
3GPP TSG_CN5 (Open Service Access – OSA)
N5-010697
Meeting #12, Sophia Antipolis, FRANCE, 16 – 19 July 2001

	CR-Form-v4

	CHANGE REQUEST

	

	(

	29.198-03
	CR
	013
	(

rev
	-
	(

Current version:
	4.1.0
	(

	

	For HELP on using this form, see bottom of this page or look at the pop-up text over the (
 symbols.

	

	Proposed change affects:
(

	(U)SIM
	
	ME/UE
	
	Radio Access Network
	
	Core Network
	X

	

	Title:
(

	Introduction and use of new Service Instance ID

	
	

	Source:
(

	CN5

	
	

	Work item code:
(

	OSA1
	
	Date: (

	30/08/2001

	
	
	
	
	

	Category:
(

	F
	
	Release: (

	REL-4

	
	Use one of the following categories:
F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
2
(GSM Phase 2)
R96
(Release 1996)
R97
(Release 1997)
R98
(Release 1998)
R99
(Release 1999)
REL-4
(Release 4)
REL-5
(Release 5)

	
	

	Reason for change:
(

	The individual service instances need to set up access sessions with the Framework and obtain separate Integrity Management interfaces. This then allows them to provide load, fault and heartbeat information to the Framework on an individual basis. Currently, this is not possible, and the specification is confused over what should be performed on a per-service basis and what should be performed on a per-service instance basis.

	
	

	Summary of change:
(

	This requires that a new serviceInstanceID is introduced. The serviceInstanceID is generated by the Framework and passed to the Service Factory. It is used when the service instance exchanges integrity management interfaces with the framework.

This service instance ID will be used by the framework to correlate requests for service integrity management statistics with the service instance for that client application.

	
	

	Consequences if
(

not approved:
	29.198-3 will be ambiguous and difficult to implement correctly – interworking will be jeopardised.

Failure to adopt this CR would result in divergence between the 3GPP R4 specification and the ETSI/Parlay specifications.

	
	

	Clauses affected:
(

	15.1, 12.1.1

	
	

	Other specs
(

	X
	 Other core specifications
(

	

	affected:
	
	 Test specifications
	

	
	
	 O&M Specifications
	

	
	

	Other comments:
(

	

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at: http://www.3gpp.org/3G_Specs/CRs.htm. Below is a brief summary:

1)
Fill out the above form. The symbols above marked (
 contain pop-up help information about the field that they are closest to.

2)
Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3)
With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.
Proposal to introduce a new Service Instance ID data type and use it in place of serviceID for authentication and access

Problem Description

It is unclear from the specification what the nature of the relationship is between service instances and the Framework.

One view is that the Framework is unaware of the existence of the instances themselves and only has knowledge of the “service”. Essentially this means that an entity representing the service (and identified by the serviceID) sets up an access session with the Framework and obtains all of the Integrity Management interfaces.

The problem is that the Framework cannot then identify which instance of a service an invocation of Integrity Management methods belongs on and therefore information such as load level and fault statistics can only apply collectively to all instances of a service. In addition, if an application wants to indicate that it can’t use an instance and therefore wants to end its session the “service” has to determine which instance is being terminated as the Framework has no way of doing this.

The other view is that the individual instances set up access sessions with the Framework and obtain separate Integrity Management interfaces. This allows them to provide load, fault and heartbeat information to the Framework on an individual basis.

Solution

We believe that the Integrity Management functionality must happen on a per-instance basis for useful information to be available to the application that is using the service instance. Therefore the instance needs to have an access session available when it is created.

To do this it will need to authenticate with the Framework (using keys that perhaps have been passed to it by the Factory on creation) and then requestAccess. It will need to identify itself to the Framework in order that the Framework can determine which interfaces belong to which instance.

This requires that a new serviceInstanceID is introduced. The serviceInstanceID is generated by the Framework and passed to the Service Factory.

It could either be used in the intiateAuthentication call in place of serviceID, or it could be added to either the requestAccess or obtainInterface* methods, as outlined in the options below.

Option 1 – Use serviceInstanceID in initiateAuthentication

The Framework would need to correlate the serviceInstanceID to a key in order to complete the authentication process. This could possibly be done by only assigning keys at the serviceID domain level, thus using the same key for all instances.

Option 2 – Add serviceInstanceID to requestAccess

In other words, the serviceID is used to authenticate but then the access session being started by the service instance is identified to the Framework using the instance ID. From then on, any interfaces obtained by the instance can be correlated by the Framework.

It is possible that a single entity representing all of the interfaces could do the authentication (eg the Factory) and then pass the authentication interface reference to each of the instances it creates.

One drawback to this approach is that the method signature for requestAccess changes and the new version is only appropriate on the FW-SVC side. Another possible issue is what happens if the single entity becomes no longer authenticated and all of the access sessions are killed? In that case the single entity would need to be able to inform the instances.

Option 3 – Add serviceInstanceID to obtainInterface*

Again, the serviceID is used to authenticate but requestAccess is effectively done under the guise of the serviceID. The instance ID is then only used as each required interface is obtained.

