played
only to the leg of the A-party, the B-party will not hear the announcementthe application is informed.

15: The message is forwarded to the application.

16: The application decides to play an announcement to the parties in this call. A new UICall object is created and
associated with the callcontrolling leg.

17: An announcement is played to the controlling leg informing the user about the near-expiration of his credit limit.
The B-subscriber will not hear the announcement.

18: When the announcement is completed the application is informed.

19: The message is forwarded to the application.

20: The application releases the UICall object.

21: The user does not terminate so the application terminates the call after the next supervision period.

22: The supervision period ends

23: The event is forwarded to the logic.

24: The application terminates the call. Since the user interaction is already explicitly terminated no
userInteractionFaultDetected is sent to the application.

6.1.12 Pre-Paid with Advice of Charge (AoC)

This sequence shows a Pre-paid application that uses the Advice of Charge feature.

The application will send the charging information before the actual call setup and when during the call the charging
changes new information is sent in order to update the end-user. Note: the Advice of Charge feature requires an
application in the end-user terminal to display the charges for the call, depending on the information received from the
application.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 6

CR page 6

Prepaid : (Logical
View::IpAppLogic)

 : IpAppCallControlManager : IpCall Cont ro lM an ager : IpCall : IpUICall : IpUIManager : IpAppUICall : IpAppCall

1: new()

2: enableCallNotification()

3: callEventNotify()4: "forward event"

8: routeReq()

11: superviseCallReq()

15: superviseCallReq()

7: superviseCallReq()

24 : s upervis eCallReq()

27: release()

21: sendInfoReq()

18: new()

22 : s endIn foRes ()
23: "forward event"

9: superviseCallRes()
10: "forward event"

12: superviseCallRes()
13: "forward event"

14: setAdviceOfCharge()

16: superviseCallRes()
17: "forward event"

25: superviseCallRes()
26: "forward event:

6: setAdviceOfCharge()

19: createUICall() 20: new()

28: userInteractionFaultDetected()

5: new()

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 7

CR page 7

1: This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts
a pre-paid service, it is likely that only new call events within a certain address range will be enabled. When a new call,
that matches the event criteria, arrives a message (not shown) is directed to the object implementing the
IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load
control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg
object.

3: The incoming call triggers the Pre-Paid Application (PPA).

4: The message is forwarded to the application.

5: A new object on the application side for the Call object is created

6: The Pre-Paid Application (PPA) sends the AoC information (e.g. the tariff switch time). (it shall be noted the PPA
contains ALL the tariff information and knows how to charge the user).

During this call sequence 2 tariff changes take place. The call starts with tariff 1, and at the tariff switch time (e.g.,
18:00 hours) switches to tariff 2. The application is not informed about this (but the end-user is!)

7: The Pre-Paid Application (PPA) requests to supervise the call. The application will be informed after the period
indicated in the message. This period is related to the credits left on the account of the pre-paid subscriber.

8: The application requests to route the call to the destination address.

9: At the end of each supervision period the application is informed and a new period is started.

10: The message is forwarded to the application.

11: The Pre-Paid Application (PPA) requests to supervise the call for another call duration.

12: At the end of each supervision period the application is informed and a new period is started.

13: The message is forwarded to the application.

14: Before the next tariff switch (e.g., 19:00 hours) the application sends a new AOC with the tariff switch time. Again,
at the tariff switch time, the network will send AoC information to the end-user.

15: The Pre-Paid Application (PPA) requests to supervise the call for another call duration. When the timer expires it
will indicate that the user is almost out of credit.

16: When the user is almost out of credit the application is informedan announcement is played to inform about this (19-
21). The announcement is played only to the leg of the A-party, the B-party will not hear the announcement.

17: The message is forwarded to the application.

18: The application creates a new call back interface for the User interaction messages.

19: A new UI Call object that will handle playing of the announcement needs to be created

20: The Gateway creates a new UI call object that will handle playing of the announcement.

21: With this message the announcement is played to the parties in the callcalling party.

22: The user indicates that the call should continue.

23: The message is forwarded to the application.

24: The user does not terminate so the application terminates the call after the next supervision period.

25: The user is out of credit and the application is informed.

26: The message is forwarded to the application.

27: With this message the application requests to release the call.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 8

CR page 8

28: Terminating the call which has still a UICall object associated will result in a userInteractionFaultDetected. The
UICall object is terminated in the gateway and no further communication is possible between the UICall and the
application.

CR page 1

joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5) N5-021063
Meeting #21, Dublin, IRELAND, 28 – 31 October 2002

CR-Form-v7

CHANGE REQUEST

! 29.198-04 CR 060 ! rev - ! Current version: 4.5.0
!

For HELP on using this form, see bottom of this page or look at the pop-up text over the ! symbols.

Proposed change affects: UICC apps! ME Radio Access Network Core Network X

Title: ! Correction to Sequence Diagrams to remove incorrect Framework references

Source: ! N5

Work item code: ! OSA1 Date: ! 31/10/2002

Category: ! F Release: ! REL-4
 Use one of the following categories:

F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.

Use one of the following releases:
2 (GSM Phase 2)
R96 (Release 1996)
R97 (Release 1997)
R98 (Release 1998)
R99 (Release 1999)
Rel-4 (Release 4)
Rel-5 (Release 5)
Rel-6 (Release 6)

Reason for change: ! This CR corrects indications that call-control related events are received on the

Framework, when in fact they are not.

Summary of change: ! Change references to events being received by the Framework, where they are

received by Call Control Manager interfaces.

Consequences if !
not approved:

Developers use these sequence diagrams as examples of how OSA/Parlay
really behaves. Since they consider that these examples are provided by the
real experts, they consider they must be right and should be followed. If we don't
correct such errors, we are deliberately misleading developers, and can only
expect interoperability problems at later stages.

Clauses affected: ! 6.1.4, 6.1.5, 6.1.6, 6.1.7, 6.1.8, 6.1.9, 7.1.3, 7.1.5

 Y N
Other specs ! X Other core specifications !
affected: X Test specifications
 X O&M Specifications

Other comments: !

How to create CRs using this form:
Comprehensive information and tips about how to create CRs can be found at http://www.3gpp.org/specs/CR.htm.
Below is a brief summary:

1) Fill out the above form. The symbols above marked ! contain pop-up help information about the field that they are
closest to.

2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word
"revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be
downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name
with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

CR page 2

3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of
the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to
the change request.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 3

CR page 3

"=========================== FIRST MODIFIED SECTION =======================#

6.1.4 Call Barring 1

The following sequence diagram shows a call barring service, initiated as a result of a prearranged event being received
by the call control serviceframework. Before the call is routed to the destination number, the calling party is asked for a
PIN code. The code is accepted and the call is routed to the original called party.

 : (Logical
View::IpAppLogic)

 : IpAppCallControlManager : IpAppCall : IpCall : IpUICall :
IpUIManager

 :
IpCal lContro lManager

 :
IpAppUICall

13: routeRes()

12: routeReq()

8: sendInfoAndCollectReq()

9: sendInfoAndCollectRes()

3: callEventNotify()

4: 'forward event'

5: new()

1: new()

14: 'forward event'

10: 'forward event'

2: enableCallNotification()

6: createUICall() 7: new()

11: release()

15: callEnded()16: "forward event"

17: deassignCall ()

1: This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts
a call barring service, it is likely that all new call events destined for a particular address or address range prompted for
a password before the call is allowed to progress. When a new call, that matches the event criteria set, arrives a
message (not shown) is directed to the object implementing the IpCallControlManager. Assuming that the criteria for
creating an object implementing the IpCall interface (e.g. load control values not exceeded) is met, other messages (not
shown) are used to create the call and associated call leg object.

3: This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.

4: This message is used to forward the previous message to the IpAppLogic.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 4

CR page 4

5: This message is used by the application to create an object implementing the IpAppCall interface. The reference to
this object is passed back to the object implementing the IpCallControlManager using the return parameter of the
callEventNotify.

6: This message is used to create a new UICall object. The reference to the call object is given when creating the
UICall.

7: Provided all the criteria are fulfilled, a new UICall object is created.

8: The call barring service dialogue is invoked.

9: The result of the dialogue, which in this case is the PIN code, is returned to its callback object.

10: This message is used to forward the previous message to the IpAppLogic.

11: This message releases the UICall object.

12: Assuming the correct PIN is entered, the call is forward routed to the destination party.

13: This message passes the result of the call being answered to its callback object.

14: This message is used to forward the previous message to the IpAppLogic

15: When the call is terminated in the network, the application will receive a notification. This notification will always
be received when the call is terminated by the network in a normal way, the application does not have to request this
event explicitly.

16: The event is forwarded to the application.

17: The application must free the call related resources in the gateway by calling deassignCall.

6.1.5 Number Translation 1

The following sequence diagram shows a simple number translation service, initiated as a result of a prearranged event
being received by the call control serviceframework.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 5

CR page 5

 :
IpCallControlManager

 : IpAppCall : IpCall : IpAppCallControlManager : (Logical
View: :IpAppLo. ..

6: 'translate number'

7: routeReq()

8: routeRes()

3: callEventNotify()

4: 'forward event'

5: new()

9: 'forward event'

1: new()

2: enableCallNotification()

10: deassignCall()

1: This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts
a number translation service, it is likely that only new call events within a certain address range will be enabled. When
a new call, that matches the event criteria set in message 2, arrives a message (not shown) is directed to the object
implementing the IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall
interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and
associated call leg object.

3: This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 6

CR page 6

4: This message is used to forward message 3 to the IpAppLogic.

5: This message is used by the application to create an object implementing the IpAppCall interface. The reference to
this object is passed back to the object implementing the IpCallControlManager using the return parameter of message
3.

6: This message invokes the number translation function.

7: The returned translated number is used in message 7 to route the call towards the destination.

8: This message passes the result of the call being answered to its callback object

9: This message is used to forward the previous message to the IpAppLogic.

10: The application is no longer interested in controlling the call and therefore deassigns the call. The call will continue
in the network, but there will be no further communication between the call object and the application.

6.1.6 Number Translation 1 (with callbacks)

The following sequence diagram shows a simple number translation service, initiated as a result of a prearranged event
being received by the call control serviceframework.

For illustration, in this sequence the callback references are set explicitly. This is optional. All the callbacks references
can also be passed in other methods. From an efficiency point of view that is also the preferred method. The rest of the
sequences use that mechanism.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 7

CR page 7

 :
IpCallControlManager

 : IpAppCall : IpCall : IpAppCallControlManager : (Logical
View::IpAppLogic)

10: routeRes()

4: callEventNotify()

8: 'trans late number'

9: routeReq()

5: 'forward event'

6: new()

11: 'forward event'

1: new()

2: enableCallNotification()

12: deassignCall()

3: setCallback()

7: setCallbackWithSessionID()

1: This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts
a number translation service, it is likely that only new call events within a certain address range will be enabled. When
a new call, that matches the event criteria set in message 2, arrives a message (not shown) is directed to the object
implementing the IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall
interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and
associated call leg object.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 8

CR page 8

3: This message sets the reference of the IpAppCallControlManager object in the CallControlManager. The
CallControlManager reports the callEventNotify to referenced object only for enableCallNotifications that do not have a
explicit IpAppCallControlManager reference specified in the enableCallNotification.

4: This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.

5: This message is used to forward message 4 to the IpAppLogic.

6: This message is used by the application to create an object implementing the IpAppCall interface.

7: This message is used to set the reference to the IpAppCall for this call.

8: This message invokes the number translation function.

9: The returned translated number is used in message 7 to route the call towards the destination.

10: This message passes the result of the call being answered to its callback object

11: This message is used to forward the previous message to the IpAppLogic.

