3GPP TR 26.980 V14.1.0 (2016-12)
Technical Report

3rd Generation Partnership Project;

Technical Specification Group Services and System Aspects;

Multimedia telephony over IP Multimedia Subsystem (IMS);

Media handling aspects of multi-stream multiparty conferencing for Multimedia Telephony Service for IMS (MTSI)
(Release 14)

[image: image1.emf] 


[image: image2.png]=

A GLOBAL INITIATIVE




The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.
The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.
This Report is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification.
Specifications and Reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.

Keywords

Multimedia, IMS, conferencing
3GPP

Postal address

3GPP support office address

650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet

http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© 2016, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TSDSI, TTA, TTC).

All rights reserved.

UMTS™ is a Trade Mark of ETSI registered for the benefit of its members

3GPP™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners
LTE™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners

GSM® and the GSM logo are registered and owned by the GSM Association

Contents

6Foreword

Introduction
6
1
Scope
7
2
References
7
3
Definitions and abbreviations
9
3.1
Definitions
9
3.2
Abbreviations
10
4
Overview
10
5
Media Handling in Current 3GPP Conferencing
10
6
Use cases
12
6.1
Overview
12
6.2
Use case A: Transcoding Free Continuous Presence
12
6.2.1
Problem Description
13
6.2.2
Proposed Solution
13
6.3
Use case B: Screen Sharing
14
6.3.1
Problem Description
14
6.3.2
Proposed Solution
15
6.4
Use Case C: Bandwidth Handling
17
6.4.1
Problem Description
17
6.4.2
Proposed Solution
17
6.4.2.1
Single-stream to multi-stream
18
6.4.2.2
Multi-stream to single-stream
18
6.4.2.3
Multi-stream to multi-stream without bandwidth restriction
18
6.4.2.4
Multi-stream to multi-stream with minor bandwidth restrictions
19
6.4.2.5
Multi-stream to multi-stream with severe bandwidth restriction
20
6.4.2.6
Multi-stream UE to multi-stream UE in point-to-point
20
6.5
Use Case D: Active Speaker Override
21
6.5.1
Problem Description
21
6.5.2
Proposed Solution
22
6.6
Use Case E: Pausing Unused Streams
23
6.6.1
Problem Description
24
6.6.2
Proposed Solution
25
6.7
Use Case F: Conference Rate Adaptation Considerations
26
6.7.1
Problem Description
26
6.7.2
Proposed Solution
26
6.8
Use Case G: Multi-stream Audio Steering or Panning
29
6.9
Use Case H: De-jitter Buffer Handling
30
6.10
Use Case I: Audio Spatialization based on head-tracking
31
6.11
Use Case J: Mixing at the Rendering Device – Media Handling, Distribution via Multi-Unicast
32
6.11.1
Concurrent Codec Capabilities Exchange
32
6.11.1.1
Concurrent Decoding
32
6.11.1.2
Concurrent Encoding
33
6.11.1.3
Further Considerations in Concurrency
34
6.11.1.4
Prioritizing and Ignoring of Received Media Streams
34
6.11.1.5
Conclusions
34
6.12
Use Case K: Mixing at the Rendering Device – Media Handling, Distribution via Multicast
35
6.12.1
Session Establishment
35
6.12.1.1
In the presence of a Conference Focus
35
6.12.2
Media Handling
35
6.12.2.1
In the absence of a Conference Focus for media handling
35
6.13
Use Case L: Mixing at the Rendering Device – Media Handling, Distribution via Single Source Multi-Unicast
36
6.13.1
Session Establishment
38
6.13.2
Media Handling
38
6.13.3
Multi-stream Concurrent Encoding/Decoding Capabilities
38
6.13.3.1
Querying and Capabilities Exchange – SIP OPTIONS
39
6.13.3.2
Common/Preferred Codec Identification and Usage
42
6.13.3.2.1
General
42
6.13.3.2.2
Common/Preferred Codec Information Exchange
42
6.13.3.2.3
Indicating the Common and Preferred Codec Selection Through SDP
43
6.13.4
MSMTSI MRF Handling with Reduced m-lines
43
6.13.4.1
Introduction
43
6.13.4.2
RTP Stream Selective Forwarding
43
6.14
Use Case M: Provisioning of Talker ID
45
6.14.1
Use Case Description
45
6.14.2
Problem Description
45
6.14.3
Suggested Solution
46
6.15
Use Case N: Mixing at the Rendering Device – Media Handling, Concurrent Codec Capabilities Exchange
47
6.15.1
Format of the Concurrent Codec Capabilities Information
47
6.15.1.1
Using Current SDP Parameters
47
6.15.1.2
Using Compact SDP Parameters
48
6.15.1.2.1 SDP Line Compression
49
6.15.1.2.2 SDP Line Compression for Terminal Performing Trimming of Streams
51
6.15.1.2.3 Conclusions
51
6.15.2
Protocol for Concurrent Codec Capabilities Exchange (CCCEx)
51
6.15.2.1
Recommended Requirements for the CCCEx
51
6.15.2.2
Potential Solution for the CCCEx
51
6.15.3
Examples of Concurrent Codec Capabilities (CCC) Usage
51
6.15.4
Compact CCC SDP Parameter for Session Initiation
56
6.15.4.1
Introduction
56
6.15.4.2
Compression Gains
56
6.15.4.3
Offer-Answer Rules
58
6.15.4.4
Conclusions
59
6.16
Use Case O: Media Distribution Without Conference Focus – Session Establishment Aspects
59
6.16.1
Session Establishment Without a Conference Focus in Multi-unicast Topology
59
6.17
Use Case P: Codec Migration
60
6.17.1
General
60
6.17.2
Problem Description
60
6.17.3
Proposed Solution
61
6.17.3.1
General
61
6.17.3.2
Codec Fall-back
61
6.17.3.3
Transcoding
61
6.17.3.4
Codec Simulcast
62
6.17.3.5
Recommended Requirements for Codec Simulcast
63
7
Conclusion
64
Annex A:
SDP examples for Multi-stream Multiparty Conference Media Handling
65
A.1
General
65
A.2
MSMTSI video offer/answer examples
65
A.2.1
MSMTSI offer/answer towards an MTSI client
65
A.2.2
MSMTSI answer from an MSMTSI MRF
67
A.2.3
MSMTSI answer from an MSMTSI client in terminal
70
A.2.4
MSMTSI Offer and Answer Using Codec Simulcast
71
A.3
MSMTSI audio offer/answer examples
73
A.3.1
MSMTSI offer with multi-stream audio support
73
A.3.2
MSMTSI answer with multi-stream audio support
74
A.3.3
MSMTSI CCCEx SDP offer/answer example
76
Annex B:
QoS for Multi-stream Multiparty Conference Media Handling
80
B.1
General
80
B.2
QoS for MSMTSI video offer/answer examples
80
Annex C:
Technical Background
81
C.1
General
81
C.2
Simulcast Stream Identification
81
C.2.1
General
81
C.2.2
Codec Identification in SDP
81
C.2.3
Sampling Identification in SDP
82
C.2.4
Bandwidth Identification in SDP
82
C.2.5
Simulcast Usage for WebRTC
82
C.2.5.1
General
82
C.2.5.2
RTP Payload Type Uniqueness
82
C.2.5.3
RTP Payload Type Depletion
83
C.2.6
Conclusion
83
Annex D:
Change history
84


Foreword

This Technical Report has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x
the first digit:

1
presented to TSG for information;

2
presented to TSG for approval;

3
or greater indicates TSG approved document under change control.

y
the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.

z
the third digit is incremented when editorial only changes have been incorporated in the document.

Introduction

Media handling of Multimedia Telephony Service over IMS, MTSI, are based on 3GPP SA4 TS 26.114 [1]. MTSI media handling is referred to by GSMA in GSMA PRD IR.92 [21] also known as VoLTE and GSMA PRD IR.94 [22] also known as video over LTE. MTSI clients can connect to conferencing IMS communication services. 3GPP conducted a study as part of a work item on Multi-stream Multiparty Conferencing Media-Handling for MTSI. The work objective is to specify an increment to MTSI client media-handling specification TS 26.114 to enable a mass-market multiparty communication service with excellent multiparty user experience and media quality. Such Operator communication service evolution would match proprietary communication services in quality with excellent efficiency and device reach.

The present document captures the study inputs, discussions and findings of the Multi-stream Multiparty Conference Media Handling (MMCMH) work item. It describes a set of use cases with corresponding problem descriptions and potential solutions. The conclusion gives recommendations as to what needs to be normatively specified to achieve the MMCMH work item objectives.
1
Scope

The Technical Report provides a study on the media handling aspects of Multi-stream Multiparty Conferencing for MTSI. The study focuses on enabling 
· support to receive multi-stream audio/video at the terminals in a multiparty conferencing, 
· support for at least two video contents, e.g. one main and one presentation,

· talker ID provisioning,

· compatibility with MTSI TS 26.114 and GSMA IR.94 (Video over LTE) [22] and GSMA IR.92 (VoLTE) [21], and

· applicability to both mobile and fixed access terminals
High-level use cases along with current limitations and recommendations are documented in the present document.
2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

-
References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

-
For a specific reference, subsequent revisions do not apply.

-
For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TS 26.114: "IP Multimedia Subsystem (IMS); Multimedia Telephony, Media handling and interaction".
[2]
Void.
[3]
3GPP TS 24.147: "Conferencing Using IP Multimedia Core Network; Stage 3".
[4]
3GPP TS 24.605: "CONF Using IP Multimedia Core Network".
[5]
3GPP TS 22.228: "Service Requirements for IP Multimedia Core Network; Stage 1".
[6]
3GPP TS 23.218:"IP Multimedia Session Handling; IP Multimedia Call Model; Stage 2".
[7]
3GPP TS 24.228: "Signalling Flows for IP Multimedia Call Control Based on SIP and SDP; Stage 3".
[8]
3GPP TS 24.229: "IP Multimedia Call Control Protocol Based on SIP and SDP; Stage 3".
[9]
3GPP TR 22.948: "IP Multimedia Subsystem Convergent Multimedia Conferencing".
[10]
3GPP TR 29.847: "SIP Conferencing Models, Flows and Protocols".
[11]
GSM Association: "WebRTC Codecs DRAFT v1.3", September 2014, http://www.gsma.com/newsroom/wp-content/uploads/WebRTC-Whitepaper-v13.pdf.
[12]
IETF Internet Draft: "Using Simulcast in SDP and RTP Sessions", June 2016, https://datatracker.ietf.org/doc/draft-ietf-mmusic-sdp-simulcast/  (WORK IN PROGRESS).
[13]
IETF RFC 4796: "The Session Description Protocol (SDP) Content Attribute", February 2007, https://datatracker.ietf.org/doc/rfc4796/.

[14]
GSM Association PRD IR.39: "IMS Profile for High Definition Video Conferencing (HDVC) v5.0", July 2014, http://www.gsma.com/newsroom/wp-content/uploads//IR.39-v5.0.pdf.

[15]
IETF RFC 4582: "The Binary Floor Control Protocol (BFCP)", November 2006, https://datatracker.ietf.org/doc/rfc4582/.

Note
 A new version of this RFC is in the process of being published. See [17].

[16]
IETF RFC 4583: "Session Description Protocol (SDP) Format for Binary Floor Control Protocol (BFCP) Streams", November 2006, https://datatracker.ietf.org/doc/rfc4583/.

Note: 
A new version of this RFC is in the process of being published. See [18]. 

[17]
IETF Internet Draft, draft-ietf-bfcpbis-rfc4582bis-16: "The Binary Floor Control Protocol (BFCP), November 2015, WORK IN PROGRESS, https://datatracker.ietf.org/doc/draft-ietf-bfcpbis-rfc4582bis/.

[18]
IETF Internet Draft, draft-ietf-bfcpbis-rfc4583bis-15: "Session Description Protocol (SDP) Format for Binary Floor Control Protocol (BFCP) Streams", July 2016, WORK IN PROGRESS, https://datatracker.ietf.org/doc/draft-ietf-bfcpbis-rfc4583bis/.
[19]
IETF RFC 3550: "RTP: A Transport Protocol for Real-Time Applications", July 2003, 
https://datatracker.ietf.org/doc/rfc3550/.

[20]
IETF RFC 5104: "Codec Control Messages in the RTP Audio-Visual Profile with Feedback (AVPF)", February 2008, https://datatracker.ietf.org/doc/rfc5104/.

[21]
GSM Association PRD IR.92, "IR.92 IMS Profile for Voice and SMS", v9.0, April 2015, http://www.gsma.com/newsroom/wp-content/uploads//IR.92-v9.0.pdf.

[22]
GSM Association PRD IR.94: "IR.94 IMS Profile for Conversational Video Service", v8.0.1, November 2014, http://www.gsma.com/newsroom/wp-content/uploads//IR.94-v8.01.pdf.

