
3GPP TSG CT4 Meeting #84
C4-183506
KunMing, P.R. China; 16th – 20th April 2018

Source:
Ericsson, HPE
Title:
Pseudo-CR on Overload Control
Spec:
3GPP TS 29.500 v1.0.0
Agenda item:
6.2.1.3
Document for:
Decision

1. Introduction
-
2. Reason for Change
During CT4#83, the decision on the overload control mechanism for SBA, in Rel-15, was postponed due to concerns on the applicability to SBA/HTTP of solutions designed for other network architectures and protocols, such as the Diameter Overload Information Conveyance (IETF RFC 7683).
After that, a CT4 conf. call was held to continue the discussions about potential alternatives, and it was highlighted the need to check how the overload problem is solved today in modern deployments, and how it is solved by main players in the industry.
Typically, modern solutions in the HTTP and Cloud environments don't necessarily have to rely on letting the server send to the client instructions on the exact amount of traffic reduction to be applied. Instead, simpler solution can rely on the standard HTTP status codes, as the way to convey overload feedback from the server.

One of the possibilities mentioned during this conf. call was the approach described by Google in the book "Site Reliability Engineering" (chapter "Handling Overload"):
https://landing.google.com/sre/book/chapters/handling-overload.html
Excerpt from this chapter, where the "Client-Side Throttling" is described.

Client-Side Throttling 
(…)

We implemented client-side throttling through a technique we call adaptive throttling. Specifically, each client task keeps the following information for the last two minutes of its history: 

requests 

The number of requests attempted by the application layer(at the client, on top of the adaptive throttling system) 

accepts 

The number of requests accepted by the backend 

Under normal conditions, the two values are equal. As the backend starts rejecting traffic, the number of accepts becomes smaller than the number of requests. Clients can continue to issue requests to the backend until requests is K times as large as accepts. Once that cutoff is reached, the client begins to self-regulate and new requests are rejected locally (i.e., at the client) with the probability calculated in Client request rejection probability. 
Client request rejection probability 

(…)

We've found adaptive throttling to work well in practice, leading to stable rates of requests overall. Even in large overload situations, backends end up rejecting one request for each request they actually process. One large advantage of this approach is that the decision is made by the client task based entirely on local information and using a relatively simple implementation: there are no additional dependencies or latency penalties. 

As an example of how the algorithm behaves, let's take the following assumptions (not necessarily realistic but only for illustration purposes):

- K = 1.5
- During the whole time-series (time intervals 0-35 in the graphic below), the client receives a fixed amount of traffic to be handled, at each time interval; the client drops locally a certain portion of this traffic (according a certain "% probability of rejection at client"), and sends the rest to the server
- During the overload period (time intervals 0-17), the server rejects 40% of the received traffic, and accepts 60% of it (this is obviously an extreme over-simplification, since this rate will not stay constant, typically, but just to show graphically how the algorithm works)
- When the overload period ends (time intervals 18-35), the server accepts again 100% of the traffic

The evolution of the client-side rejection rate would be as follows:

[image: image1.png]% rejection at client K=1.5
35

30
25 / \
20
15 / \
10 / \
5
o / \
123456 7 8 9101112131415161718 1920212223 24252627282930313233343536
Time intervals





3. Conclusions

The above approach shows that relying on HTTP status codes is sufficient to allow the client to apply a throttling strategy that can mitigate overload conditions at the server.
As indicated above, this approach has the advantage of making the client behavior more autonomous and, when comparing with OCI-based solutions, does not depend on the server to have to calculate a specific % of reduction to be conveyed to the client.

It is recommended, therefore, to adopt this solution for Rel-15, and potentially, investigate other alternatives in next releases.
4. Proposal

It is proposed to agree the following changes to 3GPP TS 29.500 v1.0.0
* * * First Change * * * *

2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

-
References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

-
For a specific reference, subsequent revisions do not apply.