12: The application is no longer interested in controlling the call and therefore deassigns the call. The call will continue
in the network, but there will be no further communication between the call object and the application.

6.1.7 Number Translation 2

The following sequence diagram shows a number translation service, initiated as a result of a prearranged event being
received by the call control serviceframework. If the translated number being routed to does not answer or is busy then
the call is automatically released.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 9

CR page 9

 : (Logical
View::IpAppLogic)

 : IpAppCallControlManager : IpAppCall : IpCallControlManager : IpCall

6: 'translate number'

9: 'forward event'
8: routeRes()

7: routeReq()

10: release()

1: new()

3: callEventNot ify()

4: 'forward event'

5: new()

2: enableCallNotification()

1: This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts
a number translation service, it is likely that only new call events within a certain address range will be enabled. When
a new call, that matches the event criteria, arrives a message (not shown) is directed to the object implementing the
IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load
control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg
object.

3: This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.

4: This message is used to forward the previous message to the IpAppLogic.

5: This message is used by the application to create an object implementing the IpAppCall interface. The reference to
this object is passed back to the object implementing the IpCallControlManager using the return parameter of the
callEventNotify.

6: This message invokes the number translation function.

7: The returned translated number is used to route the call towards the destination.

8: Assuming the called party is busy or does not answer, the object implementing the IpCall interface sends a callback
in this message, indicating the unavailability of the called party.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 10

CR page 10

9: This message is used to forward the previous message to the IpAppLogic.

10: The application takes the decision to release the call.

6.1.8 Number Translation 3

The following sequence diagram shows a number translation service, initiated as a result of a prearranged event being
received by the call control serviceframework. If the translated number being routed to does not answer or is busy then
the call is automatically routed to a voice mailbox.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 11

CR page 11

 : IpCallControlManager : IpAppCall : IpCall : IpAppCallControlManager : (Logical
View::IpAppLogic)

8: routeRes()

6: 'translate number'

7: routeReq()

9: 'forward event'

10: 'trans la te number'

11: routeReq()

12: routeRes()

13: 'forward event'

1: new()

3: callEventNotify()

4: 'forward event'

5: new()

2: enableCallNotification()

14: deassignCall()

1: This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts
a number translation service, it is likely that only new call events within a certain address range will be enabled. When
a new call, that matches the event criteria, arrives a message (not shown) is directed to the object implementing the
IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load
control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg
object.

3: This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 12

CR page 12

4: This message is used to forward the previous message to the IpAppLogic.

5: This message is used by the application to create an object implementing the IpAppCall interface. The reference to
this object is passed back to the object implementing the IpCallControlManager using the return parameter of the
callEventNotify.

6: This message invokes the number translation function.

7: The returned translated number is used to route the call towards the destination.

8: Assuming the called party is busy or does not answer, the object implementing the IpCall interface sends a callback,
indicating the unavailability of the called party.

9: This message is used to forward the previous message to the IpAppLogic.

10: The application takes the decision to translate the number, but this time the number is translated to a number
belonging to a voice mailbox system.

11: This message routes the call towards the voice mailbox.

12: This message passes the result of the call being answered to its callback object.

13: This message is used to forward the previous message to the IpAppLogic.

14: The application is no longer interested in controlling the call and therefore deassigns the call. The call will continue
in the network, but there will be no further communication between the call object and the application.

6.1.9 Number Translation 4

The following sequence diagram shows a number translation service, initiated as a result of a prearranged event being
received by the call control serviceframework. Before the call is routed to the translated number, the application
requests for all call related information to be delivered back to the application on completion of the call.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 13

CR page 13

 : IpCallControlManager : IpAppCall : IpCall : IpAppCallContro lManager : (Logical
View::IpAppLogic)

6: 'translate number'

7: getCallInfoReq()

8: routeReq()

9: routeRes()

13: getCallInfoRes()
14: 'forward event'

10: 'forward event'

1: new()

3: callEventNoti fy()

4: 'forward event'

5: new()

2: enableCallNotification()

15: deas signCall()

11: cal lEnded()
12: "forward event"

1: This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts
a number translation service, it is likely that only new call events within a certain address range will be enabled. When
a new call, that matches the event criteria, arrives a message (not shown) is directed to the object implementing the
IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load
control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg
object.

3: This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 14

CR page 14

4: This message is used to forward the previous message to the IpAppLogic.

5: This message is used by the application to create an object implementing the IpAppCall interface. The reference to
this object is passed back to the object implementing the IpCallControlManager using the return parameter of the
callEventNotify.

6: This message invokes the number translation function.

7: The application instructs the object implementing the IpCall interface to return all call related information once the
call has been released.

8: The returned translated number is used to route the call towards the destination.

9: This message passes the result of the call being answered to its callback object.

10: This message is used to forward the previous message to the IpAppLogic.

11: Towards the end of the call, when one of the parties disconnects, a message (not shown) is directed to the object
implementing the IpCall. This causes an event, to be passed to the object implementing the IpAppCall object.

12: This message is used to forward the previous message to the IpAppLogic.

13: The application now waits for the call information to be sent. Now that the call has completed, the object
implementing the IpCall interface passes the call information to its callback object.

14: This message is used to forward the previous message to the IpAppLogic

15: After the last information is received, the application deassigns the call. This will free the resources related to this
call in the gateway.

"=========================== NEXT MODIFIED SECTION =======================#

7.1.3 Call Barring 2

The following sequence diagram shows a call barring service, initiated as a result of a prearranged event being received
by the call control serviceframework. Before the call is routed to the destination number, the calling party is asked for a
PIN code. The code is rejected and the call is cleared.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 15

CR page 15

 : (Logical
V iew::IpAppL...

 :
IpAppMultiPartyCal lCont rolManager

 :
IpAppMultiPartyCall

 :
I pMult iP artyCa ll

 : IpUICall :
IpUIManager

 : IpMultiPartyCal lControlManager :
IpAppUICall

8: sendInf oAndCollectReq()

9: sendInf oAndCollectRes()

11: sendInf oReq()

12: sendInf oRes()

15: release()

1: new()

3: reportNoti f ication()

4: 'f orward ev ent'

5: new()

10: 'f orward ev ent'

13: 'f orward ev ent'

2: createNotif ication()

7: createUICall()

14: release()

6: getCallLegs()

1: This message is used by the application to create an object implementing the IpAppMultiPartyCallControlManager
interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts
a call barring service, it is likely that all new call events destined for a particular address or address range prompted for
a password before the call is allowed to progress. When a new call, that matches the event criteria, arrives a message
(not shown) is directed to the object implementing the IpMultiPartyCallControlManager. Assuming that the criteria for
creating an object implementing the IpMultiPartyCall interface (e.g. load control values not exceeded) is met, other
messages (not shown) are used to create the call and associated call leg object.

3: This message is used to pass the new call event to the object implementing the
IpAppMultiPartyCallControlManager interface.

4: This message is used to forward message 3 to the IpAppLogic.

5: This message is used by the application to create an object implementing the IpAppMultiPartyCall interface. The
reference to this object is passed back to the object implementing the IpMultiPartyCallControlManager using the return
parameter of the callEventNotify.

6: The application requests an list of all the legs currently in the call.

7: This message is used to create a UICall object that is associated with the incoming leg of the call.

8: The call barring service dialogue is invoked.

9: The result of the dialogue, which in this case is the PIN code, is returned to its callback object.

10: This message is used to forward the previous message to the IpAppLogic

11: Assuming an incorrect PIN is entered, the calling party is informed using additional dialogue of the reason why the
call cannot be completed.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 16

CR page 16

12: This message passes the indication that the additional dialogue has been sent.

13: This message is used to forward the previous message to the IpAppLogic.

14: No more UI is required, so the UICall object is released.

15: This message is used by the application to clear the call.

7.1.5 Complex Card Service

The following sequence diagram shows an advanced card service, initiated as a result of a prearranged event being
received by the call control serviceframework. Before the call is made, the calling party is asked for an ID and PIN
code. If the ID and PIN code are accepted, the calling party is prompted to enter the address of the destination party. A
trigger of '#5' is then set on the controlling leg (the calling party's leg) such that if the calling party enters a '#5' an event
will be sent to the application. The call is then routed to the destination party. Sometime during the call the calling party
enters '#5' which causes the called leg to be released. The calling party is now prompted to enter the address of a new
destination party, to which it is then routed.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 17

CR page 17

 : (Logical
View::IpAppLogic)

 :
IpAppMultiPartyCallControlManager

 :
IpAppMultiPartyCall

 :
IpMultiPartyCall

 : IpUICallPartyB' :
IpCallLeg

AppParty B' :
IpAppCallLeg

AppPartyB :
IpAppCallLeg

 :
IpUIManager

AppPartyA :
IpAppCallLeg

PartyB :
IpCallLeg

 :
IpMultiPartyCallControlManager

PartyA :
IpCallLeg

 :
IpAppUICal l

27: createAndR outeCall()

8: sendInf oAndCollectReq()

10: sendInf oAndCollectReq()

9: sendInf oAndCollectRes()

11: sendInf oAndCollectRes()

13: ev entRepo rtReq()

1: new()

3: reportNotif ication()

4: 'f orward ev ent'

5: new()

23: release()

21: ev entReportRes()

24: sendInf oAndCollectReq()

25: sendInf oAndCollectRes()

12: setCallbackWithSessionID()

2: createNotif ication()

7: createUICall()

6: getCallLegsf ()

15: createCallLeg()

17: routeReq()

16: ev entReportReq()

14: new()

20: attachMediaReq()

18: ev entReportRes()
19: "f orward ev ent"

22: "f orward ev ent"

30: ev entReportRes()
31: "f orward ev ent"

32: callEnded()
33: "f orward ev ent"

34: userInteractionFaultDetected()
35: "f orward ev ent"

36: deassignCall()

26: new ()

28: new ()

29: ev entReportRes()

1: This message is used by the application to create an object implementing the IpAppMultiPartyCallControlManager
interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts
a call barring service, it is likely that all new call events destined for a particular address or address range result in the
caller being prompted for a password before the call is allowed to progress. When a new call, that matches the event
criteria set in message 2, arrives a message (not shown) is directed to the object implementing the
IpMultiPartyCallControlManager. Assuming that the criteria for creating an object implementing the IpMultiPartyCall
interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and
associated call leg object.

3: This message is used to pass the new call event to the object implementing the
IpAppMultiPartyCallControlManager interface.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 18

CR page 18

4: This message is used to forward message 3 to the IpAppLogic.

5: This message is used by the application to create an object implementing the IpAppMultiPartyCall interface. The
reference to this object is passed back to the object implementing the IpMultiPartyCallControlManager using the return
parameter of message 3.

6: This message returns the call legs currently in the call. In principle a reference to the call leg of the calling party is
already obtained by the application when it was notified of the new call event.

7: This message is used to associate a user interaction object with the calling party.

8: The initial card service dialogue is invoked using this message.

9: The result of the dialogue, which in this case is the ID and PIN code, is returned to its callback object using this
message and eventually forwarded via another message (not shown) to the IpAppLogic.

10: Assuming the correct ID and PIN are entered, the final dialogue is invoked.

11: The result of the dialogue, which in this case is the destination address, is returned and eventually forwarded via
another message (not shown) to the IpAppLogic.

12: This message is used to forward the address of the callback object.

13: The trigger for follow-on calls is set (on service code).

14: A new AppCallLeg is created to receive callbacks for another leg. Alternatively, the already existing AppCallLeg
object could be passed in the subsequent createCallLeg(). In that case the application has to use the sessionIDs of the
legs to distinguish between callbacks destined for the A-leg and callbacks destined for the B-leg.