[23]
IETF RFC 7728, "RTP Stream Pause and Resume", March 2016.

[24]
3GPP TS 24.173: "IMS Multimedia Telephony Communication Service and Supplementary Services".

[25]
IETF RFC 4353: "A Framework for Conferencing with the Session Initiation Protocol (SIP)", February 2006, https://datatracker.ietf.org/doc/rfc4353/.

[26]
IETF RFC 3515: "The Session Initiation Protocol (SIP) Refer Method", April 2003, https://datatracker.ietf.org/doc/rfc3515/.

[27]
IETF RFC 5939: "Session Description Protocol (SDP) Capability Negotiation", Sept. 2010.

[28]
IETF RFC 6184: "RTP Payload Format for H.264 Video", May 2011, https://www.ietf.org/rfc/rfc6184.txt.

[29]
IETF RFC 7798, "RTP Payload Format for High Efficiency Video Coding (HEVC)", March 2016.

[30]
ITU-T Recommendation H.264: "Advanced video coding for generic audiovisual services".

[31]
IETF RFC 3261: SIP: "Session Initiation Protocol", June 2002.

[32]
3GPP TR 21.905: "Vocabulary for 3GPP Specifications".
[33]
Void.

[34]
Void.

[35]
Void.

[36]
IETF RFC 4575: "A Session Initiation Protocol (SIP) Event Package for Conference State", August 2006.

[37]
Void.

[38]
Void.

[39]
Void.

[40]
ITU-T Recommendation H.265 (04/2015): "High efficiency video coding".
[41]
3GPP TS 26.171: "Speech codec speech processing functions; Adaptive Multi-Rate - Wideband (AMR-WB) speech codec; General description".
[42]
3GPP TS 26.441: "Codec for Enhanced Voice Services (EVS); General Overview".
[43]
IETF RFC 3264: "An Offer/Answer Model with the Session Description Protocol (SDP)", J. Rosenberg and H. Schulzrinne, July 2002.
[44]
IETF Internet Draft, draft-ietf-mmusic-rid-07: "RTP Payload Format Constraints", July 2016 (WORK IN PROGRESS), https://datatracker.ietf.org/doc/draft-ietf-mmusic-rid/.
[45]
IETF RFC 7656: "A Taxonomy of Semantics and Mechanisms for Real-Time Transport Protocol (RTP) Sources", J. Lennox, K. Gross, S. Nandakumar, G. Salguiero, and B. Burman, November 2015.
3
Definitions and abbreviations

3.1
Definitions

For the purposes of the present document, the terms and definitions given in TR 21.905 [32] and the following apply. 
A term defined in the present document takes precedence over the definition of the same term, if any, in TR 21.905 [32].

Mode-set: Used for the AMR and AMR-WB codecs to identify the codec modes that can be used in a session. A mode-set can include one or more codec modes.

MSMTSI client: A multi-stream capable MTSI client supporting multiple streams. An MTSI client may support multiple streams, even of the same media type, without being an MSMTSI client. Such an MTSI client may, for example, add a second video to an ongoing video telephony session as shown in TS 26.114 Annex A.11.
MSMTSI MRF: An MSMTSI client implemented by functionality included in the MRFC and the MRFP.

MSMTSI client in terminal: An MSMTSI client that is implemented in a terminal or UE. The term "MSMTSI client in terminal" is used in the present document when entities such as MRFP, MRFC or media gateways are excluded.

MTSI client: A function in a terminal or in a network entity (e.g. a MRFP) that supports MTSI.

MTSI client in terminal: An MTSI client that is implemented in a terminal or UE. The term "MTSI client in terminal" is used in the present document when entities such as MRFP, MRFC or media gateways are excluded.

MTSI media gateway (or MTSI MGW): A media gateway that provides interworking between an MTSI client and a non MTSI client, e.g. a CS UE. The term MTSI media gateway is used in a broad sense, as it is outside the scope of the current specification to make the distinction whether certain functionality should be implemented in the MGW or in the MGCF.

Operational mode: Used for the EVS codec to distinguish between EVS Primary mode and EVS AMR-WB IO mode.

Simulcast: Simultaneously sending different encoded representations (simulcast formats) of a single media source (e.g. originating from a single microphone or camera) in different simulcast streams.

Simulcast format: The encoded format used by a single simulcast stream, typically represented by an SDP format and all SDP attributes that apply to that particular SDP format, indicated in RTP by the RTP header payload type field.

Simulcast stream: The RTP stream carrying a single simulcast format in a simulcast.

3.2
Abbreviations

For the purposes of the present document, the abbreviations given in TR 21.905 [32] and the following apply. 
An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in TR 21.905 [32].

AVC
Advanced Video Coding

BFCP
Binary Floor Control Protocol

CCM
Codec Control Messages

LTE
Long Term Evolution

MSRP
Message Session Relay Protocol

MSMTSI
Multi-Stream Multimedia Telephony Service for IMS

MTSI
Multimedia Telephony Service for IMS

SDP
Session Description Protocol

4
Overview

Clause 5 provides a high-level description of the media handling in current 3GPP conferencing. The rest of the document is organized as follows. clause 6 describes the use cases analysed in this study. Clause 7 provides the conclusion and recommendations for further standardization efforts. Annex A includes some SDP offer/answer examples.
5
Media Handling in Current 3GPP Conferencing
The current 3GPP specifications mentioning conferencing or group communication is mainly focusing on (SIP) signalling aspects, and there is very little on media handling aspects. Those specifications include (list not intended to be exhaustive) [3], [4], [5], [6], [7], [8], [9] and [10].

[image: image3.emf] 


Figure 1. Existing Conference Architecture Example.
This briefly summarizes a few things regarding IMS conferences that are already specified, and that have an impact on media handling:

-
A centralized conference with the MRFP as conference focus is assumed [3], where media handling is not explicitly described:

-
MRFP is assumed to be an RTP "mixer" in IETF RFC 3550 [19] sense:

-
One possible implicit assumption is that the conference focus always transcodes (decodes, mixes, and re-encodes) media individually towards every participant.

-
Another possibility is to switch the video RTP stream untouched from one participant to another, and possibly to all other participants.

-
It is not described which video stream the MRFP should distribute to the different participants:

-
One possible and reasonable assumption is that the video from some "active speaker" is distributed to other participants, which would require some "active speaker" decision in the MRFP that in turn could be based on speech activity analysis of the audio streams from every participant.

-
If "active speaker" is distributed, it is common on the market to not distribute media from that "active speaker" to itself, but rather the previous "active speaker" (as depicted in Figure 1).

-
Another possible assumption is that all, or at least most, participant videos are re-sized, composed, and transcoded into a checkerboard layout.

-
A third possible assumption is that some type of floor control, e.g. based on Binary Floor Control Protocol (BFCP) [3] and [15], is used, where the usage details in that case are so far left unspecified.

-
When MRFP is not transcoding, when changing from forwarding one participant's video to another participant's video, and since encoded video typically makes use of temporal redundancy, this change can only be made at a point in the video stream that does not depend on any previous part of that video stream – a so called "intra" picture. When deciding to make a change of forwarded video, the MRFP can trigger the UE to send such intra picture by issuing an RTCP CCM FIR command to the UE, as described in RFC 5104, and make the actual switch only when that intra picture arrives to the MRFP. Timing, reliability and bandwidth aspects of FIR transmission are described in RFC 5104. A MTSI UE is already required to support and react on FIR. When changing to a new source and if the new source is inactive (on hold or not established) then that stream has to be activated before the MRFP can switch to it.

-
SIP conference call control includes three allowed options [3] and [8]:

-
Each participating UE calls in to conference (SIP INVITE).

-
The originating UE calls in to conference and requests it to call out to other participants (SIP INVITE with recipient list).

-
A UE has an ongoing point-to-point or three-party call that is moved into a conference (SIP REFER).

-
MRFC always includes "isFocus" tag in its SIP signalling [3] (regardless if it is a SIP request or response), which lets the UE know that it is signalling with a conference and not another UE.

-
The conference may optionally make use of explicit floor control through Binary Floor Control Protocol (BFCP) [3] and [15]:

-
The use of a floor control protocol allows explicitly, and even manually, controlling which participant's video is distributed to others by the MRFP.

-
The use of this "application" media stream is negotiated through SDP [16].

-
TCP transport of BFCP is assumed, possibly because this was until fairly recently the only specified transport in IETF, but many BFCP implementations on the market instead use UDP in a straightforward way, and there is well progressed work in IETF to describe this in an update to the BFCP RFC [17].

The MMCMH work item objectives include enabling multi-stream audio/video support at the terminals. In addition, as specified in the MMCMH WI objectives, the conference focus and the terminals may receive stereo streams for further processing and rendering. The clauses below present the multi-stream audio and video use cases, where the terminals receive and decode the multiple streams of audio/video and thumbnails, and render them at the terminal that is potentially transcoder-free. Conferencing using IP multimedia core network and with conference focus mixing (e.g. with MRFP) are addressed in 3GPP TS 24.147 and IETF RFC 4353.
6
Use cases 

6.1
Overview
This clause contains multimedia group communication use cases that enables multi-stream video and audio support at the terminals.

6.2
Use case A: Transcoding Free Continuous Presence
When calling in to a group video call, the user is able to see video from more than a single one of the other participants in the call, which is commonly referred to as "continuous presence". This is typically desirable in a group communication for a user to be able to see the reactions of more than a single participant.
In contrast, when receiving video from one participant at a time, several different approaches to choose that single participant are possible, subject to implementation in the conference focus. It may be that the active speaker is chosen, based on conference focus analysis of some (unspecified) voice activity measure of all participants. It may be based on a chair person's explicit and manual control of the conference focus, typically requiring a floor control protocol, such as for example BFCP, [15]. It can also be based on other approaches, such as for example an automatic, timed round-robin among all participants.

The participant layout or the number of participants simultaneously visible in a continuous presence layout is neither specified nor specifically restricted in this use case. An implementation will however always be limited, either by the receiving UE capability, or by group call network resources. Examples of receiving UE capability limitations are available display size, and decoding resources. Examples of network resource limitations are network bandwidth and conference focus processing capacity. Different UE implementations may typically have different amounts of limitation, and a solution could possibly accommodate that by letting the conference focus adapt the layout to individual UE.

[image: image4.emf] 


Figure 2. Continuous presence example.
If the chosen layout is able to fit all participants in the group communication, no further action has to be taken. However, when the number of group participants is larger than the number of participants in the chosen layout, those participants have to be selected somehow, just as for the single video layout described above. The selection of participants to include in such continuous presence layout can be based on the same principles as for the single video case. For example, if a voice activity approach is used, the N currently most active speakers can be chosen. In that case, it is often desirable that the current active speaker is highlighted in some way, for example by using a larger video image size.

Typically, a separate composed video layout has to be created for each receiver, since it is often not desirable to show the receiving user as part of such composition. Specifically, the currently active speaker should also be shown something else than itself in active speaker position, for example the previously active speaker. If it is desirable to show a self-view video, this is much more efficient to solve locally in the sending UE, since that video then neither has to occupy any composition resources in the conference focus nor any downlink bandwidth. A video layout is possible to re-use in group communications where the total number of participants is at least two more than the number of participants included in the video layout.

The receiving user should ideally be able to impact the received layout, but it may also be decided by some policy implemented in the UE application, in the conference focus, or some combination.

6.2.1
Problem Description
Assuming that a UE can receive only a single video stream, creation of the composed "continuous presence" picture has to happen elsewhere, typically in the conference focus media handling part. Such composition requires decoding of video from all of the participants to be composed, re-sizing them to fit the layout, composing the layout in the decoded pixel domain, and re-encoding the resulting video. This transcoding operation introduces increased end-to-end delay and decreases video quality, similar to what is described in [11] (although that document focuses on transcoding between different video codecs). It also requires a significant amount of transcoding and video composition resources in the conference focus, per group video communication participant.

To summarize, the problem with this approach to continuous presence is threefold:

1.
Increased end-to-end delay

2.
Decreased video quality

3.
Increased amount of resources in the conference focus

The increased bandwidth with respect to multi-stream vs. transcoding is considered in a separate use case in clause 6.4.
6.2.2
Proposed Solution

The suggested solution is instead using local video composition of decoded video in the receiving UE, meaning that it receives and independently decodes all of the video streams to be used for composition. The conference focus is then neither composing any continuous presence image nor transcoding it, but just forwarding video streams from the sending participants to appropriate receivers.