-
For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TR 21.905: "Vocabulary for 3GPP Specifications".
[2]
3GPP TS 22.261: "Service requirements for the 5G system; Stage 1".
[3]
3GPP TS 23.501: "System Architecture for the 5G System; Stage 2".

[4]
3GPP TS 23.502: "Procedures for the 5G System; Stage 2".
[5]
3GPP TS 29.501: "5G System; Principles and Guidelines for Services Definition; Stage 3".
[6]
IETF RFC 793: "Transmission Control Protocol".
[7]
IETF RFC 7540: "Hypertext Transfer Protocol Version 2 (HTTP/2)".
[8]
3GPP TS 29.510: "5G System; Network Function Repository Services; Stage 3".
[9]
OpenAPI: "OpenAPI 3.0.0 Specification", https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.0.md.
[10]
IETF RFC 8259: "The JavaScript Object Notation (JSON) Data Interchange Format".
[11]
IETF RFC 7231: "Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content".
[12]
IETF RFC 7230: "Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing".

[13]
3GPP TS 29.571: "5G System; Common Data Types for Service Based Interfaces Stage 3".

[14]
IETF RFC 3986: "Uniform Resource Identifier (URI): Generic Syntax".

[15]
3GPP TS 23.003: "Numbering, addressing and identification".
[xx]
IETF RFC 5681: "TCP Congestion Control".
[yy]
Betsy Beyer, et al; Google: "Site Reliability Engineering", https://landing.google.com/sre/book.html 
* * * Next Change * * * *

6.4
Overload Control

6.4.1
General

Service Based Interfaces, use HTTP/2 over TCP for communication between the NF Services. TCP provides transport level congestion control mechanisms as specified in IETF RFC 5681 [xx], which can be used for congestion control between two TCP endpoints (i.e., hop by hop). HTTP/2 also provides flow control mechanisms as specified in IETF RFC 7540 [7].
Overload control shall be supported per NF service / API.
An NF Service Producer may mitigate a potential overload status by sending the NF Service Consumer the following HTTP status codes as a response to requests received during, or close to reaching, an overload situation:
-
503 Service Unavailable;
-
429 Too Many Requests; or
-
307 Temporary Redirect 
The first 2 status codes (503 and 429) are intended to inform the NF Service Consumer that the server cannot handle the current received traffic rate, so it shall abate the traffic sent to the NF Service Producer by throttling part of this traffic locally at the NF Service Consumer, or diverting it to an alternative destination (another NF Service Producer where an alternative resource exists) that is not overloaded. If possible, traffic diversion shall always be preferred to throttling; the result of the throttling is a permanent rejection of the transaction.
If the client needs to abate a certain part of the available traffic, it shall do it based on the determined priority of each message.
The last status code (307) is intended to inform the NF Service Consumer about the availability of other endpoints where the service offered by the NF Service Producer is available, so the NF Service Consumer does not need to discard traffic locally.
6.4.2
HTTP Status Code "503 Service Unavailable"

This status code should be sent when the NF Service Producer undergoes an overload situation, and it needs to reject HTTP requests. The NF Service Producer may include detailed information about its status in the ProblemDetails JSON element, in the HTTP response body. Also, the HTTP header field "Retry-After" may be added in the response to convey an estimated time (in number of seconds) for the recovery of the service.
As for all 5xx status codes, this indicates a server-related issue (not limited to a specific client, or HTTP method), and it indicates that the server is incapable of performing the request.
Upon receipt of a "503 Service Unavailable" status code, the NF Service Consumer shall monitor the amount of rejected and timed-out traffic, in comparison to the accepted traffic by the NF Service Producer, and it shall abate (by divertion or throttling) the traffic sent to the NF Service Producer in such a way that the rate between accepted and rejected traffic improves with time, and eventually reaches a situation where the server accepts all requests once the overload status ceases at the server. The mechanism to achieve this is implementation-specific; Annex X contains a description of an example algorithm based on "adaptive throttling" of the traffic sent by the NF Service Consumer towards an NF Service Producer.
6.4.3
HTTP Status Code "429 Too Many Requests"