15: This message is used to create a new call leg object. The object is created in the idle state and not yet routed in the
network.

16: The application requests to be notified when the leg is answered.

17: The application routes the leg. As a result the network will try to reach the associated party.

18: When the B-party answers the call, the application is notified.

19: The event is forwarded to the application logic.

20: Legs that are created and routed explicitly are by default in state detached. This means that the media is not
connected to the other parties in the call. In order to allow inband communication between the new party and the other
parties in the call the media have to be explicitly attached.

21: At some time during the call the calling party enters '#5'. This causes this message to be sent to the object
implementing the IpAppCallLeg interface, which forwards this event as a message (not shown) to the IpAppLogic.

22: The event is forwarded to the application.

23: This message releases the called party.

24: Another user interaction dialogue is invoked.

25: The result of the dialogue, which in this case is the new destination address is returned and eventually forwarded via
another message (not shown) to the IpAppLogic.

26: A new AppCallLeg is created to receive callbacks for another leg.

27: The call is then forward routed to the new destination party.

28: As a result a new Callleg object is created.

29: This message passes the result of the call being answered to its callback object and is eventually forwarded via
another message (not shown) to the IpAppLogic.

30: When the A-party terminates the application is informed.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 19

CR page 19

31: The event is forwarded to the application logic.

32: Since the release of the A-party will in this case terminate the entire call, the application is also notified with this
message.

33: The event is forwarded to the application logic.

34: Since the user interaction object were not released at the moment that the call terminated, the application receives
this message to indicate that the UI resources are released in the gateway and no further communication is possible.

35: The event is forwarded to the application logic.

36: The application deassigns the call object.

"=========================== END MODIFIED SECTION =======================#

CR page 1

joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5) N5-021052
Meeting #21, Dublin, IRELAND, 28 – 31 October 2002

CR-Form-v7

CHANGE REQUEST

! 29.198-04 CR 059 ! rev - ! Current version: 4.5.0
!

For HELP on using this form, see bottom of this page or look at the pop-up text over the ! symbols.

Proposed change affects: UICC apps! ME Radio Access Network Core Network X

Title: ! Correction to TpReleaseCauseSet in Multi Party Call Control

Source: ! N5

Work item code: ! OSA1 Date: ! 31/10/2002

Category: ! F Release: ! REL-4
 Use one of the following categories:

F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.

Use one of the following releases:
2 (GSM Phase 2)
R96 (Release 1996)
R97 (Release 1997)
R98 (Release 1998)
R99 (Release 1999)
Rel-4 (Release 4)
Rel-5 (Release 5)
Rel-6 (Release 6)

Reason for change: ! The definition of TpReleaseCauseSet in TS 29.198-04 contains an error:

It is defined as being a Numbered Set of Data Elements of
TpCallReleaseCause.
But TpCallReleaseCause is the GCC release cause data type, and
TpReleaseCauseSet is used for MPCC, so should be a Numbered Set of Data
Elements of TpReleaseCause.
The IDL has the correct definition.

Summary of change: ! Change dataype to match correct IDL description of TpReleaseCauseSet

Consequences if !
not approved:

A contradiction will exist between the IDL and the Word document, and the Word
document will mislead developers. If no alignment is made, some developers
will chose one implementation of the type, others the other, and interworking
problems will arise.

Clauses affected: ! Annex A

 Y N
Other specs ! X Other core specifications !
affected: X Test specifications
 X O&M Specifications

Other comments: !

How to create CRs using this form:
Comprehensive information and tips about how to create CRs can be found at http://www.3gpp.org/specs/CR.htm.
Below is a brief summary:

1) Fill out the above form. The symbols above marked ! contain pop-up help information about the field that they are
closest to.

2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word
"revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be

CR page 2

downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name
with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of
the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to
the change request.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 3

CR page 3

"============================= MODIFIED SECTION ============================#

7.6.2.34 TpReleaseCause

Defines the reason for which a call is released.

Name Value Description
P_UNDEFINED 0 The reason of release is not known, because no info was received from the network.

P_USER_NOT_AVAILABLE 1 The user is not available in the network. This means that the number is not allocated or that the user is
not registered.

P_BUSY 2 The user is busy.

P_NO_ANSWER 3 No answer was received

P_NOT_REACHABLE 4 The user terminal is not reachable

P_ROUTING_FAILURE 5 A routing failure occurred. For example an invalid address was received

P_PREMATURE_DISCONNECT 6 The user disconnected the call / call leg during the setup phase.

P_DISCONNECTED 7 A disconnect was received.

P_CALL_RESTRICTED 8 The call was subject of restrictions

P_UNAVAILABLE_RESOURCE 9 The request could not be carried out as no resources were available.

P_GENERAL_FAILURE 10 A general network failure occurred.

P_TIMER_EXPIRY 11 The call / call leg was released because an activity timer expired.

7.6.2.35 TpReleaseCauseSet

Defines a Numbered Set of Data Elements of TpCallReleaseCause.

"========================== END MODIFIED SECTION ============================#

Annex A (normative):
OMG IDL Description of Call Control SCF
The OMG IDL representation of this interface specification is contained in text files (contained in archive
2919804IDL.ZIP) which accompany the present document.

In file mpcc_data.idl:

 typedef sequence <TpReleaseCause> TpReleaseCauseSet;

CR page 1

joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5) N5-020888
Meeting #20, Miami/ FL, USA, 23 – 27 September 2002

CR-Form-v7

CHANGE REQUEST

! 29.198-04 CR 058 ! rev - ! Current version: 4.5.0
!

For HELP on using this form, see bottom of this page or look at the pop-up text over the ! symbols.

Proposed change affects: UICC apps! ME Radio Access Network Core Network X

Title: ! Correction of status of methods to interfaces in clause 6.3

Source: ! N5

Work item code: ! OSA1 Date: ! 27/09/2002

Category: ! F Release: ! REL-4
 Use one of the following categories:

F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.

Use one of the following releases:
2 (GSM Phase 2)
R96 (Release 1996)
R97 (Release 1997)
R98 (Release 1998)
R99 (Release 1999)
Rel-4 (Release 4)
Rel-5 (Release 5)
Rel-6 (Release 6)

Reason for change: ! There is no requirement in the standard about the necessity to implement all or

only some of the methods defined for an interface.

Summary of change: ! Clarify which methods are mandatory and which are optional.

Consequences if !
not approved:

Application developers will not know which methods will actually be available.

Clauses affected: ! 6.3 Generic Call Control Service Interface Classes

 Y N
Other specs ! X Other core specifications !
affected: X Test specifications
 X O&M Specifications

Other comments: !

How to create CRs using this form:
Comprehensive information and tips about how to create CRs can be found at http://www.3gpp.org/specs/CR.htm.
Below is a brief summary:

1) Fill out the above form. The symbols above marked ! contain pop-up help information about the field that they are
closest to.

2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word
"revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be
downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name
with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of
the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to
the change request.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 2

CR page 2

4 Call Control SCF
Two flavours of Call Control (CC) APIs have been included in 3GPP Release 4. These are the Generic Call Control
(GCC) and the Multi-Party Call Control (MPCC). The GCC is the same API as was already present in the Release 99
specification (TS 29.198 v3.3.0) and is in principle able to satisfy the requirements on CC APIs for Release 4.

However, the joint work between 3GPP CN5, ETSI SPAN12 and the Parlay CC Working group with collaboration from
JAIN has been focussed on the MPCC API. A number of improvements on CC functionality have been made and are
reflected in this API. For this it was necessary to break the inheritance that previously existed between GCC and
MPCC.

The joint CC group has furthermore decided that the MPCC is to be considered as the future base CC family and the
technical work will not be continued on GCC. Errors or technical flaws will of course be corrected.

The following clauses describe each aspect of the CC Service Capability Feature (SCF).

The order is as follows:

• The Sequence diagrams give the reader a practical idea of how each of the SCF is implemented.

• The Class relationships clause shows how each of the interfaces applicable to the SCF, relate to one another.

• The Interface specification clause describes in detail each of the interfaces shown within the Class diagram part.

• The State Transition Diagrams (STD) show transition between states in the SCF. The states and transitions are
well-defined; either methods specified in the Interface specification or events occurring in the underlying networks
cause state transitions.

• The Data definitions clause show a detailed expansion of each of the data types associated with the methods within
the classes. Note that some data types are used in other methods and classes and are therefore defined within the
Common Data types part of this specification (29.198-2).

4.1 Call Model Description
The adopted call model has the following objects.

* a call object. A call is a relation between a number of parties. The call object relates to the entire call view from the
application. E.g., the entire call will be released when a release is called on the call. Note that different applications can
have different views on the same physical call, e.g., one application for the originating side and another application for
the terminating side. The applications will not be aware of each other, all 'communication' between the applications will
be by means of network signalling. The API currently does not specify any feature interaction mechanisms.

* a call leg object. The leg object represents a logical association between a call and an address. The relationship
includes at least the signalling relation with the party. The relation with the address is only made when the leg is routed.
Before that the leg object is IDLE and not yet associated with the address.

* an address. The address logically represents a party in the call.

* a terminal. A terminal is the end-point of the signalling and/or media for a party. This object type is currently not
addressed.

The call object is used to establish a relation between a number of parties by creating a leg for each party within the
call.

Associated with the signalling relationship represented by the call leg, there may also be a bearer connection (e.g., in the
traditional voice only networks) or a number (zero or more) of media channels (in multi-media networks).

A leg can be attached to the call or detached from the call. When the leg is attached, this means that media or bearer
channels related to the legs are connected to the media or bearer channels of the other legs that are attached to the same
call. I.e., only legs that are attached can 'speak' to each other. A leg can have a number of states, depending on the
signalling received from or sent to the party associated with the leg. Usually there is a limit to the number of legs that

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 3

CR page 3

are in being routed (i.e., the connection is being established) or connected to the call (i.e., the connection is established).
Also, there usually is a limit to the number of legs that can be simultaneously attached to the same call.

Some networks distinguish between controlling and passive legs. By definition the call will be released when the
controlling leg is released. All other legs are called passive legs. There can be at most one controlling leg per call.
However, there is currently no way the application can influence whether a Leg is controlling or not.

There are two ways for an application to get the control of a call. The application can request to be notified of calls that
meet certain criteria. When a call occurs in the network that meets these criteria, the application is notified and can
control the call. Some legs will already be associated with the call in this case. Another way is to create a new call from
the application.

4.2 General requirements on support of methods
An implementation of this API which supports or implements a method described in the present document, shall
support or implement the functionality described for that method, for at least one valid set of values for the parameters
of that method.

Where a method is not supported by an implementation of a Service interface, the exception
P_METHOD_NOT_SUPPORTED shall be returned to any call of that method.

Where a method is not supported by an implementation of an Application interface, a call to that method shall be
possible, and no exception shall be returned.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 4

CR page 4

<========================== NEXT MODIFIED SECTION ===============================>

6.3 Generic Call Control Service Interface Classes
The Generic Call Control Service (GCCS) provides the basic call control service for the API. It is based around a third
party model, which allows calls to be instantiated from the network and routed through the network.

The GCCS supports enough functionality to allow call routing and call management for today's Intelligent Network
(IN) services in the case of a switched telephony network, or equivalent for packet based networks.

It is the intention of the GCCS that it could be readily specialised into call control specifications, for example, ITU-T
recommendations H.323, ISUP, Q.931 and Q.2931, ATM Forum specification UNI3.1 and the IETF Session Initiation
Protocol, or any other call control technology.