The composition can be part of the normal video display process and does not introduce any noticeable extra video delay. In addition, the video composition process is also under full control of the receiving UE, and leaves significant freedom to the local graphical user interface (GUI) to layout the different videos, and can easily (but optionally) allow the user of the receiving UE to impact such layout, without or with minimal changes to the conference focus or received video streams.
[image: image5.emf] 


Figure 3. Transcoding-free multi-stream continuous presence example.
If the receiving UE is able to express capability for maximum number of received video streams and also their corresponding "sizes", it is fairly easy to use that information to construct meaningful local video layouts. For example, assuming that the conference focus uses voice activity detection for the group communication participants, and further assuming it is able to send videos for the N most active speakers, where the current active speaker is provided in normal resolution while the rest (N-1) is provided in low resolution ("thumbnails"). A conference focus having this information per connected UE can easily choose which, and which number of participant videos to forward to a specific UE.

To support that the active speaker is shown in normal size on receiving UE while thumbnails are smaller, the conference focus needs that active speaker to send a normal size video, while the others being shown as thumbnails may send smaller sized videos. To accommodate the previous active speaker to be shown in normal size as active speaker to the current active speaker (instead of itself), the previous active speaker may have to send both a normal sized video (to be forwarded by conference focus to current active speaker), and a small sized video (to be forwarded as thumbnail to other participants). This way of sending multiple simultaneous representations of the same content is called "simulcast" [12].

This can be accomplished in SDP by letting the active speaker be described by the already present video m-line, and add a set of additional video m-lines (number can be decided by UE capability) to describe the additional (possibly thumbnail) videos. The advantages with this approach are that the number of and details for each additional thumbnail can be negotiated (and also rejected) independently. This approach is also fully in line with existing SDP semantics, where additional m-lines describe media that are sent in addition to and simultaneously with other m-lines (like, for example, the current audio and video m-lines).

When it comes to simulcast (see above), this is slightly different, and there is ongoing work in IETF on this issue. Different (and simultaneous) representations of the same video source should be described by a single m-line (see details in [12]). It is of course possible to express capability for and negotiate the use of simulcast.

Note that the way to implement multi-stream in this scenario does not require any specific video codec type. Any video codec type can be used, as long as the sending and receiving UE use compatible video codecs, described and negotiated by SDP, for example the mandatory TS 26.114 video codec H.264.
6.3
Use case B: Screen Sharing
In a group video communication, it is sometimes desirable for a user to show something else than the video from the camera to the other participants, like a document, image or something else that can be shown on the user's local screen.
6.3.1
Problem Description

The basic problem is that there is no commonly accepted interchange format to transfer screen content between peers, although several proprietary formats do exist. It is in principle possible to send screen content as regular video, if encoding is adapted to that specific application (like, for example, high resolution and low frame rate), but general video coding is usually not optimal for the task.

It is not expected that 3GPP SA4 or the MMCMH Work Item particular could take on a task to define such format

That screen share content should also preferably be treated differently from "normal" video from a participant, such that the conference focus should not change what video to send to others based on voice activity. If it was changed based on voice activity, it would not be possible for another participant to comment on what is shown without having that commenting participant being shown instead of the screen share video. To make this distinction, the conference focus has to know this specific status of screen share video.

Typically, it is desirable to let only one participant at a time in a group communication to share its screen, which is then distributed to all other participants. In some scenarios, that can be controlled informally by regular social interaction between participants (for example using meeting audio and video communication), but in other scenarios it is preferable with more formal control by some type of meeting chair.

This problem is thus twofold:

1)
The conference focus has to be able to distinguish between normal video and screen share to be able to apply another strategy what video to distribute to participants.

It should be possible to control that only a single one is sharing at any point in time, as well as who that is, and the needed formalism in this decision can differ.
6.3.2
Proposed Solution

It is noted that current HEVC extensions for screen content coding is in progress in the ISO/MPEG ITU-T JVC group. Thus, if the approach is taken to use video as screen content format, current H.264 or H.265 encoding can be used (possibly with specific encoder settings), at least as an interim solution, subject to normal UE capability negotiation, awaiting a more optimized format, like the ongoing screen content coding.

Thus, with the above assumptions, this use case can in principle be accomplished by functionality in the UE that can take video input from the UE screen instead of (or in addition to) from the camera.

To indicate the special screen share status of a video, it is proposed to adopt the approach taken by already existing equipment, using a separate video m-line in the SDP and label it with the already defined SDP "a=content" attribute [13], with a value of "slides".

It can be noted that this is the approach taken by GSM Association in IR.39 "High Definition Video Conference (HDVC)" [14].
It can also be noted that when using a separate SDP (video) m-line for screen share, and if there are sufficient UE processing resources and network bandwidth, it is almost independent of how the real-time video is done, and thus possible to use the screen sharing in combination with the multi-stream use case for continuous presence described above (as indicated by the lower right UE in Figure 4).

Control of who is allowed to share screen content, and whose screen content the MRFP should forward to the conference participants can be implemented in different ways. The approach taken by IR.39 [14] is to use Binary Floor Control Protocol (BFCP) [3], [15], [17], which is already part of IMS infrastructure. An (incomplete) example of SDP signalling for setting up a BFCP stream for TCP transport is provided below.

[image: image6.emf] 


Figure 4. Screen share video example.
Table 1: BFCP in SDP

	SDP Offer from UE
	SDP Answer from conference

	m=video …
a=content:main (optional, but clarifying)
a=sendrecv

m=video …
a=content:slides (mandatory, for screen share)
a=sendonly

m=application 50324 TCP/BFCP *
a=floorctrl:c-only (UE assumed BFCP client only)
…
	m=video …
a=content:main
a=sendrecv

m=video …
a=content:slides
a=label:10 (added by MRFP, for reference below)
a=recvonly

a=application 50324 TCP/BFCP *
a=floorctrl:s-only (server only if UE is client only)
a=floorid:1 mstrm:10 (floor 1 has media label:10)
a=confid:3824 (allocated BFCP conference ID)
a=userid:293069 (allocated BFCP user ID for UE)
…


If a UE sends media on the content:slides stream to the MRFP without owning the screen sharing floor, that media is silently discarded by the MRFP and is not forwarded to any other conference participant.

The first screen sharing media a UE sends after being granted the screen sharing floorhas to be independently decodable, a "refresh point", meaning that the encoded mediawill not reference any previous media that the receivers may not have access to. An example of a refresh point is a video intra (or IDR) picture, in combination with and being preceded by the active parameter sets. The MRFP should not start forwarding screen sharing media to other receivers until a refresh point is received. If the MRFP does not receive a complete refresh point in a timely manner, a FIR should be sent towards the screen sharing UE, which should respond by including such refresh point at its earliest convenience. A UE receiving the screen share stream may similarly use FIR to ask for additional refresh points from the MRFP.

Whether or not screen sharing in the conference is moderated (by a BFCP floor chair) is a matter of conference configuration. How this configuration is made is outside the scope of the present document.

If there is a floor chair, BFCP floor requests from UE are forwarded by the MRFP to the floor chair for explicit approval, and grants or rejections are sent back to the requesting UE. If there is no floor chair, the decision to grant or reject floor requests is left to the MRFP. The details on how this decision is taken can be left to individual MRFP implementations, but possible alternatives include:

1)
Always accepting new floor requests, possibly revoking the floor from a UE that is currently owning it

2)
Only accepting new floor requests when no other UE owns it, requiring UE to always release the floor after sharing is done

Use of BFCP to control screen sharing can, as a simplistic alternative, also be optional. In that case, every UE that starts sending screen share media automatically gets the screen share floor, similar to either 1) or 2) above. In this case, the floor is automatically released when sending screen share media stops. In the simplest case and if this simple approach is considered sufficient, not even the MRFP needs to support BFCP. It should also be noted that without explicit floor control such as BFCP, no moderation is possible. If the MRFP supports BFCP with screen sharing, but not all UE in the conference do, the MRFP may generate BFCP floor requests and releases on behalf of the UEs not supporting BFCP, based on the simple approach above. An advantage with letting the MRFP generate BFCP requests and releases on behalf of non-BFCP UE is that the screen sharing floor can be moderated to some extent even for non-BFCP UE.

6.4
Use Case C: Bandwidth Handling 
This use case deal with how to control bandwidth for a UE with multistream capability in six different sub-scenarios, which must all be possible to handle and where different behaviour is needed:

a)
A non-multistream capable UE calling in to a multistream-capable conference.

b)
A multistream capable UE calling in to a multistream-capable conference, where the bandwidth usage desired by the UE application is less than the current network restriction (no effective limit).

c)
A multistream capable UE calling in to a multistream-capable conference, where the bandwidth usage desired by the UE application is slightly greater than the current network restriction.

d)
A multistream capable UE calling in to a multistream-capable conference, where the bandwidth usage desired by the UE application is significantly greater than the current network restriction (severe restrictions).

e)
A multistream capable UE calling point-to-point to another multistream capable UE.

f)
A multistream capable UE calling point-to-point to a non-multistream capable UE.
6.4.1
Problem Description

The number of media streams used between the conference and each individual participant UE, or point-to-point between UEs, will not exceed the UE or conference capability, andit willl thus be possible to decide through regular SDP Offer/Answer procedures.

The maximum amount of bandwidth occupied in total is limited by the available end-to-end bandwidth capacity, which is normally communicated to the UE through IMS procedures in combination with SDP Offer/Answer. This approach will be possible to use also with multiple media streams.

The UE and the conference should each be given some reasonable amount of control over the division of this total IMS-decided total bandwidth among the different media streams, enough to be able to scale the use of multiple media streams with bandwidth availability in a way that makes sense for group video communication applications.

It will be possible to avoid using multistream functionality or additional bandwidth in cases where it is not applicable, for example in some cases when calling point-to-point.
6.4.2
Proposed Solution

This clause includes for clarification a set of example SDP fragments. It should be noted that these are not valid or complete SDP examples, but are for brevity and clarity just fragments, highlighting only bandwidth aspects of the SDP offer/answer process that are relevant to the accompanying text, and sometimes also contains clarifying comments (in brackets and italics) that would not be part of an actual SDP.

The SDP additions for multistream functionality (simulcast, thumbnails, screen sharing, and floor control; see other clauses), are all defined as SDP media-level attributes or as separate SDP m-lines, meaning that they are governed by existing SDP offer/answer rules.

6.4.2.1
Single-stream to multi-stream

If multistream functionality is not included in an SDP offer, it will also not be present in the SDP answer. The bandwidth use will then not differ from a non-multistream case, for example sub-use case a) above, where a non-multistream client calls in to a multistream-capable conference.

Table 2: Single-stream Offer to Multi-stream Conference
	SDP Offer
	SDP Answer

	m=video …

b=AS:500

a=sendrecv

…
	m=video …

b=AS:500

a=sendrecv

…


6.4.2.2
Multi-stream to single-stream

If multistream functionality is included in the SDP offer but rejected and disabled in the SDP answer, the negotiated bandwidth in the direction from the offerer to the answerer (in the answer) will not differ from a non-multistream case. The negotiated bandwidth in the direction from the answerer to the offerer (in the offer) is on the other hand applicable to the bandwidth needed with multistream functionality included, which will then be the bandwidth used by IMS and unnecessarily high as multistream functionality was negotiated away and will not be used.

When the offerer that offered multistream functionality learns from the SDP answer that the answerer will not make use of the multistream functionality, it can (if needed) send an updated SDP offer where the multistream functionality is disabled and the bandwidth adjusted accordingly. This second SDP offer/answer does not add to call setup time, since all media streams that are applicable to the session are already started, and the only modification needed is bandwidth allocation optimization. The resulting bandwidth use will not differ from a non-multistream case, for example in sub-use case f) above, where a multistream capable UE calls a non-multistream UE. It could be noted that in this specific point-to-point case, the offerer decision to send an updated SDP offer disabling multistream functionality can be assisted by the knowledge that it is a point-to-point call, since the "isFocus" SIP tag is not in the SIP message that carries the SDP answer.

Table 3: Multi-stream Offer to Single-stream UE
	1st SDP Offer
	1st SDP Answer
	2nd SDP Offer
	2nd SDP Answer

	m=video … (main)

b=AS:500

a=sendrecv

a= simulcast send p1 p2

m=video … (thumbnail 1)

b=AS:80

a=recvonly

m=video (thumbnail 2)

b=AS:80

a=recvonly

…
	m=video …

b=AS:500

a=sendrecv

m=video 0 …

m=video 0 …

…
	m=video …

b=AS:500

a=sendrecv

m=video 0 …

m=video 0 …

…
	m=video …

b=AS:500

a=sendrecv

m=video 0 …

m=video 0 …

…


6.4.2.3
Multi-stream to multi-stream without bandwidth restriction

If multistream functionality is in the SDP offer, if the SDP answerer supports the offered multistream functionality, and if the desired bandwidth can be supported by the end-to-end network path, the IMS can use the included b-lines (per m-line) in the SDP to allocate necessary resources, just as for non-multistream cases, only that there are more than a single audio line and a single video line in the SDP. In case any of those m-lines are mapped to the same bearer, for example if all video m-lines are mapped to a single QCI 2 (video) bearer, the corresponding b-line values can be added together (by the IMS) to obtain a single total bandwidth value to use for that bearer.

