3GPP TSG CT4 Meeting #84	C4-183180
KunMing, P.R. China; 16th – 20th April 2018

Source:	Ericsson
Title:	Discussion Paper on Extension of Enumerations in OpenAPI
Agenda Item:	6.2.1.4
Document for:	DISCUSSION

1. Introduction
The data type "enum" in OpenAPI is, by definition, a "closed set" of values. This means that it cannot be extended while maintaining backwards compatibility with previous versions of the API specification.
For example, in the following type definition in Rel-15, of a given data element used in a response from a server to a client:
NonExtensibleEnum:
 type: string
 enum:
 - VALUE_1
 - VALUE_2
 - VALUE_3

if the set of values needs to be extended in Rel-16 with a new value "VALUE_4", this means that a Rel-15 client that receives this new value from a Rel-16 server will consider the response message as malformed, and the schema check to be enforced by the Rel-15 client will fail.
Instead, the desirable behaviour would be that a Rel-15 client receiving data elements with this new value in the enumeration, can accept the message, from a schema checking perspective, and then define application-level behaviour depending on the context in which each data element is used (for example, safely discard the new data elements, if not supported, or maybe discard the whole message if the new Rel-16 value is required to process the message successfully).
2. Alternatives
There are different approaches to solve this problem:
a)	Do not use "enum" as type and use simply "string" (or "integer" for numeric enumerations) as data type in the OpenAPI specification. Then, the problem is that the set of expected values is not checked by the schema definition, and they must be documented in some other way. For the documentation of allowed values, we have 2 possibilities:
1)	Describe the set of "known", or "defined", values in the relevant TS where the API is specified.
2)	As option 1), but in addition describe the set of known values in the OpenAPI where the data type is defined, in a YAML "comment" block
b)	Define an alternative construct in OpenAPI that servers as a middle point between data definition of the enum, and documenting the set of allowed values in the OpenAPI file. Using the example above, the construct would be as follows:
ExtensibleEnum:
 anyOf:
 - type: string
 enum:
 - VALUE_1
 - VALUE_2
 - VALUE_3
 - type: string

[bookmark: _GoBack]c)	Define a OpenAPI keyword (by extending the schema language) that conveys the semantics of an "extensible enum" (e.g., "x-extensible-enum"). This approach is used in the industry by some API designers, and is described here:
https://zalando.github.io/restful-api-guidelines/#112
The drawback with this approach is that probably there is not enough experience in 3GPP on the consequences and side-effects of defining language extensions, at this point, and therefore it seems as a risky approach.
On the positive side, this approach is exactly how other IDLs have solved this problem: by defining certain sintactic elements in the language that allows extensibility (e.g., usage of "…" in ASN.1)

It should be noted that, functionally, the approach in b) is equivalent to the approach of using "string" instead of "enum" since the schema checking will always be fulfilled for any string value (due to the second alternative in the "anyOf" construct. This way, when a new value is added in Rel-16, it can be added to the first alternative of the "anyOf", without any backwards compatible issue.
From a documentation point of view, it has the advantage of keeping the set of "allowed" values ("allowed" by the application logic, since any string would be semantically "allowed") in the OpenAPI file itself, rather than in the TS tabular description of the data type, or in YAML "comments", which may not be kept in all cases (e.g., if the YAML file is converted to JSON, the comments are lost).
However, it should be noted that this approach is not really commonly used in other OpenAPI specifications in the industry (as far as the authors of this paper are aware); this is also partially due to the fact that, usually, backwards compability is not observed as strictly as in 3GPP environments, and also due to the fact that usually the server side of the API is under control of a single vendor, and therefore they can ensure that the API supported at the server is always the last version (this would be equivalent as to requiring NF Service Producers to be always compliant with the last 3GPP release, which is of course not true for 3GPP eco-systems, where a Rel-16 client could be required to consume services from a Rel-15 server).

3. Conclusion
The objective of this paper is to bring the attention of CT4 about this issue, and trigger discussion on the alternatives. No specific alternative is recommended at this point, with maybe a slight preference towards alternative b) described in this paper.