For the generic call control service, only a subset of the call model defined in clause 4 is used; the API for generic call
control does not give explicit access to the legs and the media channels. This is provided by the Multi-Party Call
Control Service. Furthermore, the generic call is restricted to two party calls, i.e., only two legs are active at any given
time. Active is defined here as 'being routed' or connected.

The GCCS is represented by the IpCallControlManager and IpCall interfaces that interface to services provided by the
network. Some methods are asynchronous, in that they do not lock a thread into waiting whilst a transaction performs.
In this way, the client machine can handle many more calls, than one that uses synchronous message calls. To handle
responses and reports, the developer must implement IpAppCallControlManager and IpAppCall to provide the callback
mechanism.

6.3.1 Interface Class IpCallControlManager

Inherits from: IpService

This interface is the 'service manager' interface for the Generic Call Control Service. The generic call control manager
interface provides the management functions to the generic call control service. The application programmer can use
this interface to provide overload control functionality, create call objects and to enable or disable call-related event
notifications.

This interface shall be implemented by a Generic Call Control SCF. As a minimum requirement either the createCall()
method shall be implemented, or the enableCallNotification() and disableCallNotification() methods shall be
implemented.

<<Interface>>

IpCallControlManager

createCall (appCall : in IpAppCallRef) : TpCallIdentifier

enableCallNotification (appCallControlManager : in IpAppCallControlManagerRef, eventCriteria : in
TpCallEventCriteria) : TpAssignmentID

disableCallNotification (assignmentID : in TpAssignmentID) : void

setCallLoadControl (duration : in TpDuration, mechanism : in TpCallLoadControlMechanism, treatment : in
TpCallTreatment, addressRange : in TpAddressRange) : TpAssignmentID

changeCallNotification (assignmentID : in TpAssignmentID, eventCriteria : in TpCallEventCriteria) : void

getCriteria () : TpCallEventCriteriaResultSet

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 5

CR page 5

Method
createCall()

This method is used to create a new call object. An IpAppCallControlManager should already have been passed to the
IpCallControlManager, otherwise the call control will not be able to report a callAborted()

to the application (the application should invoke setCallback() if it wishes to ensure this).

Returns callReference: Specifies the interface reference and sessionID of the call created.

Parameters

appCall : in IpAppCallRef

Specifies the application interface for callbacks from the call created.

Returns

TpCallIdentifier

Raises

TpCommonExceptions, P_INVALID_INTERFACE_TYPE

Method
enableCallNotification()

This method is used to enable call notifications so that events can be sent to the application. This is the first step an
application has to do to get initial notification of calls happening in the network. When such an event happens, the
application will be informed by callEventNotify(). In case the application is interested in other events during the context
of a particular call session it has to use the routeReq() method on the call object. The application will get access to the
call object when it receives the callEventNotify(). (Note that the enableCallNotification() is not applicable if the call is
setup by the application).

The enableCallNotification method is purely intended for applications to indicate their interest to be notified when
certain call events take place. It is possible to subscribe to a certain event for a whole range of addresses, e.g. the
application can indicate it wishes to be informed when a call is made to any number starting with 800.

If some application already requested notifications with criteria that overlap the specified criteria, the request is refused
with P_GCCS_INVALID_CRITERIA. The criteria are said to overlap if both originating and terminating ranges
overlap and the same number plan is used and the same CallNotificationType is used.

If a notification is requested by an application with the monitor mode set to notify, then there is no need to check the
rest of the criteria for overlapping with any existing request as the notify mode does not allow control on a call to be
passed over. Only one application can place an interrupt request if the criteria overlaps.

If the same application requests two notifications with exactly the same criteria but different callback references, the
second callback will be treated as an additional callback. Both notifications will share the same assignmentID. The
gateway will always use the most recent callback. In case this most recent callback fails the second most recent is used.
In case the enableCallNotification contains no callback, at the moment the application needs to be informed the gateway
will use as callback the callback that has been registered by setCallback().

Returns assignmentID: Specifies the ID assigned by the generic call control manager interface for this newly-enabled
event notification.

Parameters

appCallControlManager : in IpAppCallControlManagerRef

If this parameter is set (i.e. not NULL) it specifies a reference to the application interface, which is used for callbacks. If
set to NULL, the application interface defaults to the interface specified via the setCallback() method.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 6

CR page 6

eventCriteria : in TpCallEventCriteria

Specifies the event specific criteria used by the application to define the event required. Only events that meet these
criteria are reported. Examples of events are "incoming call attempt reported by network", "answer", "no answer",
"busy". Individual addresses or address ranges may be specified for destination and/or origination.

Returns

TpAssignmentID

Raises

TpCommonExceptions, P_INVALID_CRITERIA, P_INVALID_INTERFACE_TYPE,
P_INVALID_EVENT_TYPE

Method
disableCallNotification()

This method is used by the application to disable call notifications.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignment ID given by the generic call control manager interface when the previous
enableCallNotification() was called. If the assignment ID does not correspond to one of the valid assignment IDs, the
exception P_INVALID_ASSIGNMENTID will be raised. If two callbacks have been registered under this assignment
ID both of them will be disabled.

Raises

TpCommonExceptions, P_INVALID_ASSIGNMENT_ID

Method
setCallLoadControl()

This method imposes or removes load control on calls made to a particular address range within the generic call control
service. The address matching mechanism is similar as defined for TpCallEventCriteria.

Returns assignmentID: Specifies the assignmentID assigned by the gateway to this request. This assignmentID can be
used to correlate the callOverloadEncountered and callOverloadCeased methods with the request.

Parameters

duration : in TpDuration

Specifies the duration for which the load control should be set.

A duration of 0 indicates that the load control should be removed.

A duration of -1 indicates an infinite duration (i.e., until disabled by the application)

A duration of -2 indicates the network default duration.

mechanism : in TpCallLoadControlMechanism

Specifies the load control mechanism to use (for example, admit one call per interval), and any necessary parameters,
such as the call admission rate. The contents of this parameter are ignored if the load control duration is set to zero.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 7

CR page 7

treatment : in TpCallTreatment

Specifies the treatment of calls that are not admitted. The contents of this parameter are ignored if the load control
duration is set to zero.

addressRange : in TpAddressRange

Specifies the address or address range to which the overload control should be applied or removed.

Returns

TpAssignmentID

Raises

TpCommonExceptions, P_INVALID_ADDRESS, P_UNSUPPORTED_ADDRESS_PLAN

Method
changeCallNotification()

This method is used by the application to change the event criteria introduced with enableCallNotification. Any stored
criteria associated with the specified assignmentID will be replaced with the specified criteria.

Parameters

assignmentID : in TpAssignmentID

Specifies the ID assigned by the generic call control manager interface for the event notification. If two call backs have
been registered under this assignment ID both of them will be changed.

eventCriteria : in TpCallEventCriteria

Specifies the new set of event specific criteria used by the application to define the event required. Only events that
meet these criteria are reported.

Raises

TpCommonExceptions, P_INVALID_ASSIGNMENT_ID, P_INVALID_CRITERIA,
P_INVALID_EVENT_TYPE

Method
getCriteria()

This method is used by the application to query the event criteria set with enableCallNotification or
changeCallNotification.

Returns eventCriteria: Specifies the event specific criteria used by the application to define the event required. Only
events that meet these criteria are reported.

Parameters
No Parameters were identified for this method

Returns

TpCallEventCriteriaResultSet

Raises

TpCommonExceptions

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 8

CR page 8

6.3.2 Interface Class IpAppCallControlManager

Inherits from: IpInterface

The generic call control manager application interface provides the application call control management functions to the
generic call control service.

<<Interface>>

IpAppCallControlManager

callAborted (callReference : in TpSessionID) : void

callEventNotify (callReference : in TpCallIdentifier, eventInfo : in TpCallEventInfo, assignmentID : in
TpAssignmentID) : IpAppCallRef

callNotificationInterrupted () : void

callNotificationContinued () : void

callOverloadEncountered (assignmentID : in TpAssignmentID) : void

callOverloadCeased (assignmentID : in TpAssignmentID) : void

Method
callAborted()

This method indicates to the application that the call object (at the gateway) has aborted or terminated abnormally. No
further communication will be possible between the call and application.

Parameters

callReference : in TpSessionID

Specifies the sessionID of call that has aborted or terminated abnormally.

Method
callEventNotify()

This method notifies the application of the arrival of a call-related event.

If this method is invoked with a monitor mode of P_CALL_MONITOR_MODE_INTERRUPT, then the APL has
control of the call. If the APL does nothing with the call (including its associated legs) within a specified time period
(the duration of which forms a part of the service level agreement), then the call in the network shall be released and
callEnded() shall be invoked, giving a release cause of 102 (Recovery on timer expiry).

When this method is invoked with a monitor mode of P_CALL_MONITOR_MODE_INTERRUPT, the application
writer should ensure that no routeReq() is performed until an IpAppCall has been passed to the gateway, either through
an explicit setCallback() invocation on the supplied IpCall, or via the return of the callEventNotify() method.

Returns appCall: Specifies a reference to the application interface which implements the callback interface for the new
call. If the application has previously explicitly passed a reference to the IpAppCall interface using a setCallback()
invocation, this parameter may be null, or if supplied must be the same as that provided during the setCallback().

This parameter will be null if the notification is in NOTIFY mode.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 9

CR page 9

Parameters

callReference : in TpCallIdentifier

Specifies the reference to the call interface to which the notification relates. If the notification is in NOTIFY mode, this
parameter shall be ignored by the application client implementation, and consequently the implementation of the SCS
entity invoking callEventNotify may populate this parameter as it chooses.

eventInfo : in TpCallEventInfo

Specifies data associated with this event.

assignmentID : in TpAssignmentID

Specifies the assignment id which was returned by the enableCallNotification() method. The application can use
assignment id to associate events with event specific criteria and to act accordingly.

Returns

IpAppCallRef

Method
callNotificationInterrupted()

This method indicates to the application that all event notifications have been temporarily interrupted (for example, due
to faults detected).

Note that more permanent failures are reported via the Framework (integrity management).

Parameters
No Parameters were identified for this method

Method
callNotificationContinued()

This method indicates to the application that event notifications will again be possible.

Parameters
No Parameters were identified for this method

Method
callOverloadEncountered()

This method indicates that the network has detected overload and may have automatically imposed load control on calls
requested to a particular address range or calls made to a particular destination within the call control service.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignmentID corresponding to the associated setCallLoadControl. This implies the address range for
within which the overload has been encountered.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 10

CR page 10

Method
callOverloadCeased()

This method indicates that the network has detected that the overload has ceased and has automatically removed any
load controls on calls requested to a particular address range or calls made to a particular destination within the call
control service.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignmentID corresponding to the associated setCallLoadControl. This implies the address range for
within which the overload has been ceased

6.3.3 Interface Class IpCall

Inherits from: IpService

The generic Call provides the possibility to control the call routing, to request information from the call, control the
charging of the call, to release the call and to supervise the call. It does not give the possibility to control the legs
directly and it does not allow control over the media. The first capability is provided by the multi-party call and the
latter as well by the multi-media call. The call is limited to two party calls, although it is possible to provide 'follow-on'
calls, meaning that the call can be rerouted after the terminating party has disconnected or routing to the terminating
party has failed. Basically, this means that at most two legs can be in connected or routing state at any time.

This interface shall be implemented by a Generic Call Control SCF. As a minimum requirement, the routeReq (),
release() and deassignCall() methods shall be implemented.