A simulcast receiver, whether it is the SDP offerer or answerer, may typically indicate a slightly higher b-line value for the m-line containing the simulcast, to allow some extra bandwidth for the simulcast streams in receive direction. An entity that is only a simulcast sender should not indicate a higher bandwidth for the simulcast m-line, since the SDP b-line only indicates the willingness to receive the specified bandwidth, not what is sent. It should be noted that this results in intentional asymmetric bandwidth usage.

A thumbnail receiver, irrespective if it is the SDP offerer or answerer, includes the desired maximum receive bandwidth as the b-line value with the receive-only (a=recvonly) thumbnail m-line(s). A thumbnail sender, again irrespective if it is the SDP offerer or answerer, includes the intended maximum send bandwidth as the b-line value with the send-only (a=sendonly) thumbnail m-line(s). A thumbnail sender must not use a higher b-line value for the thumbnail in an SDP answer than was received in a corresponding offer.

Table 4: Multi-stream Offer to Multi-stream Capable Conference
	SDP Offer
	SDP Answer

	m=video … (main)

b=AS:500

a=sendrecv

a= simulcast send p1 p2

m=video … (thumbnail 1)

b=AS:80

a=recvonly

m=video (thumbnail 2)

b=AS:80

a=recvonly

…
	m=video … (main)

b=AS:800 (bandwidth includes simulcast)

a=sendrecv

a= simulcast recv p1 p2 (simulcast accepted)

m=video … (thumbnail 1)

b=AS:80

a=sendonly

m=video (thumbnail 2)

b=AS:80

a=sendonly

…


6.4.2.4
Multi-stream to multi-stream with minor bandwidth restrictions

In a use case similar to the above, but where the UE or conference desires to use a higher bandwidth than what is available, the IMS can selectively limit all bandwidths in the SDP. This limitation should preferably be made in a way such that the reduction in bandwidth affects the perceived application experience as little as possible. In this specific use case, it is assumed that the difference between desired bandwidth and actually available bandwidth is small, and the IMS here choses (as an example) to decrease all the individual bandwidths with the same ratio. It is thus assumed that the offerer's and/or answerer's IMS decreases the bandwidth in the SDP offer with some amount (here 10%) before it reaches the answerer. It is similarly assumed that the answerer's and/or offerer's IMS decreases the bandwidth in the SDP answer with some amount (here 15%) before it reaches the offerer. The bandwidth for sendonly streams in the SDP answer is not modified by IMS since that SDP modification will not be seen by the RTP stream sender (the SDP answerer) unless yet another SDP offer/answer is initiated. IMS can avoid this problem by instead modifying those streams in the SDP offer, when they are recvonly and before reaching the SDP answerer.

Table 5: Multi-stream Offer to Bandwidth-Restricted Multi-stream Receiver
	Sent SDP Offer

(sent by UE)
	Received SDP Offer

(modified by IMS)
	Sent SDP Answer

(sent by MRFC)
	Received SDP Answer

(modified by IMS)

	m=video … (main)

b=AS:500

a=sendrecv

a= simulcast send p1 p2

m=video … (thumbnail 1)

b=AS:80

a=recvonly

m=video (thumbnail 2)

b=AS:80

a=recvonly

…
	m=video … (main)

b=AS:450

a=sendrecv

a= simulcast send p1 p2

m=video … (thumbnail 1)

b=AS:72

a=recvonly

m=video (thumbnail 2)

b=AS:72

a=recvonly

…
	m=video … (main)

b=AS:720

a=sendrecv

a= simulcast recv p1 p2

m=video … (thumbnail 1)

b=AS:72

a=sendonly

m=video (thumbnail 2)

b=AS:72

a=sendonly

…
	m=video … (main)

b=AS:612

a=sendrecv

a= simulcast recv p1 p2

m=video … (thumbnail 1)

b=AS:72

a=sendonly

m=video (thumbnail 2)

b=AS:72

a=sendonly

…


6.4.2.5
Multi-stream to multi-stream with severe bandwidth restriction

Again, in a use case similar to the above, but where the UE or conference desires to use a significantly higher bandwidth than what the network can support, the IMS can still selectively limit all bandwidths in the SDP. As above, the limitation should preferably be made in a way such that the reduction in bandwidth affects the perceived application experience as little as possible, but in this case it will anyway be significant. In this specific use case, it is assumed that the difference between desired bandwidth and actually available bandwidth is significant, and the offerer's IMS here choses (as an example) to decrease a few of the bandwidths from the top of the SDP to what can be supported, and disables the last thumbnail (setting port to zero). The answerer's IMS (still as an example) has even worse conditions and reduces bandwidth even more. As for the previous example, it is not possible for IMS to disable or reduce bandwidth for RTP streams that are sendonly in the SDP answer (here thumbnails), unless an additional, subsequent SDP offer/answer is initiated. IMS can avoid this problem by instead modifying those streams in the SDP offer, when they are recvonly and before reaching the SDP answerer. How to best decrease bandwidth and/or disable streams is application-specific, included here only as an example and is not specified further. If the described methodology is followed, it can accommodate various different bandwidth-reduction approaches and be kept application-specific without requiring any changes to the UE.

Table 6: Multi-stream Offer to Severely Bandwidth-Restricted Multi-stream Receiver
	Sent SDP Offer

(sent by UE)
	Received SDP Offer

(modified by IMS)
	Sent SDP Answer

(sent by MRFC)
	Received SDP Answer

(modified by IMS)

	m=video … (main)

b=AS:500

a=sendrecv

a= simulcast send p1 p2

m=video … (thumbnail 1)

b=AS:80

a=recvonly

m=video (thumbnail 2)

b=AS:80

a=recvonly

…
	m=video … (main)

b=AS:250

a=sendrecv

a= simulcast send p1 p2

m=video … (thumbnail 1)

b=AS:50

a=recvonly

m=video 0 (thumbnail 2)

…
	m=video … (main)

b=AS:300

a=sendrecv

a= simulcast recv p1 p2

m=video … (thumbnail 1)

b=AS:50

a=sendonly

m=video 0 (thumbnail 2)

…
	m=video … (main)

b=AS:250

a=sendrecv

a= simulcast recv p1 p2

m=video ... (thumbnail 1)

b=AS:50

a=sendonly

m=video 0 (thumbnail 2)

…


6.4.2.6
Multi-stream UE to multi-stream UE in point-to-point

The multi-stream capable UE sending the SIP INVITE cannot in general be assumed to know whether it will be talking to a conference or not before making the call, and will thus include its multi-stream capabilities in the SDP offer. It has been shown above that this will not have any negative impact if the called UE is a single-stream UE, since it will disable all non-supported functionality in the answer. If the called UE is a multi-stream UE, it does have capabilities corresponding to those in the offer, and could in principle enable the multi-stream also point-to-point. There would however hardly be any point in sending different simulcast versions between UEs, and there would also hardly be any use for thumbnails, so both of those should be disabled in the UE-to-UE case.

One way to distinguish this situation is to look at the presence of the "isFocus" tag in the SIP header. A conference will include this tag, but a UE will never include it. The UE receiving the SIP INVITE can therefore know that the call is not coming from a conference and can therefore safely disable all multi-stream functionality that does not make sense to use point-to-point between UE. The UE that sent the SIP INVITE can also see from the SIP response that the other party is not a conference, and know that is the reason for disabling multi-stream functionality. If the SIP response does not include the "isFocus" tag, and if multi-stream functionality is not disabled in the SDP answer, the offerer should probably use multi-stream functionality with some caution, if at all, under the assumption that the remote UE did not correctly handle the SDP offer/answer with the multi-stream functionality included and therefore generated an incorrect SDP answer.

A valid SDP example for this case will look the same as in Table 3 above.
6.5
Use Case D: Active Speaker Override
While in a group video call, one of the participants wants to show something specific to the entire group and let the group discuss about it, while everyone sees that same video. In Figure 5 below, the top right UE is the one sharing its video (of the car) to the others, but the lower right UE is the one that is active speaker (commenting what is shown). This is similar to a screen share situation (described in Use Case B), but uses a regular video camera instead of sending the contents of a screen. It should be possible for the user of the sending UE to understand when and if the video it is sending is forwarded to the other participants. It should also be possible for the user of the sending UE to see the reactions to the shared video by receiving a regular voice activated video from the other participants in the group.
[image: image7.emf] 


Figure 5. Talk-about example

6.5.1
Problem Description

The choice of which video that is shown to the participants in a group video call is controlled by the conference and a reasonable choice will often be the most active speaker. In some cases, this is however not a very good choice. One of those situations is the "talk-about" use case above.

If the video switching decision is using active speaker as criterion, the video content supposed to be discussed will be replaced as soon as someone else starts speaking about that content, which hampers the purpose of the discussion and may even cause the participants to be confused and annoyed.

In such situations, it is necessary to have the possibility to at least temporarily override the active speaker as video switching decision, replacing it with a manual choice that will be left up to the participants. It is very likely sufficient to leave up to each individual participant to make the choice to override a voice activated switching, but it could also in some cases be preferable to let someone appointed as responsible for the group video call (a "chair") to control who is allowed to send video. This chair may or may not be identical to the one that initiated the group video call. It will also be possible to terminate the video switch override and let the conference go back to the default video switching choice, like active speaker.

It may not be a particularly efficient use of downlink resources to send the shared video content back to the sharing participant, which suggests that it should instead receive some other video, for example keep active speaker switching for that participant. This requires the conference to apply different video switching decisions simultaneously in the same conference, but for different participants.

If this use case is used in combination with the explicit content share use case, there can be both implicit and explicit floor control in the same conference, for different participants. This situation can also arise for this use case from that some participants may be "legacy" MTSI clients that do not support BFCP at all.
6.5.2
Proposed Solution

The suggested solution is to re-use the floor control functionality, as already provided by BFCP [3], [15], [17] for the screen share use case, to control the "regular" camera video m-line in SDP. This allows the conference to delegate the decision on which video to switch out to the participants, selecting the video sent from the party that "owns the sending floor".

Note that while floor-controlling the camera video, it is in no way forbidden to send video when not "owning the floor". The floor control only handles the shared resource of MRFP video switching decision, not the general "permission" to send video. As soon as someone has requested and been granted the floor, video switching in the MRFP is "manual". When no one has requested the floor, or if everyone has released it, the MRFP is free to apply whatever "automatic" video switching logic it sees fit.

By re-using BFCP functionality from screen share, the controlling party could either be each individual participant, or requests could alternatively be moderated by a floor chair. BFCP supports multiple floor handling, and camera share and document share simply use different floor identifications, which are communicated through SDP and can be used in BFCP signalling to choose which video to control.

The floor handling controls should be an integrated part of the video call UI, and could possibly be shown to the user only when in a group call, since the "isFocus" tag in SIP signalling [3] in combination with BFCP capability in SDP received from the remote party indicates this to the UE.

In the simplest controlled case, leaving floor control to the participants as a group, the conference always accepts all requests to become video sender. Any new request will automatically revoke any previous owner of the floor and replace it with the sender of the new request. It is likely that this approach will work well in most group video calls, leaving the control of who is sending to be based on regular social interaction among the group participants.

A UE that is granted the floor, as indicated through the BFCP "Granted" response, can indicate to the user in the graphical user interface that its video is now being seen by everyone. When the UE owning the floor releases it, the conference changes back to use the default switching principles, like voice activated.

The conference could also be configured (by means not yet specified here) to be moderated, in which case all requests for the "sending floor" will be explicitly granted or denied by an appointed floor chair. The chair can of course grant the floor also to itself. Otherwise, the functionality is the same as above.

The MRFP has to know which participant that currently owns the "sending floor", which makes it possible to apply a different video switching decision to that participant, not sending back the shared video content. Active speaker video switching is instead kept for that participant, enabling to show voiced reactions from other participants to the shared video content.

It should be noted that while current 3GPP specifications only refer to IETF RFC [15], [16] where TCP is used as BFCP transport, industry best current practice for BFCP is to use UDP transport and there are well progressed Internet Drafts for this [17], [18]. One of the key benefits when using UDP is the ability to leverage existing NAT traversal infrastructure, as described in Appendix B of [17]. Multi-stream MTSI UE should use UDP transport for BFCP according to those specifications, but may in addition support TCP transport. It would be preferable to update 3GPP specifications to allow for BFCP UDP transport.