It would be possible for a single entity to set up a single access session and provide a reference to the FW interface to each instance (again at creation of the instance). Again a problem arises if the access session is lost, as all interfaces obtained during that session are also lost. The single entity would require the ability to inform the instances and give them a new access interface reference.

Again a drawback is the need to update the method signatures.

Recommendation

Our recommendation is that Option 1 is chosen as having the smallest impact on the API.

Resultant Changes

The following changes are required: -

1. A new data type – TpServiceInstanceID

2. A new parameter of this type added to createServiceManager()

3. A new TpDomainIDType value

Note that the definition of TpServiceID is currently misleading and it is suggested that the update shown below is made.

15.1.15 TpServiceID

This data type is identical to a TpString, and is defined as a string of characters that uniquely identifies a registered SCF interface. The string is automatically generated by the Framework

15.1.33 TpServiceInstanceID

This data type is identical to a TpString, and is defined as a string of characters that uniquely identifies an instance of a registered SCF interface. The string is automatically generated by the Framework
15.1.4 TpDomainIDType

Defines either the framework or the type of entity attempting to access the framework

	Name
	Value
	Description

	P_FW
	0
	The framework

	P_CLIENT_APPLICATION
	1
	A client application

	P_ENT_OP
	2
	An enterprise operator

	P_SERVICE_INSTANCE
	3
	A registered service

	P_SERVICE_SUPPLIER
	4
	A service supplier

12.2 Service Factory Interface Classes
The IpSvcFactory interface allows the framework to get access to a service manager interface of a service. It is used during the signServiceAgreement, in order to return a service manager interface reference to the application. Each service has a service manager interface that is the initial point of contact for the service. E.g., the generic call control service uses the IpCallControlManager interface.

12.2.1 Interface Class IpSvcFactory

Inherits from: IpInterface.

	<<Interface>>

IpSvcFactory

	

	createServiceManager (application : in TpClientAppID, instanceID : in TpServiceInstanceID, serviceProperties : in TpServicePropertyList, serviceManager : out IpServiceRefRef) : TpResult

Method

createServiceManager()

This method returns a new service manager interface reference for the specified application. The service instance will be configured for the client application using the properties agreed in the service level agreement.

Parameters

application : in TpClientAppID

Specifies the application for which the service manager interface is requested.
instanceID : in TpServiceInstanceID
Specifies the Service Instance ID to be associated with the instance of the service. The Service Factory should pass this ID to the instance it creates.
serviceProperties : in TpServicePropertyList

Specifies the service properties and their values that are to be used to configure the service instance. These properties form a part of the service level agreement. An example of these properties is a list of methods that the client application is allowed to invoke on the service interfaces.
serviceManager : out IpServiceRefRef

Specifies the service manager interface reference for the specified application ID.
Raises

TpCommonExceptions, P_INVALID_PROPERTY

�PAGE \# "'Page: '#'�'" �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'" �� Enter the CR number here. This number is allocated by the 3GPP support team.

�PAGE \# "'Page: '#'�'" �� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'Page: '#'�'" �� Enter the version of the specification here. This number is the version of the specification to which the CR will be applied if it is approved. Make sure that the latest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��http://www.3gpp.org/3G_Specs/3G_Specs.htm�

�PAGE \# "'Page: '#'�'" �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'Page: '#'�'" �� Mark one or more of the boxes with an X.

�PAGE \# "'Page: '#'�'" �� Enter a concise description of the subject matter of the CR. It should be no longer than one line.

�PAGE \# "'Page: '#'�'" �� Enter the source of the CR. This is either (a) one or several companies or, (b) if a (sub)working group has already reviewed and agreed the CR, then list the group as the source.

�PAGE \# "'Page: '#'�'" �� Andy Bennett, Gareth Carroll, Tip Apaseesod, (Lucent)

�PAGE \# "'Page: '#'�'" �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, B & C CRs for release 4 and later. A list of work item acronyms can be found in the 3GPP work plan. See � HYPERLINK "http://www.3gpp.org/ftp/information/work_plan/" ��http://www.3gpp.org/ftp/information/work_plan/�

�PAGE \# "'Page: '#'�'" �� Enter the date on which the CR was last revised.

�PAGE \# "'Page: '#'�'" �� Enter a single letter corresponding to the most appropriate category listed below. For more detailed help on interpreting these categories, see the Technical Report 21.900 "3GPP working methods".

�PAGE \# "'Page: '#'�'" �� Enter a single release code from the list below.

�PAGE \# "'Page: '#'�'" �� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'" �� Enter here the consequences if this CR was to be rejected. It is necessary to complete this section only if the CR is of category "F" (i.e. essential correction).

�PAGE \# "'Page: '#'�'" �� Enter each the number of each clause which contains changes.

�PAGE \# "'Page: '#'�'" �� Enter an X in the box if any other specifications are affected by this change.

�PAGE \# "'Page: '#'�'" �� List here the specifications which are affected or the CRs which are linked.

�PAGE \# "'Page: '#'�'" �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

�PAGE \# "'Page: '#'�'" �� This is an example of pop-up text.