<<Interface>>

IpCall

routeReq (callSessionID : in TpSessionID, responseRequested : in TpCallReportRequestSet, targetAddress
: in TpAddress, originatingAddress : in TpAddress, originalDestinationAddress : in TpAddress,
redirectingAddress : in TpAddress, appInfo : in TpCallAppInfoSet) : TpSessionID

release (callSessionID : in TpSessionID, cause : in TpCallReleaseCause) : void

deassignCall (callSessionID : in TpSessionID) : void

getCallInfoReq (callSessionID : in TpSessionID, callInfoRequested : in TpCallInfoType) : void

setCallChargePlan (callSessionID : in TpSessionID, callChargePlan : in TpCallChargePlan) : void

setAdviceOfCharge (callSessionID : in TpSessionID, aOCInfo : in TpAoCInfo, tariffSwitch : in TpDuration) :
void

getMoreDialledDigitsReq (callSessionID : in TpSessionID, length : in TpInt32) : void

superviseCallReq (callSessionID : in TpSessionID, time : in TpDuration, treatment : in
TpCallSuperviseTreatment) : void

Method
routeReq()

This asynchronous method requests routing of the call to the remote party indicated by the targetAddress.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 11

CR page 11

Note that in case of routeReq() it is recommended to request for 'successful' (e.g. 'answer' event) and 'failure' events at
invocation, because those are needed for the application to keep track of the state of the call.

The extra address information such as originatingAddress is optional. If not present (i.e., the plan is set to
P_ADDRESS_PLAN_NOT_PRESENT), the information provided in corresponding addresses from the route is used,
otherwise the network or gateway provided numbers will be used.

If this method in invoked, and call reports have been requested, yet no IpAppCall interface has been provided, this
method shall throw the P_NO_CALLBACK_ADDRESS_SET exception.

Returns callLegSessionID: Specifies the sessionID assigned by the gateway. This is the sessionID of the implicitly
created call leg. The same ID will be returned in the routeRes or Err. This allows the application to correlate the request
and the result.

 This parameter is only relevant when multiple routeReq() calls are executed in parallel, e.g., in the multi-party call
control service.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

responseRequested : in TpCallReportRequestSet

Specifies the set of observed events that will result in zero or more routeRes() being generated.

E.g., when both answer and disconnect is monitored the result can be received two times.

If the application wants to control the call (in whatever sense) it shall enable event reports

targetAddress : in TpAddress

Specifies the destination party to which the call leg should be routed.

originatingAddress : in TpAddress

Specifies the address of the originating (calling) party.

originalDestinationAddress : in TpAddress

Specifies the original destination address of the call.

redirectingAddress : in TpAddress

Specifies the address from which the call was last redirected.

appInfo : in TpCallAppInfoSet

Specifies application-related information pertinent to the call (such as alerting method, tele-service type, service
identities and interaction indicators).

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 12

CR page 12

Returns

TpSessionID

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_ADDRESS,
P_UNSUPPORTED_ADDRESS_PLAN, P_INVALID_NETWORK_STATE, P_INVALID_CRITERIA,
P_INVALID_EVENT_TYPE

Method
release()

This method requests the release of the call object and associated objects. The call will also be terminated in the
network. If the application requested reports to be sent at the end of the call (e.g., by means of getCallInfoReq) these
reports will still be sent to the application.

The application should always either release or deassign the call when it is finished with the call, unless a
callFaultDetected is received by the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

cause : in TpCallReleaseCause

Specifies the cause of the release.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE

Method
deassignCall()

This method requests that the relationship between the application and the call and associated objects be de-assigned. It
leaves the call in progress, however, it purges the specified call object so that the application has no further control of
call processing. If a call is de-assigned that has event reports, call information reports or call Leg information reports
requested, then these reports will be disabled and any related information discarded.

The application should always either release or deassign the call when it is finished with the call, unless
callFaultDetected is received by the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 13

CR page 13

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
getCallInfoReq()

This asynchronous method requests information associated with the call to be provided at the appropriate time (for
example, to calculate charging). This method must be invoked before the call is routed to a target address.

A report is received when the destination leg or party terminates or when the call ends. The call object will exist after
the call is ended if information is required to be sent to the application at the end of the call. In case the originating party
is still available the application can still initiate a follow-on call using routeReq.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

callInfoRequested : in TpCallInfoType

Specifies the call information that is requested.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
setCallChargePlan()

Set an operator specific charge plan for the call.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

callChargePlan : in TpCallChargePlan

Specifies the charge plan to use.

Raises

TpCommonExceptions,P_INVALID_SESSION_ID

Method
setAdviceOfCharge()

This method allows for advice of charge (AOC) information to be sent to terminals that are capable of receiving this
information.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 14

CR page 14

aOCInfo : in TpAoCInfo

Specifies two sets of Advice of Charge parameter.

tariffSwitch : in TpDuration

Specifies the tariff switch interval that signifies when the second set of AoC parameters becomes valid.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
getMoreDialledDigitsReq()

This asynchronous method requests the call control service to collect further digits and return them to the application.
Depending on the administered data, the network may indicate a new call to the gateway if a caller goes off-hook or
dialled only a few digits. The application then gets a new call event which contains no digits or only the few dialled
digits in the event data.

The application should use this method if it requires more dialled digits, e.g. to perform screening.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

length : in TpInt32

Specifies the maximum number of digits to collect.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
superviseCallReq()

The application calls this method to supervise a call. The application can set a granted connection time for this call. If
an application calls this function before it calls a routeReq() or a user interaction function the time measurement will
start as soon as the call is answered by the B-party or the user interaction system.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

time : in TpDuration

Specifies the granted time in milliseconds for the connection.

treatment : in TpCallSuperviseTreatment

Specifies how the network should react after the granted connection time expired.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 15

CR page 15

6.3.4 Interface Class IpAppCall

Inherits from: IpInterface

The generic call application interface is implemented by the client application developer and is used to handle call
request responses and state reports.

<<Interface>>

IpAppCall

routeRes (callSessionID : in TpSessionID, eventReport : in TpCallReport, callLegSessionID : in
TpSessionID) : void

routeErr (callSessionID : in TpSessionID, errorIndication : in TpCallError, callLegSessionID : in
TpSessionID) : void

getCallInfoRes (callSessionID : in TpSessionID, callInfoReport : in TpCallInfoReport) : void

getCallInfoErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : void

superviseCallRes (callSessionID : in TpSessionID, report : in TpCallSuperviseReport, usedTime : in
TpDuration) : void

superviseCallErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : void

callFaultDetected (callSessionID : in TpSessionID, fault : in TpCallFault) : void

getMoreDialledDigitsRes (callSessionID : in TpSessionID, digits : in TpString) : void

getMoreDialledDigitsErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : void

callEnded (callSessionID : in TpSessionID, report : in TpCallEndedReport) : void

Method
routeRes()

This asynchronous method indicates that the request to route the call to the destination was successful, and indicates the
response of the destination party (for example, the call was answered, not answered, refused due to busy, etc.).

If this method is invoked with a monitor mode of P_CALL_MONITOR_MODE_INTERRUPT,

then the APL has control of the call. If the APL does nothing with the call (including its associated legs) within a
specified time period (the duration of which forms a part of the service level agreement), then the call in the network
shall be released and callEnded() shall be invoked, giving a release cause of 102 (Recovery on timer expiry).

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

eventReport : in TpCallReport

Specifies the result of the request to route the call to the destination party. It also includes the network event, date and
time, monitoring mode and event specific information such as release cause.

callLegSessionID : in TpSessionID

Specifies the sessionID of the associated call leg. This corresponds to the sessionID returned at the routeReq() and can
be used to correlate the response with the request.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 16

CR page 16

Method
routeErr()

This asynchronous method indicates that the request to route the call to the destination party was unsuccessful - the call
could not be routed to the destination party (for example, the network was unable to route the call, the parameters were
incorrect, the request was refused, etc.).

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

callLegSessionID : in TpSessionID

Specifies the sessionID of the associated call leg. This corresponds to the sessionID returned at the routeReq() and can
be used to correlate the error with the request.

Method
getCallInfoRes()

This asynchronous method reports time information of the finished call or call attempt as well as release cause
depending on which information has been requested by getCallInfoReq. This information may be used e.g. for charging
purposes. The call information will possibly be sent after routeRes in all cases where the call or a leg of the call has
been disconnected or a routing failure has been encountered.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

callInfoReport : in TpCallInfoReport

Specifies the call information requested.

Method
getCallInfoErr()

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 17

CR page 17

Method
superviseCallRes()

This asynchronous method reports a call supervision event to the application when it has indicated its interest in these
kind of events.

It is also called when the connection is terminated before the supervision event occurs. Furthermore, this method is
invoked as a response to the request also when a tariff switch happens in the network during an active call.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call

report : in TpCallSuperviseReport

Specifies the situation which triggered the sending of the call supervision response.

usedTime : in TpDuration

Specifies the used time for the call supervision (in milliseconds).

Method
superviseCallErr()

This asynchronous method reports a call supervision error to the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

Method
callFaultDetected()

This method indicates to the application that a fault in the network has been detected. The call may or may not have
been terminated.

The system deletes the call object. Therefore, the application has no further control of call processing. No report will be
forwarded to the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call in which the fault has been detected.

fault : in TpCallFault

Specifies the fault that has been detected.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 18

CR page 18

Method
getMoreDialledDigitsRes()

This asynchronous method returns the collected digits to the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

digits : in TpString

Specifies the additional dialled digits if the string length is greater than zero.

Method
getMoreDialledDigitsErr()

This asynchronous method reports an error in collecting digits to the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

Method
callEnded()

This method indicates to the application that the call has terminated in the network. However, the application may still
receive some results (e.g., getCallInfoRes) related to the call. The application is expected to deassign the call object
after having received the callEnded.

Note that the event that caused the call to end might also be received separately if the application was monitoring for it.

Parameters

callSessionID : in TpSessionID

Specifies the call sessionID.

report : in TpCallEndedReport

Specifies the reason the call is terminated.

CR page 1

joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5) N5-021053
Meeting #21, Dublin, IRELAND, 28 – 31 October 2002

CR-Form-v7

CHANGE REQUEST

! 29.198-04-3 CR 009 ! rev - ! Current version: 5.1.0
!

For HELP on using this form, see bottom of this page or look at the pop-up text over the ! symbols.

Proposed change affects: UICC apps! ME Radio Access Network Core Network X

Title: ! Correction to TpReleaseCauseSet in Multi Party Call Control IDL

Source: ! N5

Work item code: ! OSA2 Date: ! 31/10/2002

Category: ! A Release: ! REL-5
 Use one of the following categories:

F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.

Use one of the following releases:
2 (GSM Phase 2)
R96 (Release 1996)
R97 (Release 1997)
R98 (Release 1998)
R99 (Release 1999)
Rel-4 (Release 4)
Rel-5 (Release 5)
Rel-6 (Release 6)

Reason for change: ! The definition of TpReleaseCauseSet in TS 29.198-04-3 contains an error:

It is defined as being a Numbered Set of Data Elements of
TpCallReleaseCause.
But TpCallReleaseCause is the GCC release cause data type, and
TpReleaseCauseSet is used for MPCC, so should be a Numbered Set of Data
Elements of TpReleaseCause.
The IDL and WSDL have the correct definition.

Summary of change: ! Change dataype to correct description of TpReleaseCauseSet

Consequences if !
not approved:

A contradiction will exist between the IDL, WSDL and the Word document, and
the Word document will mislead developers. If no alignment is made, some
developers will chose one implementation of the type, others the other, and
interworking problems will arise.

Clauses affected: ! Annex A, Annex B

 Y N
Other specs ! X Other core specifications !
affected: X Test specifications
 X O&M Specifications

Other comments: !

How to create CRs using this form:
Comprehensive information and tips about how to create CRs can be found at http://www.3gpp.org/specs/CR.htm.
Below is a brief summary:

1) Fill out the above form. The symbols above marked ! contain pop-up help information about the field that they are
closest to.