The example below shows an SDP signalling fragment that hints how to enable the active speaker override functionality based on BFCP, including BFCP-controlled screen share to show their relation and identification:

Table 7: Active Speaker Override in SDP
	SDP Offer from UE
	SDP Answer from conference

	m=video …
a=content:main (optional, but clarifying)
a=sendrecv


m=video …
a=content:slides (mandatory, for screen share)
a=sendonly


m=application … UDP/BFCP *
a=bfcpver:1 2 (version 2 needed in list for UDP)
a=floorctrl:c-only (UE assumed BFCP client only)
…
	m=video …
a=content:main
a=label:10 (added by MRFP, for reference below)
a=sendrecv

m=video …
a=content:slides
a=label:11 (added by MRFP, for reference below)
a=recvonly

a=application … UDP/BFCP *
a=bfcpver:1 2 (also supports versions 1 and 2)
a=floorctrl:s-only (server only if UE is client only)
a=floorid:1 mstrm:10 (floor 1 has media label:10)
a=floorid:2 mstrm:11 (floor 2 has media label:11)
a=confid:3824 (allocated conference ID)
a=userid:293069 (allocated UE user ID)
…


The single BFCP m-line can handle multiple, separate floors. Each m-line to be controlled by BFCP has an associated "a=label:<x>" attribute with a unique but arbitrarily chosen value <x>.

Those label <x> values are related to BFCP floor identifications <y> through "a=floorid:<y> mstrm:<x>" attributes under the BFCP m-line. The BFCP floor identification values are used in the BFCP signalling stream between the UE and the MRFP when requesting and granting floors for the related media streams. The <x> and <y> identifiers may be chosen freely by the MRFP.

This simple use of BFCP has very limited use of the "a=confid" and "a=userid" BFCP attributes, but the BFCP specification recommends that they are always included. The identifier values for those attributes may also be chosen freely by the MRFP, as long as each UE is given a unique userid value in the conference, and the same confid value is used for all UE in the conference.

The "a=bfcpver" attribute is needed when BFCP version 2 is used, which is in turn required for BFCP UDP transport.

6.6
Use Case E: Pausing Unused Streams
While in a group video call using switched multi-stream in combination with simulcast, and if there are more participants in that call than what can be shown simultaneously as active speaker and thumbnails on the receiving UEs, the MRFP will at every point in time have some video streams that are not switched to any receiving UEs. Figure 6 below shows an example time instant of such group video call, showing all video streams in the call, marking the non-needed as dotted and therefore the ones desirable to pause. It could be noted that there will be an increasing number of paused streams with increasing number of participants, which also means that pausing improves scaling of total conference resource consumption with the group call size.

In this use case, it is only the MRFP that has the need to pause and resume streams, and only the MRFP has the information on which streams are needed or not. This also means that pause/resume operation is only needed for uplink streams. A different set of streams will be switched to receiving UE when active speaker changes, which is depicted in Figure below.

[image: image8.emf] 


Figure 6. Pausing Example

[image: image9.emf] 


Figure 7. Pausing Example After Active Speaker Change

Some streams that were paused are now needed and must be resumed. Other streams that were previously needed can now be paused. For most streams, the pause/resume status is not changed, but the origin of the stream (shown as different colour) may have changed.

6.6.1
Problem Description

When the MRFP detects that active speaker has changed, the video stream from previous active speaker should no longer be forwarded as active speaker video to the group participants, and the video stream from the new active speaker should instead be used as active speaker video stream. If the video stream from this new active speaker was paused, it will now be resumed. It is assumed that the group participants want to see this new active speaker as soon as possible. The time from when the MRFP detects the new active speaker until it is shown on the receiver's displays should thus be minimized.

It would be possible to use the existing signalling channel between the UE and the MRFP and send SIP UPDATE from the MRFP, changing directionality of the affected streams. Pausing a sendrecv stream in SDP from the UE would become a sendonly stream in the updated MRFP offer, which in SIP is indistinguishable from putting the stream on hold [24].

This ambiguity in what type of pause is wanted is not desirable, and may even risk that the UE treats the call as on hold.

Holding a call typically lasts for some time, and it is reasonable for a UE to then close and release at least some of the most battery-consuming transport and codec resources. Resuming a call on hold is also typically not time critical, and it would be acceptable for the UE to for example re-initialize the camera and re-instantiate and re-initialize the video codec. The type of pause described in this use case however requires a more "hot" pause operation, where the UE is prepared for a low latency resume.

The frequency of such active speaker-triggered SIP UPDATE between MRFP and most group call participants could also be fairly high, like up to once every few seconds. This is at least significantly higher than the average time between group participants leaving or joining the call, which is probably otherwise the cause of most MRFP SIP signalling load. The amount of SIP/SDP information required on the signalling bearer will be significantly increased compared to when pause / resume is not used in this way, especially since multi-stream SDP can be significantly larger than without multi-stream. This may even impact ongoing media quality negatively due to the signalling bearer having higher priority than media.

An additional drawback with using SIP UPDATE and SDP is that current simulcast specification sends all simulcast versions under the same m-line, and it is not possible to change direction for individual streams, only for the entire m-line.

Some of the uplink thumbnail simulcast streams may also have to be resumed when changing active speaker, due to that they were not previously viewed by any receiving UE, but that they are now desirable to show as thumbnail on some UE (replacing some other thumbnail, for example one that was quiet for a longer period of time). The desirable timing for such thumbnail change is almost as strict as the active speaker change described above, and the frequency of pausing and resuming thumbnails as seen from a single UE-MRFP connection may be even higher than active speaker changes.

All of the above suggests that using the currently available signalling channel between the UE and the MRFP, SIP UPDATE, is not any ideal solution to pause / resume streams, and another, faster and less resource-demanding solution should be found.

6.6.2
Proposed Solution

The suggested solution is to use RTP pause / resume as described by [23], which implements the pause / resume signalling as RTCP feedback messages. This has no SIP/SDP signalling impact on active speaker changes, and thus provides a resource efficient and sufficiently fast signalling solution.

This is an SDP signalling fragment example that hints how to negotiate this pause / resume functionality:

Table 8: Pause / resume in SDP
	SDP Offer from UE
	SDP Answer from conference

	m=video …
a=rtcp-fb:* ccm pause nowait

…
	m=video …
a=rtcp-fb:* ccm pause nowait

…


The fact that the "ccm pause" is present in the SDP answer means that RTCP pause / resume signalling can be used for the streams related to the affected m-line.

The "nowait" parameter tells the remote peer that the party sending the SDP believes the pause operation can take effect immediately, without concerns that there may be more simultaneous receivers of the stream than the MRFP that do not want to pause it. This is effectively always true when UE and MRFP are connected point-to-point (see [23] for further details), which is a situation that should in general be known by the UE and the MRFP. If "nowait" is present in SDP offer and answer, both ends believe they are connected point-to-point, there is no need to apply the hold-off delay described in [23], and pausing can thus occur immediately. Opposite examples, when MRFP and UE are not effectively point-to-point, could be when the MRFP implements an RTP Translator topology, or when the MRFP is connected to the UEs via an IP multicast network.

The MRFP may optionally not implement the ability to pause its own streams on peer request, but just include the functionality to pause the UE's streams. The UE may similarly and optionally not implement the ability to pause a peer's (like the MRFP) streams, but just include the functionality to pause its own streams. This type of limited configuration can also be negotiated in SDP, through the use of an optional "config" parameter to the "ccm pause" line:

Table 9: Pause / resume with limited configuration in SDP
	SDP Offer from UE
	SDP Answer from conference

	m=video …
a=rtcp-fb:* ccm pause config=3 nowait

…
	m=video …
a=rtcp-fb:* ccm pause config=2 nowait

…


If the UE specifies config=3 in the offer, it means that the UE can receive pause and resume requests and act on them, but will not send those requests itself. In this case, the SDP answer from the MRFP contains the "opposite" functionality and configuration, config=2.

It is recommended that both UE and MRFP implement full pause / resume capability (corresponding to "config=1", which is default if no "config" is included on the "ccm pause" line). A UE may optionally instead implement config=3, and an MRFP may optionally instead implement config=2.
6.7
Use Case F: Conference Rate Adaptation Considerations
While in a group video call using switched multi-stream, either uplink or downlink streams (or both) may experience channel capacity variations, requiring rate adaptation to keep within the channel limits and avoid packet loss and/or increased delay for media carried by the affected streams.

6.7.1
Problem Description

For the case when the conference MRFP performs individual transcoding for every MRFP-UE downlink, all downlink rate adaptations are independent and accounts only for the local downlink channel variations. When instead using video switching to avoid video transcoding in the MRFP, this also limits the possibility to do per-link rate adaptation to individual group participant UEs. Rate adaptation in a group call will therefore in principle be made end-to-end, instead of separately UE-to-MRFP and MRFP-to-UE. This poses a potential problem, since there are typically multiple receivers of the same, switched, video stream. There is also potentially a conflict of interest between UE receivers with different conditions that all want as good quality as possible, matching exactly their (end-to-end) channel.

When using multi-stream, there may be multiple streams sharing the same (varying) channel resources (bearer). Those resources will thus be distributed dynamically to the different streams in a way that avoids exceeding the total available channel capacity.

6.7.2
Proposed Solution

It is suggested to keep some separation of uplink (UE-MRFP) and downlink (MRFP-UE) in rate adaptation, letting the MRFP be involved in rate adaptation to the extent possible and feasible.

When rate adaptation is needed on the UE-MRFP uplink, this is basically the same as a point-to-point call from a rate adaptation perspective. The media quality resulting from rate adaptation on the uplink is then the starting point for any rate adaptation necessary on the downlink. Naturally, no received downlink media stream can be any better than what was achieved on the uplink, regardless of the individual downlink quality.

When the conference MRFP uses video switching to the largest extent possible, the same video streamwill fit all downlinks simultaneously. The aggregate rate adaptation feedback information from the MRFP to the stream sender will then have to reflect the worst observed UE-to-UE path.

An example of this is depicted in Figure 8 below, where the stream sender is located bottom right in the picture, and the affected receivers are top and bottom left. Rate adaptation feedback is indicated by a dashed arrow, and the related media stream is indicated through a dashed loop connected to the signalling arrow.

If there is a very large difference between a (few) worst path(s) and the other ones, the worst path(s) would affect many receivers to an unreasonably large extent. It may be possible to avoid this unwanted situation by letting the MRFP dynamically apply transcoding only towards downlink receiving UE that experiences particularly bad channel conditions.

Another way of avoiding unwanted quality degradations to downlink receivers with good channel conditions because there are other downlink receivers with much worse channel conditions is to utilize simulcast streams. If the stream that needs rate adaptation has a lower quality simulcast version, and if the needed rate adaptation is so substantial that the resulting quality would be similar to the lower quality simulcast version, the MRFP could simply switch the lower quality simulcast version to the UE that experiences bad channel conditions. An example of this is depicted in Figure 9 below.

As with the previous figure, rate adaptation feedback is indicated by a dashed arrow, and the related media stream is indicated through a dashed loop connected to the signalling arrow. A few things could be noted:

-
There are no other receivers of the "large" simulcast version from the bottom right sender, but if there were, they would not have been affected by the upper right receiver no longer using it.

-
The uplink rate adaptation of the "large" simulcast version is not affected by the MRFP rate adaptation decision to no longer use it.

-
The upper right receiver is now instead receiving the "small" simulcast version, and any further rate adaptation needed to that version from either one of the other, left, receivers, will affect all receivers, as was described above.

-
If the channel conditions for the upper right receiver improve considerably, the MRFP could go back to sending the "large" simulcast version, possibly amended with the method described in Figure 8 above.

[image: image10.png]



Figure 8. Worst Path Rate Adaptation Example

[image: image11.emf] 


Figure 9. Simulcast Rate Adaptation Example

If downlink channel conditions towards a UE become really bad, there is of course always a possibility to stop or at least temporarily pause (similar but not identical to Video Use Case in clause 6.6) one or more downlink streams sharing the affected channel resource. This does not impact other receivers of those streams. An example of this is depicted in Figure 10 below, where both "thumbnails" are (temporarily) stopped to the upper right receiver.

[image: image12.emf] 


Figure 10. Pruning Rate Adaptation Example

When the channel situation improves, the stopped/paused streams can be resumed again.

When multiple streams share a common channel resource, it is expected that the UE can know this and adapt the rate adaptation feedback information for the affected streams such as not to exceed the shared resource. When using TMMBR/TMMBN as rate adaptation feedback, the decision of bitrate allocation to individual streams (stream "priority") will be left to the receiving UE, since TMMBR/TMMBN scope is a single stream, not the entire shared resource. This is believed to be sufficient, until proven otherwise. A "joint" rate adaptation would require another rate adaptation technology and/or feedback format.