This status code may be sent, if supported by the server, when the NF Service Producer detects that a given NF Service Consumer is sending excessive traffic which, if continued over time, may lead to (or may increase) an overload situation in the NF Service Producer.
How the NF Service Producer detects that the incoming traffic comes from a same NF Service Consumer, and therefore subject to a given traffic rate limit, is out of the scope of this specification. The HTTP header field "Retry-After" may be added in the response to indicate how long the NF Service Consumer has to wait before making a new request.
As for all 4xx status codes, this indicates a client-related issue (not limited to a specific HTTP method), and it indicates that the client seems to be misbehaving.
6.4.4
HTTP Status Code "307 Temporary Redirect"
This status code should be sent when the NF Service Producer decides to redirect HTTP requests to another less loaded server, or HTTP/2 end point, to offload some part of the incoming traffic, with the goal to avoid entering (or to mitigate) an overload situation. The NF Service Producer shall not use it if it does not know the load status of the alternative server.
How the NF Service Producer becomes aware of the load levels of other servers or HTTP/2 end points is deployment-specific, and out of the scope of this specification. The URI for the temporary redirection shall be given by the Location header field of the response.
As for all 3xx status codes (redirection), this indicates a client-related action; the client shall be responsible of the detection of infinite redirection loops.
* * * Next Change * * * *

Annex X (informative)
Client-side Adaptive Throttling for Overload Control
This section contains an example algorithm to make an NF Service Consumer adjust the traffic rate sent to an NF Service Producer based on the number of received "rejects" of HTTP requests with a status code "503 Service Unavailable", or requests that have timed-out and the response was never received. This algorithm is described in the book "Site Reliability Engineering" [yy], chapter 21, "Handling Overload".

Each client (NF Service Consumer) keeps track of the following counters during a certain time window: 
-
Requests: The number of requests that the client (NF Service Consumer) needs to handle. Under normal operation (no overload), all these requests are sent to the server (NF Service Producer). Under an overload situation, part of these requests are locally rejected by the client (and not sent to the server), and the rest of the requests are sent to the server.
-
Accepts: The number of requests accepted by the server (i.e., requests for which a response has been effectively received at the client, with a status code other than "503 Service Unavailable").
When there is no server overload, these values are equal.
When there is an overload status in the server, the rate between "Accepts" and "Requests" decreases progressively. When this rate falls below a certain point (given by an algorithm parameter named "K"), the client shall start dropping some requests locally and not send them to the server.
The local rejection of requests can be done by calculating a "Client request rejection probability", as:
[image: image2.png]requests — K X accepts,

max (0,
( requests + 1

)




So, for example, assuming that the K parameter is set at 1.5:

-
if the server accepts >67% of the traffic, and rejects <33% of the traffic, the client does not take any throttling action, and keeps sending to the server all the traffic it has available for processing
-
if, during a first time-window, the server accepts, e.g., only 60% of the requests, and rejects 40% due to overload, the application of this algorithm implies that the client must drop locally 10% of the requests (probabilistically), and only send to the server the remainder 90% of its traffic.
-
if, during a second time-window, the client keeps the same amount of available traffic to handle, but the server continues rejecting requests with same rate as before (40%) of the received requests, the application of the algorithm again, results in increasing the drop rate to 14.5%, and sending to the server only 85.5% of the available traffic.
The value of the parameter K, along with the size of the time window during which the total number of "requests" and "accepts" is accounted for, has a fundamental role on how the algorithm behaves. If K is higher, the algorithm is more "permissive", and the client does not start dropping requests locally until the rejection rate is higher (e.g., >50%, for K = 2); if K is lower, the algorithm is more "aggressive", and the client starts dropping requests sooner (e.g., K = 1.1 implies to start dropping requests as soon as the server rejects >10% of the requests).
* * * End of Changes * * * *