2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word
"revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be

CR page 2

downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name
with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of
the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to
the change request.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 3

CR page 3

"============================= MODIFIED SECTION ============================#

9.2.34 TpReleaseCause

Defines the reason for which a call is released.

Name Value Description
P_UNDEFINED 0 The reason of release is not known, because no info was received from the network.

P_USER_NOT_AVAILABLE 1 The user is not available in the network. This means that the number is not allocated or that the user is
not registered.

P_BUSY 2 The user is busy.

P_NO_ANSWER 3 No answer was received

P_NOT_REACHABLE 4 The user terminal is not reachable

P_ROUTING_FAILURE 5 A routing failure occurred. For example an invalid address was received

P_PREMATURE_DISCONNECT 6 The user disconnected the call / call leg during the setup phase.

P_DISCONNECTED 7 A disconnect was received.

P_CALL_RESTRICTED 8 The call was subject of restrictions

P_UNAVAILABLE_RESOURCE 9 The request could not be carried out as no resources were available.

P_GENERAL_FAILURE 10 A general network failure occurred.

P_TIMER_EXPIRY 11 The call / call leg was released because an activity timer expired.

P_UNSUPPORTED_MEDIA 12 The call / call leg was released either because the message body of the request is in a format not
supported or because the media is not supported.

9.2.35 TpReleaseCauseSet

Defines a Numbered Set of Data Elements of TpCallReleaseCause.

"============================= END MODIFIED SECTION ============================#

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 4

CR page 4

Annex A (normative):
OMG IDL Description of Multi-Party Call Control SCF
The OMG IDL representation of this interface specification is contained in text files mpcc_data.idl and
mpcc_interfaces.idl (contained in archive 291980403IDL.ZIP) which accompany the present document.

 typedef sequence<TpReleaseCause> TpReleaseCauseSet;

Annex B (informative):
W3C WSDL Description of Multi-Party Call Control SCF
The W3C WSDL representation of this specification is contained in text files (mpcc_data.wsdl, mpcc_interfaces.wsdl
contained in archive 291980403WSDL.ZIP) which accompanies the present document.

 <xsd:complexType name="TpReleaseCauseSet">
 <xsd:sequence>
 <xsd:element name="TpReleaseCauseSet" type="common_cc_dataxsd:TpReleaseCause" minOccurs="0"
maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>

CR page 1

joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5) N5-021122
Meeting #21, Dublin, IRELAND, 28 – 31 October 2002

CR-Form-v7

CHANGE REQUEST

! 29.198-04-2 CR 005 ! rev - ! Current version: 5.1.0
!

For HELP on using this form, see bottom of this page or look at the pop-up text over the ! symbols.

Proposed change affects: UICC apps! ME Radio Access Network Core Network X

Title: ! Correction to TpCallEventCriteriaResult in Generic Call Control

Source: ! N5

Work item code: ! OSA2 Date: ! 31/10/2002

Category: ! A Release: ! REL-5
 Use one of the following categories:

F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.

Use one of the following releases:
2 (GSM Phase 2)
R96 (Release 1996)
R97 (Release 1997)
R98 (Release 1998)
R99 (Release 1999)
Rel-4 (Release 4)
Rel-5 (Release 5)
Rel-6 (Release 6)

Reason for change: ! The text description for TpCallEventCriteriaResult contains a name of an element

in a struct data type which contradicts the IDL and WSDL description of the same
data type.

Summary of change: ! Change text description to match current IDL and WSDL of

TpCallEventCriteriaResult

Consequences if !
not approved:

A contradiction will exist between the IDL and WSDL and the Word document. If
no alignment is made, some developers will chose one name, others the other,
and interworking problems will arise.

Clauses affected: ! 9.2.25

 Y N
Other specs ! X Other core specifications !
affected: X Test specifications
 X O&M Specifications

Other comments: !

How to create CRs using this form:
Comprehensive information and tips about how to create CRs can be found at http://www.3gpp.org/specs/CR.htm.
Below is a brief summary:

1) Fill out the above form. The symbols above marked ! contain pop-up help information about the field that they are
closest to.

2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word
"revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be
downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name
with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of
the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to
the change request.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 2

CR page 2

9.2.25 TpCallEventCriteriaResult

Defines a sequence of data elements that specify a requested call event notification criteria with the associated
assignmentID.

Sequence Element
Name

Sequence Element
Type

Sequence Element
Description

CallEventCriteria TpCallEventCriteria The event criteria that were specified by the application.
AssignmentID TpInt32 The associated assignmentID. This can be used to disable the notification.

"============================= FIRST MODIFIED SECTION ============================#

Annex A (normative):
OMG IDL Description of Generic Call Control SCF
The OMG IDL representation of this specification is contained in text files gcc_data.idl and gcc_interfaces.idl
(contained in archive 291980402IDL.ZIP) which accompany the present document.

 struct TpCallEventCriteriaResult {
 TpCallEventCriteria CallEventCriteria;
 TpInt32 AssignmentID;
 };

"========================== SECOND MODIFIED SECTION ============================#

Annex B (informative):
W3C WSDL Description of Generic Call Control SCF
The W3C WSDL representation of this specification is contained in text files (gcc_data.wsdl, gcc_interfaces.wsdl
contained in archive 291980402WSDL.ZIP) which accompanies the present document.

 <xsd:complexType name="TpCallEventCriteriaResult">
 <xsd:sequence>
 <xsd:element name="AssignmentID" type="osaxsd:TpInt32"/>
 <xsd:element name="CallEventCriteria" type="gcc_dataxsd:TpCallEventCriteria"/>
 </xsd:sequence>
 </xsd:complexType>

CR page 1

joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5) N5-021065
Meeting #21, Dublin, IRELAND, 28 – 31 October 2002

CR-Form-v7

CHANGE REQUEST

! 29.198-04-2 CR 004 ! rev - ! Current version: 5.1.0
!

For HELP on using this form, see bottom of this page or look at the pop-up text over the ! symbols.

Proposed change affects: UICC apps! ME Radio Access Network Core Network X

Title: ! Correction to Prepaid Sequence Diagram

Source: ! N5

Work item code: ! OSA2 Date: ! 31/10/2002

Category: ! A Release: ! REL-5
 Use one of the following categories:

F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.

Use one of the following releases:
2 (GSM Phase 2)
R96 (Release 1996)
R97 (Release 1997)
R98 (Release 1998)
R99 (Release 1999)
Rel-4 (Release 4)
Rel-5 (Release 5)
Rel-6 (Release 6)

Reason for change: ! The description of the Prepaid sequence diagram in Generic Call Control is

incorrect.
It indicates that an announcement is played only to party A in a call controlled by
a GCC application, when both A and B parties are connected.
The announcement will in fact be played to both parties, since there is no means
in GCC to separate the two parties in the call.
This error has been partially corrected in GCC for Release 5 (N5-020500). This
CR completes the changes made in N5-020500.

Summary of change: ! Change the Prepaid sequence diagram to remove indication that B party will not

hear announcement.

Consequences if !
not approved:

Developers use these sequence diagrams as examples of how OSA/Parlay
really behaves. Since they consider that these examples are provided by the
real experts, they consider they must be right and should be followed. If we don't
correct such errors, we are deliberately misleading developers, and can only
expect interoperability problems at later stages.

Clauses affected: ! 4.11

 Y N
Other specs ! X Other core specifications !
affected: X Test specifications
 X O&M Specifications

Other comments: !

How to create CRs using this form:
Comprehensive information and tips about how to create CRs can be found at http://www.3gpp.org/specs/CR.htm.
Below is a brief summary:

1) Fill out the above form. The symbols above marked ! contain pop-up help information about the field that they are
closest to.

CR page 2

2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word
"revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be
downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name
with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of
the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to
the change request.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 3

CR page 3

4.11 Prepaid
This sequence shows a Pre-paid application.

The subscriber is using a pre-paid card or credit card to pay for the call. The application each time allows a certain
timeslice for the call. After the timeslice, a new timeslice can be started or the application can terminate the call. In the
following sequence the end-user will receive an announcement before his final timeslice.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 4

CR page 4

Prepaid : (Logical
View::IpAppLogic)

 : IpAppCallControlManager : IpCallControlManager : IpCall : IpUICall : IpUIManager : IpAppUICall : IpAppCall

1: new()

2: enableCallNotification()

3: callEventNotify()4: "forward event"

7: routeReq()

8 : superviseCallRes()
9: "forward event"

10: superviseCallReq()

11: superviseCallRes()
12: "forward event"

13: superviseCallReq()

14: superviseCallRes()

15: "forward event"

6: superviseCallReq()

17: sendInfoReq()

18: s endInfoRes()
19: "forward event"

21: superviseCallReq()

22: superviseCallRes()
23: "forward event:

24: release()

16: createUICall ()

20: release()

5: new()

1: This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts
a pre-paid service, it is likely that only new call events within a certain address range will be enabled. When a new call,

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 5

CR page 5

that matches the event criteria, arrives a message (not shown) is directed to the object implementing the
IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load
control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg
object.

3: The incoming call triggers the Pre-Paid Application (PPA).

4: The message is forwarded to the application.

5: A new object on the application side for the Generic Call object is created

6: The Pre-Paid Application (PPA) requests to supervise the call. The application will be informed after the period
indicated in the message. This period is related to the credits left on the account of the pre-paid subscriber.

7: Before continuation of the call, PPA sends all charging information, a possible tariff switch time and the call
duration supervision period, towards the GW which forwards it to the network.

8: At the end of each supervision period the application is informed and a new period is started.

9: The message is forwarded to the application.

10: The Pre-Paid Application (PPA) requests to supervise the call for another call duration.

11: At the end of each supervision period the application is informed and a new period is started.

12: The message is forwarded to the application.

13: The Pre-Paid Application (PPA) requests to supervise the call for another call duration. When the timer expires it
will indicate that the user is almost out of credit.

14: When the user is almost out of credit the application is informed.

15: The message is forwarded to the application.

16: The application decides to play an announcement to the parties in this call. A new UICall object is created and
associated with the call.

17: An announcement is played informing the user about the near-expiration of his credit limit. The B-subscriber will
not hear the announcement.

18: When the announcement is completed the application is informed.

19: The message is forwarded to the application.

20: The application releases the UICall object.

21: The user does not terminate so the application terminates the call after the next supervision period.

22: The supervision period ends

23: The event is forwarded to the logic.

24: The application terminates the call. Since the user interaction is already explicitly terminated no
userInteractionFaultDetected is sent to the application.

CR page 1

joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5) N5-020873
Meeting #20, Miami/ FL, USA, 23 – 27 September 2002

CR-Form-v7

CHANGE REQUEST

! 29.198-04-2 CR 003 ! rev - ! Current version: 5.1.0
!

For HELP on using this form, see bottom of this page or look at the pop-up text over the ! symbols.

Proposed change affects: UICC apps! ME Radio Access Network Core Network X

Title: ! Correction of status of GCC methods

Source: ! N5

Work item code: ! OSA2 Date: ! 27/09/2002

Category: ! A Release: ! REL-5
 Use one of the following categories:

F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.

Use one of the following releases:
2 (GSM Phase 2)
R96 (Release 1996)
R97 (Release 1997)
R98 (Release 1998)
R99 (Release 1999)
Rel-4 (Release 4)
Rel-5 (Release 5)
Rel-6 (Release 6)

Reason for change: ! There is no requirement in the standard about the necessity to implement all or

only some of the methods defined for an interface.

Summary of change: ! Clarify which methods are mandatory and which are optional.

Consequences if !
not approved:

Application developers will not know which methods will actually be available.