All rate adaptation aspects described above can be used in the same conference, some even simultaneously, subject to MRFP implementation and available channel conditions towards individual receiving UE.
6.8
Use Case G: Multi-stream Audio Steering or Panning
Figure 11 shows an example use case where the audio from conference participants are directed or steered such that it appears that the participants A, B, and C are spatially distributed in a particular configuration. Head-related transfer function (HRTF) tools can be used to perform audio panning at the rendering device. Audio panning may reduce the fatigue to the participant D where the simultaneous talking of e.g. participant A and C is easily distinguished through spatial steering of audio. Audio panning may also enable the rendering device to choose to naturally vary the audio levels of participants before HRTF mixing. For example, participant D may prefer to give more importance to participant A's audio relative to participants B and C and selectively adjust the mixing gains in the personalized HRTF functions. In one example, the participant D may completely mute all participants except participant A during multiple active talkers. This achieves the same functionality as in Video Use Case D without requiring use of a conference focus, see clause 6.5. Further, participant D may also signal to the conference focus to manage the bit rate and audio bandwidth SDP negotiations based on talker preferences and depending on the rendering device capabilities.

Figure 12 shows a block diagram with decoded audio streams of talkers A, B, and C processed using the HRTFs. The HRTFs may be pre-computed based on a preferred virtual speaker location assignment. For example, the HRTF_A function may steer spatially the talker A's audio stream to be perceived to arrive from the left side (e.g. as shown in Figure 11). Similarly, HRTF_B and HRTF_C steer the talker B's and talker C's audio spatially to arrive as shown in Figure 11. The HRTFs may also include gain control to emphasize a preferred talker relative to others.

[image: image13.png]



Figure 11. Audio panning of participants A, B, and C and rendering to participant D.

[image: image14.emf] 


Figure 12. Multi-stream audio from participants A, B, and C are mixed at the rendering device of participant D using personalized HRTFs.
6.9
Use Case H: De-jitter Buffer Handling 
Figure 13 shows a block diagram where multiple audio stream RTP packets are received at the conference focus. The conference focus will be equipped with multiple de-jitter buffers to handle the multiple RTP audio packets and send in a sequential order (e.g. based on RTP_A, RTP_B, and RTP_C packet timestamps) for decoding and subsequent mixing and re-encoding. At the rendering device the received mixed audio is decoded and played out. In effect, audio mixing at the conference focus may contribute to increased JBM delay along with transcoding delays. In addition, the JBM design at both the conference focus and at the rendering device will meet the TS 26.114 delay requirements.

Furthermore, as described in MMCMH video use cases, if the multiple streams of video are not transcoded, while the audio is mixed/transcoded as per Figure 13 at the conference focus, the aforementioned delay adjustment between the video and audio streams may become a challenging problem. In such case, the logic for JBM and transcoding delay compensation for Audio and Video stream synchronization may have to be performed both at the conference focus and at the rendering device. On the other hand, if both video and audio streams are transcoded at the conference focus, then the principles of 3GPP TS 24.147 are followed.

Figure 14 shows a block diagram where multiple audio stream RTP packets are received at the rendering device with timestamps unchanged by the conference focus. In this case, packets are exposed to de-jitter buffer delays only once at the receiving UE. This is in contrast to the scenario in Figure 13, where packets from a single stream are exposed to de-jitter buffer delays twice – once at the conference focus, and once in the receiving UE. The MMCMH video and audio media handling at the rendering devices provides flexibility, based on the jitter and network delay characteristics, to determine a desired bit rate per talker and HRTF mixing scenarios. 

[image: image15.png]\ J

|

Decoding, Mixing, and Re-encoding at the conference focus Decode at the rendering device




Figure 13. De-jitter buffer control at the conference focus and at the rendering device
[image: image16.png]Decoded audio
of talkers A, B, and C

) e T Y
L BT )
E—a-E -

Spatial
rendering to D
(e.g., stereo)

R





Figure 14. De-jitter buffer control at the rendering device with multiple audio streams
6.10
Use Case I: Audio Spatialization based on head-tracking
Figure 15 shows an example use case where the audio from conference participants are steered based on the head tracking tools at the rendering device. The head-tracking information, for example, can be integrated into the HRTF functions to rotate the sound field as shown in Figure 16. 

As shown in Figure 16, for audio spatialization, the head-tracking information can be taken into account along with the individual talkers seating location. 

[image: image17.png]Decoded audio
of talkers A, B, and C

gy ]
[ o | o)
= —a-EE-

Spatial
rendering to D
(e.g., stereo)

R





Figure 15. Multi-stream audio from participants A, B, and C are mixed at the rendering device of participant D using personalized HRTFs and using the head-tracking information.
[image: image18.png]



Figure 16. Audio spatialization of participants A, B, and C and rendering to participant D based on head-tracking information.
6.11
Use Case J: Mixing at the Rendering Device – Media Handling, Distribution via Multi-Unicast 
Figure 17 shows an example use case where there are three conference participants whose multiple media streams and signalling are handled without a central Conference Focus. 

[image: image19.png]Distributed topology
requires, e.g., N x
(N-1) sessions per
media




Figure 17. Multi-stream media handling in a conference with media routed to the rendering devices to enable mixing to be performed at the UEs.

Clause 6.4 of [25] describes three media distribution models where distributed mixing is performed in a conference: multi-unicast, multicast, and single-source multicast (SSM). Each of these models is analysed further in the following subclauses.
6.11.1
Concurrent Codec Capabilities Exchange

6.11.1.1
Concurrent Decoding

Media distribution via multi-unicast requires that a UE concurrently decode multiple audio and/or video streams received from the other conference participants. Each terminal has a computational limit to the number decoder instances it can operate concurrently. This limits the number of participants that can be in a conference with the terminal, or requires that the terminal has the ability to prioritize decoding certain streams and ignore others.

Let, 

· MaxDec be the maximum number of decoders that can be run concurrently by the terminal

· N be the number of participants in the conference, including the conference initiator

If a terminal does not ignore any media streams it receives then

	N <= MaxDec + 1
	Eq. 6.11.1-1


When sending an SDP Offer, the conference initiator should respect the above limitation when deciding how many callers to invite to the conference (i.e. N-1).

Furthermore, if each of the other terminals does not prioritize and ignore media streams it receives, each terminal will also be able to decode N-1 media streams. Therefore the initiator has to consider the following limitation:

	N <= min(MaxDec of each terminal) + 1
	Eq. 6.11.1-2


6.11.1.2
Concurrent Encoding

Media distribution via multi-unicast can require that a UE concurrently encode multiple audio and/or video streams that are sent to the other participants. This can happen when the initiator offers more than one type of codec for a media type and the other participants select to use different codecs. 
This is illustrated in Figure 18 below where terminal A has offered both EVS and AMR-WB in its SDP offers to terminals B and C. Terminal C supports EVS and responds with an SDP answer selecting EVS while terminal B, which only supports up to AMR-WB, selected AMR-WB in its SDP Answer to terminal A. Terminals B and C also perform their own codec negotiation (e.g. set-up via the SIP REFER method from terminal A) in which they choose AMR-WB since terminal B does not support EVS. 

[image: image20.emf]A

C

B

A’s media to B

AMR-WB

A

’

s

 

m

e

d

i

a

 

t

o

 

C

E

V

S

B’s media to A

AMR-WB

B

’

s

 

m

e

d

i

a

 

t

o

 

C

A

M

R

-

W

B

C

’

s

 

m

e

d

i

a

 

t

o

 

A

E

V

S

C

’

s

 

m

e

d

i

a

 

t

o

 

B

A

M

R

-

W

B


Figure 18. Multi-stream audio handling with audio routed to the rendering device and audio mixing performed at the UE using different negotiated codecs.
As can be seen from Figure 18, Terminal A and Terminal C have to both encode their content in the EVS and AMR-WB formats concurrently.

Let, MaxEnc be the maximum number of encoders that can be run concurrently by the terminal.
Then a terminal initiating a conference with in-terminal mixing should consider the following limit:

	min[# of types of codecs in the SDP offer, (N-1)] <= MaxEnc
	Eq. 6.11.1-3


Furthermore, as was seen in the previous example, the # of types of codecs will also be less than the MaxEnc of each terminal involved in the conference. Therefore the following limit should be followed:

	min[# of types of codecs in the SDP offer, (N-1)] <= min(MaxEnc of each terminal)
	Eq. 6.11.1-4


6.11.1.3
Further Considerations in Concurrency

In a practical terminal implementation, the constraints described in clauses 6.11.1.1 and 6.11.1.2 must take into account that:

-
For a given media type, the different types of codecs have different computational complexity requirements. This requires that the conference initiator consider the following for each codec it includes in the SDP Offer:

	min(MaxEnc of each codec) and min(MaxDec of each codec)
	Eq. 6.11.1-5


-
A terminal performs both encoding and decoding. If these processes run on the same processors then the MaxEnc and MaxDec will depend on how many instances of each operation (encode/decode) are running. Conceptually, the limitation can be generalized as follows:

	complexity(operational encoders + operational decoders) <= complexity limit
	Eq. 6.11.1-6


-
A terminal in a video conference performs both audio and video coding. If these processes run on the same processors then the MaxEnc and MaxDec will depend on how many instances of each operation for each media type are running. Conceptually, the limitation can be generalized as follows: 

	complexity(operational audio codecs + operational video codecs) <= complexity limit
	Eq. 6.11.1-7


6.11.1.4
Prioritizing and Ignoring of Received Media Streams

A terminal can extend its ability to handle a conference with N users even if

	N > min(MaxDec of each terminal) + 1
	Eq. 6.11.1-8


as long as the terminal and all the other terminals in the conference do not decode all of the media streams they receive. This requires that the terminals have a means for choosing which streams to prioritize and which ones to ignore. 
In the case of speech, this selection could be made based on which streams are not in DTX mode. In most cases, talkers will naturally floor control each other as it is difficult to listen to more than two speakers at the same time. Therefore a terminal that can decode up to two or three concurrent audio streams could handle most audio conference configurations. However, it should be noted that there will still be some operational complexity increase with increasing N as the terminal has to inspect the voice packets (at least for size) from the media streams to determine which are active.

It is also possible for the terminal to attempt to prioritize the media streams with the loudest volumes. However, this requires decoding of the media from each stream to determine the loudest MaxDec streams. The terminal could save some complexity if the sampling/selecting is not performed for every voice frame, e.g. periodically at longer intervals.

For video, it is not as simple to dynamically select which streams to prioritize and ignore as there are not the same concepts of DTX and volume. Looking at other criteria such as the amount of movement will involve significant complexity. Simpler criteria such as looking at the size of video packets might be used to get a very rough idea of motion/new information in particular video streams. 
Video has the additional challenge that most of the frames in the streams are differentially encoded wrt previous video frames in the stream. If a media stream is ignored it cannot simply be decoded again until an independently-decodable (e.g. IDR) frame, or a frame whose reference frame has already been pre-stored, is received.

6.11.1.5
Conclusions

When sending the SDP Offer for a conference that has in-terminal mixing, the conference initiator needs to consider, its computational constraints, i.e. the maximum number of concurrent encoders and decoders the conference initiator can operate. Before sending the SDP Offer, the conference initiator should also be informed of the computational constraints of the other conference participants, i.e. the maximum number of concurrent encoders and decoders each terminal can operate, and take these constraints into account.
6.12
Use Case K: Mixing at the Rendering Device – Media Handling, Distribution via Multicast
In a multicast model, each participant joins a common multicast group, and each participant sends a single copy of its media stream to that group. The underlying multicast infrastructure then distributes the media, so that each participant gets a copy. 

The advantage of this distribution model over multi-unicast is that it does not require the sending terminal to send individual copies of the media to each of the other (N-1) participants. This could provide a big savings on the uplink capacity, uplink coverage, and terminal battery life for conferences with large N.

Note 1: 
FFS is the potential delay incurred by participants subscribing and setting up the multicast tree to receive media. 
Note 2:
 Architectural impacts due to multicast need to be checked with SA2.

6.12.1
Session Establishment 

6.12.1.1
In the presence of a Conference Focus

If a Focus was involved in session establishment of a multicast session, the conference focus would convey the same information as the conference initiator, albeit with possibly different signalling methods. For example, the conference focus will initiate the dialog with N participants to set up a conference, but the session description associated with the dialog will allow media to be distributed via multicast to all the participants. The multicast IP addresses (public or private) associated with the multicast groups for each of the mandatory and recommended codecs are selected and assigned by the conference focus. The security considerations are handled by the conference focus through SIP authentication mechanisms. 

6.12.2
Media Handling

6.12.2.1
In the absence of a Conference Focus for media handling

As multicast groups were designed primarily for streaming applications, some additional media handling needs to be specified when using this topology for conferencing.

If a terminal supports more than the mandatory codec(s) for a particular media type and wishes to receive media on the optional codec(s) then, as described in the previous clause, it will also register to receive the media in a multicast group carrying a mandatory codec. If more than one mandatory codec is offered by the conference initiator there are two possibilities for the participants:

1)
Each listening participant has to register to listen to all the multicast groups carrying media from the mandatory codecs. When sending media, each sender only has to encode media using one of the mandatory codecs and send this media over the corresponding multicast group. 

