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Proposal to introduce a new Service Instance ID data type and use it in place of serviceID for authentication and access

Problem Description

It is unclear from the specification what the nature of the relationship is between service instances and the Framework.

One view is that the Framework is unaware of the existence of the instances themselves and only has knowledge of the “service”. Essentially this means that an entity representing the service (and identified by the serviceID) sets up an access session with the Framework and obtains all of the Integrity Management interfaces. 

The problem is that the Framework cannot then identify which instance of a service an invocation of Integrity Management methods belongs on and therefore information such as load level and fault statistics can only apply collectively to all instances of a service. In addition, if an application wants to indicate that it can’t use an instance and therefore wants to end its session the “service” has to determine which instance is being terminated as the Framework has no way of doing this.

The other view is that the individual instances set up access sessions with the Framework and obtain separate Integrity Management interfaces. This allows them to provide load, fault and heartbeat information to the Framework on an individual basis.

Solution

We believe that the Integrity Management functionality must happen on a per-instance basis for useful information to be available to the application that is using the service instance. Therefore the instance needs to have an access session available when it is created.

To do this it will need to authenticate with the Framework (using keys that perhaps have been passed to it by the Factory on creation) and then requestAccess. It will need to identify itself to the Framework in order that the Framework can determine which interfaces belong to which instance.

This requires that a new serviceInstanceID is introduced. The serviceInstanceID is generated by the Framework and passed to the Service Factory. 

It could either be used in the intiateAuthentication call in place of serviceID, or it could be added to either the requestAccess or obtainInterface* methods, as outlined in the options below.

Option 1 – Use serviceInstanceID in initiateAuthentication

The Framework would need to correlate the serviceInstanceID to a key in order to complete the authentication process. This could possibly be done by only assigning keys at the serviceID domain level, thus using the same key for all instances.

Option 2 – Add serviceInstanceID to requestAccess

In other words, the serviceID is used to authenticate but then the access session being started by the service instance is identified to the Framework using the instance ID. From then on, any interfaces obtained by the instance can be correlated by the Framework.

It is possible that a single entity representing all of the interfaces could do the authentication (eg the Factory) and then pass the authentication interface reference to each of the instances it creates.

One drawback to this approach is that the method signature for requestAccess changes and the new version is only appropriate on the FW-SVC side. Another possible issue is what happens if the single entity becomes no longer authenticated and all of the access sessions are killed? In that case the single entity would need to be able to inform the instances.

Option 3 – Add serviceInstanceID to obtainInterface*

Again, the serviceID is used to authenticate but requestAccess is effectively done under the guise of the serviceID. The instance ID is then only used as each required interface is obtained.

It would  be possible for a single entity to set up a single access session and provide a reference to the FW interface to each instance (again at creation of the instance). Again a problem arises if the access session is lost, as all interfaces obtained during that session are also lost. The single entity would require the ability to inform the instances and give them a new access interface reference.

Again a drawback is the need to update the method signatures.

Recommendation

Our recommendation is that Option 1 is chosen as having the smallest impact on the API.

Resultant Changes

The following changes are required: -

1. A new data type – TpServiceInstanceID

2. A new parameter of this type added to createServiceManager()

3. A new TpDomainIDType value

Note that the definition of TpServiceID is currently misleading and it is suggested that the update shown below is made.

15.1.15 TpServiceID

This data type is identical to a TpString, and is defined as a string of characters that uniquely identifies a registered  SCF interface. The string is automatically generated by the Framework

15.1.33 TpServiceInstanceID

This data type is identical to a TpString, and is defined as a string of characters that uniquely identifies an instance of a registered SCF interface. The string is automatically generated by the Framework
15.1.4 TpDomainIDType

Defines either the framework or the type of entity attempting to access the framework

	Name
	Value
	Description

	P_FW
	0
	The framework

	P_CLIENT_APPLICATION
	1
	A client application

	P_ENT_OP
	2
	An enterprise operator

	P_SERVICE_INSTANCE
	3
	A registered service

	P_SERVICE_SUPPLIER
	4
	A service supplier


12.2  Service Factory Interface Classes
The IpSvcFactory interface allows the framework to get access to a service manager interface of a service. It is used during the signServiceAgreement, in order to return a service manager interface reference to the application. Each service has a service manager interface that is the initial point of contact for the service. E.g., the generic call control service uses the IpCallControlManager interface.

12.2.1 Interface Class IpSvcFactory 

Inherits from: IpInterface.

	<<Interface>>

IpSvcFactory

	

	createServiceManager (application : in TpClientAppID, instanceID : in TpServiceInstanceID, serviceProperties : in TpServicePropertyList, serviceManager : out IpServiceRefRef) : TpResult




Method

createServiceManager()

This method returns a new service manager interface reference for the specified application.  The service instance will be configured for the client application using the properties agreed in the service level agreement. 

Parameters

application : in TpClientAppID

Specifies the application for which the service manager interface is requested.
instanceID : in TpServiceInstanceID
Specifies the Service Instance ID to be associated with the instance of the service. The Service Factory should pass this ID to the instance it creates.
serviceProperties : in TpServicePropertyList

Specifies the service properties and their values that are to be used to configure the service instance.  These properties form a part of the service level agreement.  An example of these properties is a list of methods that the client application is allowed to invoke on the service interfaces.
serviceManager : out IpServiceRefRef

Specifies the service manager interface reference for the specified application ID.
Raises

TpCommonExceptions, P_INVALID_PROPERTY
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