Clauses affected: ! 6 Generic Call Control Service Interface Classes

 Y N
Other specs ! X Other core specifications !
affected: X Test specifications
 X O&M Specifications

Other comments: !

How to create CRs using this form:
Comprehensive information and tips about how to create CRs can be found at http://www.3gpp.org/specs/CR.htm.
Below is a brief summary:

1) Fill out the above form. The symbols above marked ! contain pop-up help information about the field that they are
closest to.

2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word
"revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be
downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name
with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of
the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to
the change request.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 2

CR page 2

6 Generic Call Control Service Interface Classes
The Generic Call Control Service (GCCS) provides the basic call control service for the API. It is based around a third
party model, which allows calls to be instantiated from the network and routed through the network.

The GCCS supports enough functionality to allow call routing and call management for today's Intelligent Network
(IN) services in the case of a switched telephony network, or equivalent for packet based networks.

It is the intention of the GCCS that it could be readily specialised into call control specifications, for example, ITU-T
recommendations H.323, ISUP, Q.931 and Q.2931, ATM Forum specification UNI3.1 and the IETF Session Initiation
Protocol, or any other call control technology.

For the generic call control service, only a subset of the call model defined in clause 4 is used; the API for generic call
control does not give explicit access to the legs and the media channels. This is provided by the Multi-Party Call
Control Service. Furthermore, the generic call is restricted to two party calls, i.e., only two legs are active at any given
time. Active is defined here as 'being routed' or connected.

The GCCS is represented by the IpCallControlManager and IpCall interfaces that interface to services provided by the
network. Some methods are asynchronous, in that they do not lock a thread into waiting whilst a transaction performs.
In this way, the client machine can handle many more calls, than one that uses synchronous message calls. To handle
responses and reports, the developer must implement IpAppCallControlManager and IpAppCall to provide the callback
mechanism.

6.1 Interface Class IpCallControlManager
Inherits from: IpService

This interface is the 'service manager' interface for the Generic Call Control Service. The generic call control manager
interface provides the management functions to the generic call control service. The application programmer can use
this interface to provide overload control functionality, create call objects and to enable or disable call-related event
notifications.

This interface shall be implemented by a Generic Call Control SCF. As a minimum requirement either the createCall()
method shall be implemented, or the enableCallNotification() and disableCallNotification() methods shall be
implemented.

<<Interface>>

IpCallControlManager

createCall (appCall : in IpAppCallRef) : TpCallIdentifier

enableCallNotification (appCallControlManager : in IpAppCallControlManagerRef, eventCriteria : in
TpCallEventCriteria) : TpAssignmentID

disableCallNotification (assignmentID : in TpAssignmentID) : void

setCallLoadControl (duration : in TpDuration, mechanism : in TpCallLoadControlMechanism, treatment : in
TpCallTreatment, addressRange : in TpAddressRange) : TpAssignmentID

changeCallNotification (assignmentID : in TpAssignmentID, eventCriteria : in TpCallEventCriteria) : void

getCriteria () : TpCallEventCriteriaResultSet

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 3

CR page 3

6.1.1 Method createCall()

This method is used to create a new call object. An IpAppCallControlManager should already have been passed to the
IpCallControlManager, otherwise the call control will not be able to report a callAborted()

to the application (the application should invoke setCallback() if it wishes to ensure this).

Returns callReference: Specifies the interface reference and sessionID of the call created.

Parameters

appCall : in IpAppCallRef

Specifies the application interface for callbacks from the call created.

Returns

TpCallIdentifier

Raises

TpCommonExceptions, P_INVALID_INTERFACE_TYPE

6.1.2 Method enableCallNotification()

This method is used to enable call notifications so that events can be sent to the application. This is the first step an
application has to do to get initial notification of calls happening in the network. When such an event happens, the
application will be informed by callEventNotify(). In case the application is interested in other events during the context
of a particular call session it has to use the routeReq() method on the call object. The application will get access to the
call object when it receives the callEventNotify(). (Note that the enableCallNotification() is not applicable if the call is
setup by the application).

The enableCallNotification method is purely intended for applications to indicate their interest to be notified when
certain call events take place. It is possible to subscribe to a certain event for a whole range of addresses, e.g. the
application can indicate it wishes to be informed when a call is made to any number starting with 800.

If some application already requested notifications with criteria that overlap the specified criteria, the request is refused
with P_GCCS_INVALID_CRITERIA. The criteria are said to overlap if both originating and terminating ranges
overlap and the same number plan is used and the same CallNotificationType is used.

If a notification is requested by an application with the monitor mode set to notify, then there is no need to check the
rest of the criteria for overlapping with any existing request as the notify mode does not allow control on a call to be
passed over. Only one application can place an interrupt request if the criteria overlaps.

If the same application requests two notifications with exactly the same criteria but different callback references, the
second callback will be treated as an additional callback. Both notifications will share the same assignmentID. The
gateway will always use the most recent callback. In case this most recent callback fails the second most recent is used.
In case the enableCallNotification contains no callback, at the moment the application needs to be informed the gateway
will use as callback the callback that has been registered by setCallback().

Returns assignmentID: Specifies the ID assigned by the generic call control manager interface for this newly-enabled
event notification.

Parameters

appCallControlManager : in IpAppCallControlManagerRef

If this parameter is set (i.e. not NULL) it specifies a reference to the application interface, which is used for callbacks. If
set to NULL, the application interface defaults to the interface specified via the setCallback() method.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 4

CR page 4

eventCriteria : in TpCallEventCriteria

Specifies the event specific criteria used by the application to define the event required. Only events that meet these
criteria are reported. Examples of events are "incoming call attempt reported by network", "answer", "no answer",
"busy". Individual addresses or address ranges may be specified for destination and/or origination.

Returns

TpAssignmentID

Raises

TpCommonExceptions, P_INVALID_CRITERIA, P_INVALID_INTERFACE_TYPE,
P_INVALID_EVENT_TYPE

6.1.3 Method disableCallNotification()

This method is used by the application to disable call notifications.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignment ID given by the generic call control manager interface when the previous
enableCallNotification() was called. If the assignment ID does not correspond to one of the valid assignment IDs, the
exception P_INVALID_ASSIGNMENTID will be raised. If two callbacks have been registered under this assignment
ID both of them will be disabled.

Raises

TpCommonExceptions, P_INVALID_ASSIGNMENT_ID

6.1.4 Method setCallLoadControl()

This method imposes or removes load control on calls made to a particular address range within the generic call control
service. The address matching mechanism is similar as defined for TpCallEventCriteria.

Returns assignmentID: Specifies the assignmentID assigned by the gateway to this request. This assignmentID can be
used to correlate the callOverloadEncountered and callOverloadCeased methods with the request.

Parameters

duration : in TpDuration

Specifies the duration for which the load control should be set.

A duration of 0 indicates that the load control should be removed.

A duration of -1 indicates an infinite duration (i.e., until disabled by the application)

A duration of -2 indicates the network default duration.

mechanism : in TpCallLoadControlMechanism

Specifies the load control mechanism to use (for example, admit one call per interval), and any necessary parameters,
such as the call admission rate. The contents of this parameter are ignored if the load control duration is set to zero.

treatment : in TpCallTreatment

Specifies the treatment of calls that are not admitted. The contents of this parameter are ignored if the load control
duration is set to zero.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 5

CR page 5

addressRange : in TpAddressRange

Specifies the address or address range to which the overload control should be applied or removed.

Returns

TpAssignmentID

Raises

TpCommonExceptions, P_INVALID_ADDRESS, P_UNSUPPORTED_ADDRESS_PLAN

6.1.5 Method changeCallNotification()

This method is used by the application to change the event criteria introduced with enableCallNotification. Any stored
criteria associated with the specified assignmentID will be replaced with the specified criteria.

Parameters

assignmentID : in TpAssignmentID

Specifies the ID assigned by the generic call control manager interface for the event notification. If two call backs have
been registered under this assignment ID both of them will be changed.

eventCriteria : in TpCallEventCriteria

Specifies the new set of event specific criteria used by the application to define the event required. Only events that
meet these criteria are reported.

Raises

TpCommonExceptions, P_INVALID_ASSIGNMENT_ID, P_INVALID_CRITERIA,
P_INVALID_EVENT_TYPE

6.1.6 Method getCriteria()

This method is used by the application to query the event criteria set with enableCallNotification or
changeCallNotification.

Returns eventCriteria: Specifies the event specific criteria used by the application to define the event required. Only
events that meet these criteria are reported.

Parameters
No Parameters were identified for this method

Returns

TpCallEventCriteriaResultSet

Raises

TpCommonExceptions

6.2 Interface Class IpAppCallControlManager
Inherits from: IpInterface

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 6

CR page 6

The generic call control manager application interface provides the application call control management functions to the
generic call control service.

<<Interface>>

IpAppCallControlManager

callAborted (callReference : in TpSessionID) : void

callEventNotify (callReference : in TpCallIdentifier, eventInfo : in TpCallEventInfo, assignmentID : in
TpAssignmentID) : IpAppCallRef

callNotificationInterrupted () : void

callNotificationContinued () : void

callOverloadEncountered (assignmentID : in TpAssignmentID) : void

callOverloadCeased (assignmentID : in TpAssignmentID) : void

6.2.1 Method callAborted()

This method indicates to the application that the call object (at the gateway) has aborted or terminated abnormally. No
further communication will be possible between the call and application.

Parameters

callReference : in TpSessionID

Specifies the sessionID of call that has aborted or terminated abnormally.

6.2.2 Method callEventNotify()

This method notifies the application of the arrival of a call-related event.

If this method is invoked with a monitor mode of P_CALL_MONITOR_MODE_INTERRUPT, then the APL has
control of the call. If the APL does nothing with the call (including its associated legs) within a specified time period
(the duration of which forms a part of the service level agreement), then the call in the network shall be released and
callEnded() shall be invoked, giving a release cause of 102 (Recovery on timer expiry).

When this method is invoked with a monitor mode of P_CALL_MONITOR_MODE_INTERRUPT, the application
writer should ensure that no routeReq() is performed until an IpAppCall has been passed to the gateway, either through
an explicit setCallback() invocation on the supplied IpCall, or via the return of the callEventNotify() method.

Returns appCall: Specifies a reference to the application interface which implements the callback interface for the new
call. If the application has previously explicitly passed a reference to the IpAppCall interface using a setCallback()
invocation, this parameter may be null, or if supplied must be the same as that provided during the setCallback().

This parameterwill be null if the notification is in NOTIFY mode.

Parameters

callReference : in TpCallIdentifier

Specifies the reference to the call interface to which the notification relates. If the notification is in NOTIFY mode, this
parameter shall be ignored by the application client implementation, and consequently the implementation of the SCS
entity invoking callEventNotify may populate this parameter as it chooses.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 7

CR page 7

eventInfo : in TpCallEventInfo

Specifies data associated with this event.

assignmentID : in TpAssignmentID

Specifies the assignment id which was returned by the enableCallNotification() method. The application can use
assignment id to associate events with event specific criteria and to act accordingly.

Returns

IpAppCallRef

6.2.3 Method callNotificationInterrupted()

This method indicates to the application that all event notifications have been temporarily interrupted (for example, due
to faults detected).

Note that more permanent failures are reported via the Framework (integrity management).

Parameters
No Parameters were identified for this method

6.2.4 Method callNotificationContinued()

This method indicates to the application that event notifications will again be possible.

Parameters
No Parameters were identified for this method

6.2.5 Method callOverloadEncountered()

This method indicates that the network has detected overload and may have automatically imposed load control on calls
requested to a particular address range or calls made to a particular destination within the call control service.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignmentID corresponding to the associated setCallLoadControl. This implies the address range for
within which the overload has been encountered.