2)
Each listening participant only has to register for one multicast group carrying media from one of the mandatory codecs. When sending media, each sender has to encode media using all of the mandatory codecs and send the media on all their corresponding multicast groups.

The second approach increases the encoding load for the sender while decreasing the decoding load of the receivers and is generally less desirable than the first approach as encoding is computationally more taxing than decoding.

Since media is always going to be sent on the mandatory multicast groups and all terminals will listen to these groups, no terminal is ever required to encode media using the optional codecs and their multicast groups. Even the conference initiator does not have to encode media using the optional codecs for which it has established and offered a multicast group to the other participants. However, terminals that are capable of concurrently encoding both a mandatory and optional codec should still encode using the optional codec if it provides better quality.

For each multicast group a terminal is listening to, the terminal should examine the sources (e.g. source IP address) of the media to determine which traffic is coming from the same participant and avoid decoding multiple versions of media coming from the same source. The terminal should compare the source information to any media received from other multicast groups it is listening to. If there is duplication of media representations, i.e. media coming from the same source with the same RTP timestamp or sequence number, the terminal should choose to decode the media from one of the codecs, preferably the one that offers the best quality. This choice could change on a per-frame-frame basis in the event that some loss is experienced for packets traversing through different multicast trees. 
Once the media packet is chosen, the terminal should perform de-jitter buffering on that packet in relation to previously chosen packets for that media type from the same participant, but not necessarily the same codec type. Note that this switching of codec types being fed into the de-jitter buffer requires that the codec information is also maintained in the de-jitter buffer operation to ensure proper decoding after de-jittering.

Listening terminals will also examine the source of the media received to avoid decoding its own media when the terminal is also transmitting media to the multicast group. This is to prevent generating an echo of the speaker's transmission.

Terminals concurrently sending media using multiple codec types will encode media at the same time-frame boundaries and use the same timestamps and sequence numbers to allow the listeners to identify duplicate representations of the media type.

Some of the following limitations have been identified for media distribution via multicast in 3GPP networks:

1)
3GPP terminals are generally assigned private IP addresses by the MNO, which can prevent multicast spanning trees from spanning different private IP address domains. As 3GPP PGWs currently do not support the ability to have the multicast trees span across different private IP address domains, this limits conferences using multicast distribution to terminals in the same operator's private IP address domain, i.e. where the private IP address assignments are unique. 
2)
There is a security risk as the joining of a multicast spanning tree is not authenticated, allowing an attacker to listen in on any multicast group conference.

3)
There is no standardized mechanism in 3GPP networks that enables the terminal to request assignment of an available multicast IP address for its use.

Note: 
The media handling described in this clause also applies to the case where a central Focus is used to establish the session.
6.13
Use Case L: Mixing at the Rendering Device – Media Handling, Distribution via Single Source Multi-Unicast

The limitations of multicast distribution listed in clause 6.12 can be mitigated by using a simple Focus for media handling. The configuration, described as single-source multi-unicast, uses the Focus to essentially perform the function of the multicast routers, i.e. replicating media and sending it down to the appropriate receivers. Figure 19 illustrates this topology where media from A is replicated and unicast by the Focus to users B, C, and D.

[image: image21.emf]A B

C

Focus

D


Figure 19. Single-Source Multi-unicast Topology.
This configuration provides the following benefits:

-
The media sender only has to send one copy of each encoded packet to the Focus, minimizing the uplink bandwidth, similar to the uplink efficiency of the multicast case.

-
The unicast traffic sent to and from the Focus can traverse Network Address Translator (NAT) boxes serving MNO's private IP address domains, thus enabling the conference to span multiple private IP address domains.

-
Provided with the appropriate credentials and keys, the Focus can authenticate users attempting to listen in on, and send media to, the conference.

-
There is no need to reserve or be assigned a multicast IP address for the conference. The Focus is assigned its own unique (possibly private) IP address using standard assignment protocols supported in the operator's network, e.g. DHCP.

-
The Focus does not have to perform any transcoding, merely replication of media traffic. Not only is this less-computationally expensive, it would also allow the media traffic sent to be encrypted end-to-end as the Focus does not have to decrypt the media in order to replicate and send it to all the receivers.

Note that this single-source multi-unicast topology can be understood as a particular implementation of the solution described in clause 6.2.

In particular, in clause 6.2, to support that the active speaker is shown in normal size at the receiving terminal while thumbnails are smaller. The conference focus needs that active speaker to send a normal size video, while the others being shown as thumbnails may send smaller sized videos. To accommodate the previous active speaker to be shown in normal size as active speaker to the current active speaker, the previous active speaker may have to send both a normal sized video (to be forwarded by conference focus to current active speaker), and a small sized video (to be forwarded as thumbnail to other participants). This way of sending multiple simultaneous representations of the same content is called "simulcast". In SSMU, each participant encodes media using at least one mandatory codec for the media type. If a participant chooses to encode using an optional codec then it simulcasts this along with the mandatory codec media for the same media type. So, essentially while in continuous presence case, the normal size and thumbnail are simulcast based on active/inactive talker, the SSMU media handling is based on mandatory/optional codec. In one way, these two use cases fall into the category of media distribution of multiple encoded streams of the same media.

6.13.1
Session Establishment
The conference using a single-source multi-unicast topology can be established using the same mechanisms as for establishing general Focus-based conferences. The conference scheduler or initiator can use out-of-band means to inform all of the participants of the Focus' IP address and conference details. The initiator could provide a list of the authorized participants to the Focus along with security credentials (e.g. PIN/PASSWORD) that enable the Focus to authenticate users joining the session. The initiator could even instruct the Focus to directly contact each of the participants to authenticate and connect them to the conference bridge.

When setting up individual sessions with the call participants, the Focus offers the codecs that were offered or pre-selected by the conference initiator. The Focus could choose only to offer the mandatory codecs provided by the conference initiator, which would guarantee that all terminals use these mandatory codecs and no transcoding would be required.

The Focus could also choose to offer some optional codecs to improve conference quality or performance. To avoid transcoding and support use of optional codecs, the Focus has to offer the optional codecs as being simulcast with a corresponding mandatory codec stream for the same media type, i.e. the participants wishing to receive an optional codec media stream will also listen for the mandatory codec media stream. Similarly, a participant sending media using an optional codec will also simulcast a representation of the same media using the mandatory codec for that media type. This is in case one of the participants is unable to encode or decode its media using the optional codec stream.

To avoid the need to transcode any media and also enable in-terminal mixing of media in the participants without exceeding their concurrent codec capabilities, the terminals and Focus can use the concurrent codec capabilities format described in clause 6.15.1 and the exchange protocol described in clause 6.15.2.

Note that after all the individual sessions between the Focus and participants are established, the Focus could re-negotiate the codecs to disable transmission and reception of optional codec media if there are no, or a very limited number of, participants who can decode or encode the optional codec stream.

6.13.2
Media Handling

As explained in clause 6.13.1, the conference participants perform the following procedures which are similar to those described in clause 6.12.2.

-
Each participant encodes media using at least one mandatory codec for the media type.

-
If a participant chooses to encode using an optional codec then it simulcasts this along with the mandatory codec media for the same media type. When simulcasting the media the sender uses the same RTP timestamps and sequence numbers for the different representations of the same source content.

-
Each participant is configured to be able to decode media received from any (if multiple) of the mandatory codecs for the media type.

-
If a participant receives optional codec media for a media type, it can decide whether to decode this optional media or the mandatory codec representation (if available) for the same source content, which is identified by the same RTP timestamp or sequence number. The receiver should use the better quality representation when it is available.

-
The Focus can replicate optional codec media and send it to any participants who have selected to receive the optional codec media.

-
The Focus replicates and sends to all other participants (those not able to decode the optional codec) any incoming media using mandatory codecs. For robustness (e.g. transmission over a more reliable channel), the Focus could also choose to send the mandatory codec to terminals that are receiving the optional codec stream.
6.13.3
Multi-stream Concurrent Encoding/Decoding Capabilities
In the SDP examples in Annex A.2 and A.3, in an MSMTSI session, the MSMTSI terminals use the SDP parameters to implicitly exchange (e.g., based on multiple m- lines and using the ‘simulcast’ parameter) the concurrent encoding/decoding capabilities with the MSMTSI MRF. The MSMTSI MRF then based on the considerably verbose SDP Offers from all the MSMTSI terminals, identifies the CCCEx of conference participants and selects the codecs for the MSMTSI session (and send SDP Answers to the conference participants). 

In a single source multi-unicast topology (e.g., Fig. 1a), the conference initiator, when sending the SDP Offer to an MSMTSI MRF, needs to consider its own encoding/decoding capabilities, i.e. the maximum number of concurrent encoding and decoding the conference initiator can perform for particular combinations of codecs. Responding to the SDP Offer, and before sending the SDP Answer, the MSMTSI MRF should consider the encoding/decoding capabilities of the other conference participants, i.e. maximum number of concurrent encoding and decoding each terminal can perform for particular combinations of codecs. 

In a multi-unicast (MRF-less, fully meshed) topology (e.g., Fig. 1b), the conference initiator when sending the SDP Offer to the conference participants needs to consider its own encoding/decoding capabilities, i.e. the maximum number of concurrent encoding and decoding the conference initiator can perform for particular combinations of codecs. Before sending the SDP Offer, the conference initiator should also consider the encoding/decoding capabilities of the other conference participants, i.e. maximum number of concurrent encoding and decoding each terminal can perform for particular combinations of codecs.
In both topologies, concurrent encoding/decoding capabilities can be exchanged based on the SDP Offer/Answer, e.g. Annex A.2-A.3, 

· The concurrent encoder capabilities can be described using the simulcast attribute. For each codec that can be operated concurrently, the SDP format tokens (usually corresponding to RTP payload) for each of these codecs are listed in the send direction, indicating that they can be simulcast by the source (e.g., as In Table A.5 in Clause A.3.1).
· The concurrent decoder capabilities can be described using multiple m lines. For example, if a terminal can receive and decode up to N-1 AMR-NB or AMR-WB audio streams, the SDP offer would list N-1 m lines, with each m line listing that either AMR-NB or AMR-WB can be received (e.g., as In Table A.5 in Clause A.3.1). 

· If the terminal has the ability to trim the number of received media streams to what it actually decodes, it can advertise more m lines than it actually has the concurrent decoding capabilities for (e.g., as in Clause 6.15.3).
· If the terminal has limitations on the number of RTP streams it can concurrently send or receive, it indicates this by limiting the number of codecs that it lists in the simulcast attribute and limiting the number of m lines which it can receive, respectively (e.g., as in Clause 6.15.3).
As a potential solution to query and exchange encoding/decoding capabilities, SIP OPTIONS method can be used to request the codec capabilities before the conference setup. 
6.13.3.1
Querying and Capabilities Exchange – SIP OPTIONS
The SIP OPTIONS method specified in RFC 3261 [31] can be used to query the capabilities of another terminal by asking the conference participant to send a copy of the SDP it would offer. 

For example, the SIP OPTIONS request can be made in-advance of a conference call and the SIP OPTIONS response be stored for the queried terminal. Alternatively, immediately before setting up a conference, the conference initiator could query the capabilities of all the terminals it plans to invite for which it does not have the information pre-stored.
Figure 16.3.3.1(a), (b) show the SIP OPTIONS query and exchange of encoding/decoding preference for a single source multi-unicast (SSMU) topology and a multi-unicast topology, respectively. 

In Figure 16.3.3.1(a) SSMU topology where the MRF sends the SIP OPTIONS request to each of the terminals before setting up the conference. The terminals send the SIP OPTIONS response to the MRF. The MRF can then use this response information to pre-configure and send the SDP Offers to the terminals using simulcast and multiple m- lines for the MSMTSI session. Alternatively, for the case where MSMTSI terminals call in and sends SDP Offers to MRF (instead of MRF calling out), the MRF can still use knowledge from SIP OPTIONS response to adjust its SDP Answer.

In Figure 16.3.3.1(b) multi-unicast topology, the conference initiator sends the SIP OPTIONS request to each of the conference participants well in-advance of the conference call. Upon receiving the SIP OPTIONS response from the participants, the conference initiator could store the encoding/decoding preferences of the conference participants for setting up the multi-stream conferences.


[image: image22.emf]MRF

A

B

C

SIP OPTIONS 

request

SIP OPTIONS 

response

 

[image: image23.emf]A

B

C

Conference 

initiator

SIP OPTIONS request

SIP OPTIONS response


(a)





(b)

Figure. 16.3.3.1 SIP OPTIONS to query and exchange terminal encoding/decoding capabilities (a) Single source multi-unicast topology, b) multi-unicast topology

Table 9-a shows an example SIP OPTIONS request from an MRF or a conference initiator. Table 16.3.3.2 shows an example SIP OPTIONS response from a conference participant to the MRF or the initiator. The SIP OPTIONS response includes the SDP Offer of the conference participant. From Table 9-b, the conference participant can allow for three concurrent encoding and three concurrent decoding of audio streams. 