6.2.6 Method callOverloadCeased()

This method indicates that the network has detected that the overload has ceased and has automatically removed any
load controls on calls requested to a particular address range or calls made to a particular destination within the call
control service.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignmentID corresponding to the associated setCallLoadControl. This implies the address range for
within which the overload has been ceased

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 8

CR page 8

6.3 Interface Class IpCall
Inherits from: IpService

The generic Call provides the possibility to control the call routing, to request information from the call, control the
charging of the call, to release the call and to supervise the call. It does not give the possibility to control the legs
directly and it does not allow control over the media. The first capability is provided by the multi-party call and the
latter as well by the multi-media call. The call is limited to two party calls, although it is possible to provide 'follow-on'
calls, meaning that the call can be rerouted after the terminating party has disconnected or routing to the terminating
party has failed. Basically, this means that at most two legs can be in connected or routing state at any time.

This interface shall be implemented by a Generic Call Control SCF. As a minimum requirement, the routeReq (),
release() and deassignCall() methods shall be implemented.

<<Interface>>

IpCall

routeReq (callSessionID : in TpSessionID, responseRequested : in TpCallReportRequestSet, targetAddress
: in TpAddress, originatingAddress : in TpAddress, originalDestinationAddress : in TpAddress,
redirectingAddress : in TpAddress, appInfo : in TpCallAppInfoSet) : TpSessionID

release (callSessionID : in TpSessionID, cause : in TpCallReleaseCause) : void

deassignCall (callSessionID : in TpSessionID) : void

getCallInfoReq (callSessionID : in TpSessionID, callInfoRequested : in TpCallInfoType) : void

setCallChargePlan (callSessionID : in TpSessionID, callChargePlan : in TpCallChargePlan) : void

setAdviceOfCharge (callSessionID : in TpSessionID, aOCInfo : in TpAoCInfo, tariffSwitch : in TpDuration) :
void

getMoreDialledDigitsReq (callSessionID : in TpSessionID, length : in TpInt32) : void

superviseCallReq (callSessionID : in TpSessionID, time : in TpDuration, treatment : in
TpCallSuperviseTreatment) : void

6.3.1 Method routeReq()

This asynchronous method requests routing of the call to the remote party indicated by the targetAddress.

Note that in case of routeReq() it is recommended to request for 'successful' (e.g. 'answer' event) and 'failure' events at
invocation, because those are needed for the application to keep track of the state of the call.

The extra address information such as originatingAddress is optional. If not present (i.e., the plan is set to
P_ADDRESS_PLAN_NOT_PRESENT), the information provided in corresponding addresses from the route is used,
otherwise the network or gateway provided numbers will be used.

If this method in invoked, and call reports have been requested, yet no IpAppCall interface has been provided, this
method shall throw the P_NO_CALLBACK_ADDRESS_SET exception.

Returns callLegSessionID: Specifies the sessionID assigned by the gateway. This is the sessionID of the implicitly
created call leg. The same ID will be returned in the routeRes or Err. This allows the application to correlate the request
and the result.

 This parameter is only relevant when multiple routeReq() calls are executed in parallel, e.g., in the multi-party call
control service.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 9

CR page 9

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

responseRequested : in TpCallReportRequestSet

Specifies the set of observed events that will result in zero or more routeRes() being generated.

E.g., when both answer and disconnect is monitored the result can be received two times.

If the application wants to control the call (in whatever sense) it shall enable event reports

targetAddress : in TpAddress

Specifies the destination party to which the call leg should be routed.

originatingAddress : in TpAddress

Specifies the address of the originating (calling) party.

originalDestinationAddress : in TpAddress

Specifies the original destination address of the call.

redirectingAddress : in TpAddress

Specifies the address from which the call was last redirected.

appInfo : in TpCallAppInfoSet

Specifies application-related information pertinent to the call (such as alerting method, tele-service type, service
identities and interaction indicators).

Returns

TpSessionID

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_ADDRESS,
P_UNSUPPORTED_ADDRESS_PLAN, P_INVALID_NETWORK_STATE, P_INVALID_CRITERIA,
P_INVALID_EVENT_TYPE

6.3.2 Method release()

This method requests the release of the call object and associated objects. The call will also be terminated in the
network. If the application requested reports to be sent at the end of the call (e.g., by means of getCallInfoReq) these
reports will still be sent to the application.

The application should always either release or deassign the call when it is finished with the call, unless a
callFaultDetected is received by the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

cause : in TpCallReleaseCause

Specifies the cause of the release.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 10

CR page 10

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE

6.3.3 Method deassignCall()

This method requests that the relationship between the application and the call and associated objects be de-assigned. It
leaves the call in progress, however, it purges the specified call object so that the application has no further control of
call processing. If a call is de-assigned that has event reports, call information reports or call Leg information reports
requested, then these reports will be disabled and any related information discarded.

The application should always either release or deassign the call when it is finished with the call, unless
callFaultDetected is received by the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

6.3.4 Method getCallInfoReq()

This asynchronous method requests information associated with the call to be provided at the appropriate time (for
example, to calculate charging). This method must be invoked before the call is routed to a target address.

A report is received when the destination leg or party terminates or when the call ends. The call object will exist after
the call is ended if information is required to be sent to the application at the end of the call. In case the originating party
is still available the application can still initiate a follow-on call using routeReq.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

callInfoRequested : in TpCallInfoType

Specifies the call information that is requested.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

6.3.5 Method setCallChargePlan()

Set an operator specific charge plan for the call.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

callChargePlan : in TpCallChargePlan

Specifies the charge plan to use.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 11

CR page 11

Raises

TpCommonExceptions,P_INVALID_SESSION_ID

6.3.6 Method setAdviceOfCharge()

This method allows for advice of charge (AOC) information to be sent to terminals that are capable of receiving this
information.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

aOCInfo : in TpAoCInfo

Specifies two sets of Advice of Charge parameter.

tariffSwitch : in TpDuration

Specifies the tariff switch interval that signifies when the second set of AoC parameters becomes valid.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

6.3.7 Method getMoreDialledDigitsReq()

This asynchronous method requests the call control service to collect further digits and return them to the application.
Depending on the administered data, the network may indicate a new call to the gateway if a caller goes off-hook or
dialled only a few digits. The application then gets a new call event which contains no digits or only the few dialled
digits in the event data.

The application should use this method if it requires more dialled digits, e.g. to perform screening.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

length : in TpInt32

Specifies the maximum number of digits to collect.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

6.3.8 Method superviseCallReq()

The application calls this method to supervise a call. The application can set a granted connection time for this call. If
an application calls this function before it calls a routeReq() or a user interaction function the time measurement will
start as soon as the call is answered by the B-party or the user interaction system.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 12

CR page 12

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

time : in TpDuration

Specifies the granted time in milliseconds for the connection.

treatment : in TpCallSuperviseTreatment

Specifies how the network should react after the granted connection time expired.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

6.4 Interface Class IpAppCall
Inherits from: IpInterface

The generic call application interface is implemented by the client application developer and is used to handle call
request responses and state reports.

<<Interface>>

IpAppCall

routeRes (callSessionID : in TpSessionID, eventReport : in TpCallReport, callLegSessionID : in
TpSessionID) : void

routeErr (callSessionID : in TpSessionID, errorIndication : in TpCallError, callLegSessionID : in
TpSessionID) : void

getCallInfoRes (callSessionID : in TpSessionID, callInfoReport : in TpCallInfoReport) : void

getCallInfoErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : void

superviseCallRes (callSessionID : in TpSessionID, report : in TpCallSuperviseReport, usedTime : in
TpDuration) : void

superviseCallErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : void

callFaultDetected (callSessionID : in TpSessionID, fault : in TpCallFault) : void

getMoreDialledDigitsRes (callSessionID : in TpSessionID, digits : in TpString) : void

getMoreDialledDigitsErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : void

callEnded (callSessionID : in TpSessionID, report : in TpCallEndedReport) : void

6.4.1 Method routeRes()

This asynchronous method indicates that the request to route the call to the destination was successful, and indicates the
response of the destination party (for example, the call was answered, not answered, refused due to busy, etc.).

If this method is invoked with a monitor mode of P_CALL_MONITOR_MODE_INTERRUPT,

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 13

CR page 13

then the APL has control of the call. If the APL does nothing with the call (including its associated legs) within a
specified time period (the duration of which forms a part of the service level agreement), then the call in the network
shall be released and callEnded() shall be invoked, giving a release cause of 102 (Recovery on timer expiry).

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

eventReport : in TpCallReport

Specifies the result of the request to route the call to the destination party. It also includes the network event, date and
time, monitoring mode and event specific information such as release cause.

callLegSessionID : in TpSessionID

Specifies the sessionID of the associated call leg. This corresponds to the sessionID returned at the routeReq() and can
be used to correlate the response with the request.

6.4.2 Method routeErr()

This asynchronous method indicates that the request to route the call to the destination party was unsuccessful - the call
could not be routed to the destination party (for example, the network was unable to route the call, the parameters were
incorrect, the request was refused, etc.).

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

callLegSessionID : in TpSessionID

Specifies the sessionID of the associated call leg. This corresponds to the sessionID returned at the routeReq() and can
be used to correlate the error with the request.

6.4.3 Method getCallInfoRes()

This asynchronous method reports time information of the finished call or call attempt as well as release cause
depending on which information has been requested by getCallInfoReq. This information may be used e.g. for charging
purposes. The call information will possibly be sent after routeRes in all cases where the call or a leg of the call has
been disconnected or a routing failure has been encountered.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

callInfoReport : in TpCallInfoReport

Specifies the call information requested.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 14

CR page 14

6.4.4 Method getCallInfoErr()

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

6.4.5 Method superviseCallRes()

This asynchronous method reports a call supervision event to the application when it has indicated its interest in these
kind of events.

It is also called when the connection is terminated before the supervision event occurs. Furthermore, this method is
invoked as a response to the request also when a tariff switch happens in the network during an active call.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call

report : in TpCallSuperviseReport

Specifies the situation which triggered the sending of the call supervision response.

usedTime : in TpDuration

Specifies the used time for the call supervision (in milliseconds).

6.4.6 Method superviseCallErr()

This asynchronous method reports a call supervision error to the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

6.4.7 Method callFaultDetected()

This method indicates to the application that a fault in the network has been detected. The call may or may not have
been terminated.

The system deletes the call object. Therefore, the application has no further control of call processing. No report will be
forwarded to the application.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 15

CR page 15

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call in which the fault has been detected.

fault : in TpCallFault

Specifies the fault that has been detected.

6.4.8 Method getMoreDialledDigitsRes()

This asynchronous method returns the collected digits to the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

digits : in TpString

Specifies the additional dialled digits if the string length is greater than zero.

6.4.9 Method getMoreDialledDigitsErr()

This asynchronous method reports an error in collecting digits to the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

6.4.10 Method callEnded()

This method indicates to the application that the call has terminated in the network. However, the application may still
receive some results (e.g., getCallInfoRes) related to the call. The application is expected to deassign the call object
after having received the callEnded.

Note that the event that caused the call to end might also be received separately if the application was monitoring for it.

Parameters

callSessionID : in TpSessionID

Specifies the call sessionID.

report : in TpCallEndedReport

Specifies the reason the call is terminated.

	NP-030020.doc
	29198-04-1CR004.doc
	29198-04CR064.doc
	29198-04CR063.doc
	29198-04CR062.doc
	29198-04CR061.doc
	29198-04CR060.doc
	29198-04CR059.doc
	29198-04CR058.doc
	29198-04-3CR009.doc
	29198-04-2CR005.doc
	29198-04-2CR004.doc
	29198-04-2CR003.doc