To minimize the need to transcode any media and also enable in-terminal mixing of media in the participants without exceeding their concurrent codec capabilities, the terminals and Focus can use the concurrent codec capabilities format and the exchange protocol described in Clause 6.15.
Table 9-a: Example SIP OPTIONS request from an MRF or a conference initiator

	SIP OPTIONS request

	      OPTIONS sip:cccEx@mmcmh.com SIP/2.0

      To: <sip:cccEx@mmcmh.com>

      From: P1 <sip:p1@msmtsi.com>;tag=TR26980
      Call-ID: abcdefgh
      CSeq: 16384 OPTIONS

      Max-Forwards: 100
      Via: SIP/2.0/UDP msmtsi.com; branch=z9hG4bKxxxxxx
      Contact: <sip:p1@msmtsi.com>

      Accept: application/sdp




Table 9-b: Example SIP OPTIONS response from a conference participant to the MRF or the initiator

	SIP OPTIONS response

	SIP/2.0 200 OK

Via: SIP/2.0/UDP msmtsi.com; branch= z9hG4bKxxxxxx; received=10.10.10.10

To: <sip:cccEx@mmcmh.com>;tag= TR26980E

From: P1 <sip:p1@msmtsi.com>;tag=TR26980

Call-ID: abcdefgh

CSeq: 16384 OPTIONS

Allow: INVITE, ACK, CANCEL, OPTIONS, BYE

Accept: application/sdp

Content-Type: application/sdp

m=audio 49152 RTP/AVP 96 97 98

b=AS:42

a=tcap:1 RTP/AVPF

a=pcfg:1 t=1

a=rtpmap:96 EVS/16000/1

a=fmtp:96 br=13.2-24.4; bw=wb-swb; max-red=220

a=rtpmap:97 AMR-WB/16000/1

a=fmtp:97 mode-change-capability=2; max-red=220

a=rtpmap:98 AMR/8000/1

a=fmtp:98 mode-change-capability=2; max-red=220

a=ptime:20

a=maxptime:240

a=simulcast: send pt:96;97;98 recv pt:96,97,98

m=audio 49154 RTP/AVP 101 102 103

b=AS:42

a=tcap:1 RTP/AVPF

a=pcfg:1 t=1

a=recvonly

a=rtpmap:101 EVS/16000/1

a=fmtp:101 br=13.2-24.4; bw=wb-swb; max-red=220

a=rtpmap:102 AMR-WB/16000/1

a=fmtp:102 mode-change-capability=2; max-red=220

a=rtpmap:103 AMR/8000/1

a=fmtp:103 mode-change-capability=2; max-red=220

a=ptime:20

a=maxptime:240

a=simulcast: recv pt:101,102,103
m=audio 49156 RTP/AVPF 104 105 106

b=AS:42

a=tcap:1 RTP/AVPF

a=pcfg:1 t=1

a=recvonly

a=rtpmap:104 EVS/16000/1

a=fmtp:104 br=13.2-24.4; bw=wb-swb; max-red=220

a=rtpmap:105 AMR-WB/16000/1

a=fmtp:105 mode-change-capability=2; max-red=220

a=rtpmap:106 AMR/8000/1

a=fmtp:106 mode-change-capability=2; max-red=220

a=ptime:20

a=maxptime:240

a=simulcast: recv pt:104,105,106




When setting up individual sessions with the call participants, the Focus offers the codecs that were offered or pre-selected by the conference initiator. To minimize the need for transcoding and enable the use of different codecs in an MSMTSI session, 
1. the Focus has to offer the optional codecs as being simulcast with corresponding mandatory codec stream(s) for the same media type. 
2. a participant sending media using an optional codec will also simulcast representation(s) of the same media using the mandatory codec(s) for that media type. 
6.13.3.2
Common/Preferred Codec Identification and Usage
6.13.3.2.1
General
An approach to query and exchange the encoding/decoding capabilities of the terminals or conference participants based on the SIP OPTIONS method is described in 6.13.3.1. In the SDP examples in Annex A.2 and A.3, in an MSMTSI session, the MSMTSI terminals use the SDP parameters to implicitly exchange (e.g., based on multiple m- lines and using the ‘simulcast’ parameter) the concurrent encoding/decoding capabilities with the MSMTSI MRF. The MSMTSI MRF then based on the considerably verbose SDP Offers from all the MSMTSI terminals, potentially identifies the possible number of conference participants and selects the codecs for the MSMTSI session (and send SDP Answers to the conference participants).  

In a single source multi-unicast topology, the conference initiator, when sending the SDP Offer to an MSMTSI MRF, needs to consider its own encoding/decoding capabilities, i.e. the maximum number of concurrent encoding and decoding the conference initiator can perform for particular combinations of codecs. Responding to the SDP Offer, and before sending the SDP Answer, the MSMTSI MRF should consider the encoding/decoding capabilities of the other conference participants, i.e. maximum number of concurrent encoding and decoding each terminal can perform for particular combinations of codecs. 

Similarly, in a multi-unicast (MRF-less, fully meshed) topology, the conference initiator when sending the SDP Offer to the conference participants needs to consider its own encoding/decoding capabilities, i.e. the maximum number of concurrent encoding and decoding the conference initiator can perform for particular combinations of codecs. Before sending the SDP Offer, the conference initiator should also consider the encoding/decoding capabilities of the other conference participants, i.e. maximum number of concurrent encoding and decoding each terminal can perform for particular combinations of codecs.

In both the topologies, one solution is to query and exchange encoding/decoding capabilities based on SIP OPTIONS method before the conference setup. In this Clause, some procedures on how to exchange information on the common and preferred- codecs for the MSMTSI session are elaborated.

6.13.3.2.2
Common/Preferred Codec Information Exchange
When setting up individual sessions with the call participants, the MSMTSI MRF uses the codecs that were offered or pre-selected by the conference initiator. The MRF could choose 1) to use the common codecs provided by the conference initiator, and 2) to additionally use preferred (or newer) codecs to improve conference quality or performance. The “common” codec here is a codec (typically a legacy/older generation codec) that is supported by all the participants in the conference and enables transcoder-free MSMTSI conferencing. To avoid transcoding when multiple codec types of a media are used in an MSMTSI session,
· simulcast shall be negotiated.
· support use of both preferred and common codecs in the SDP. 
· the MSMTSI MRF must include the preferred codecs in the SDP as being simulcast with a corresponding common codec stream for the same media type. 

· a participant sending media using a preferred codec must also simulcast a representation of the same media using the common codec for that media type.

The MRF should use some means to indicate which of the codecs in the simulcast streams are the common codecs and the ones that are the preferred codecs. 

For example, Table 9-b shows a SIP OPTIONS response from a conference participant to the MRF or the conference initiator. The SIP OPTIONS response includes the SDP Offer of the conference participant. From Table 9-b, the conference participant can allow for three concurrent encoding and three concurrent decoding of audio streams.
When sending an SDP offer (based on the SIP OPTIONS response from all the participants), the MRF can consider the CCCEx of all the conference participants/terminals and may configure the offer based on the encoding/decoding capabilities of the conference participants. These capabilities may include a maximum number of concurrent encoding and decoding that can be performed by each terminal for particular combinations of codecs. The codecs that are “common” and “preferred” will depend on the capabilities of the terminals involved.  In cases where there are more than two codecs that can be used to encode a particular media type, there can be a hierarchy of common and preferred codecs.  For example, consider the case where the AMR-NB, AMR-WB, and EVS codecs can all be used by some participants in a conference, while others can only support AMR-WB + AMR-NB, and yet others only support AMR-NB.  If a terminal chooses to send only AMR-NB encoded content, then it is able to communicate with all the other participants without requiring any transcoding by the MRF.  If a terminal chooses to send AMR-WB content then it must also send AMR-NB content to ensure communication with all terminals.  Finally, a terminal that wishes to send EVS must also at least send AMR-NB encoded content.  However, to also maximize voice quality in its communication with terminals that can decode AMR-WB, the terminal that sends EVS may also choose to send AMR-WB encoded content.
6.13.3.2.3
Indicating the Common and Preferred Codec Selection Through SDP
There are many approaches by which the common and preferred codec information can be exchanged between the MSMTSI MRF and the MSMTSI terminals.

Approach  1:  MRF can indicate which codecs are common and which are preferred using the SDP. For example, a new SDP parameter (e.g., ‘con_recv’) can be defined to describe the status of the codecs using a list of codec IDs (e.g., a list of RTP Payload types ‘PT’, or ‘RID’) delimited by commas or semi-colons.  In particular, ‘con_recv: 96, 97, 98’ can be used to indicate that the MRF can concurrently receive three media streams which are listed in order of decreasing preference (i.e., 96 provides the best quality, followed by 97, and 98), and the last ID (‘98’) being the common stream that must be sent by any participant.  

Approach 2: Multiple codecs can be preferred and/or multiple codecs can be common (as explained in Clause 6.13.3.2.1).  The status of multiple codecs can be described by using one or more delimiter terms in the list of codec IDs.  For example, if the list of codec IDs includes the same delimiter (e.g., a comma or other suitable delimiter term) between each codec then each of the listed codecs is a common codec.  For example, if the list of codec IDs is ‘con_recv: 96, 97, 98’ then streams 96, 97, and 98 are common.  In another example, if the list of codec IDs includes one unique delimiter term (e.g., a semicolon or other suitable delimiter term) different from the other delimiter terms (e.g., a comma or other suitable delimiter term) then the codecs on a first side of the unique delimiter term are all common while the codecs on the opposite side are all preferred or vice versa.  For example, if the list of codec IDs is ‘con_recv: 96; 97, 98 then stream 96 is preferred while streams 97 and 98 are common.

Approach 3: A new SDP parameter (e.g., ‘comm recv’) can be defined to identify the codec ID of the common stream.  For example, ‘comm recv: 98’ is used to indicate that the ID (‘98’) is the common stream that must be sent by any participant. Alternatively, the MRF can explicitly mark one of the codec IDs in a list as common using a special character such as a * or # character, e.g., ‘simulcast: recv 96, 97, #98’ where this # indicates that the codec with ID 98 must be sent in the simulcast.

Approach 4: The MSMTSI MRF or the MSMTSI terminal indicate which codecs are common and which are preferred based on the order in which the codecs are listed in the a=simulcast line. For example, an SDP Offer/Answer from the MRF to an MSMTSI terminal, i.e., a=simulcast: recv 0;1;2 send 3,4,5, indicates that the MRF can concurrently receive three media streams which are listed in order of decreasing priority (i.e., 2 provides the best quality, followed by 1, and 0), and the first ID (0) being the common stream that must be sent by any participant. In other words, the MSMTSI terminal must send the media with ID 0 and can send the same media with other listed IDs 1, 2.
6.13.4
MSMTSI MRF Handling with Reduced m-lines
6.13.4.1
Introduction
An approach to query and exchange the encoding/decoding capabilities of the terminals based on the SIP OPTIONS method is described in 6.13.3.1. Annex T.3 and Clause T.3.3 in TS 26.114 includes MS-MTSI SDP examples where multi-stream audio is simulcast with multiple codecs for the main audio. Multiple m-audio lines in the SDP offer for each participant can increase the size of the SDP as the number of participants and number of types of codecs increase. This Clause describes some procedures on how to re-use a given m-audio line for multiple participants at the MRF such that the size of the SDP offer from MRF to the participants is significantly reduced.
6.13.4.2
RTP Stream Selective Forwarding
The terminals can use SDP parameters to implicitly exchange (e.g., based on multiple m-lines and using the ‘simulcast’ parameter) the concurrent encoding/decoding capabilities with the MRF.  When a conference includes a large number of terminals or participants (e.g., N = 10) the size of the SDP offer listing the concurrent codec capabilities (CCC) using multiple audio m= lines can increase considerably.  For example, on the decoder side, the number of SDP lines needed can be based on the number of conference participants e.g., P1-P10 and the codecs supported by each of the conference participants P1-P10.  Due to different levels of decoding complexity, which codecs can be operated concurrently can vary with the choice of codecs.  It is possible that not all participants P1-P10 will be able to concurrently decode all of the codec types, if one of the more complex decoders is being used.  Another result of the different decoding complexities for each codec type is that the total number of concurrently supported decoders can vary with the codec choice.  For example, a participant Px may be able to concurrently decode n1 EVS streams or up to n2 AMR-NB streams, where n1 would typically be less than n2.  If a participant Px has the ability to decode up to NMAX streams when using the least complex decoder(s) and up to NMIN streams when using the most complex decoder(s), then it would have to describe separate alternative media stream specifications for NMIN, NMIN +1, NMIN +2, NMIN +3, … NMAX concurrently decoded streams. This will significantly increase the SDP size while addressing various CCCEx scenarios and the total number of conference participants.
To reduce the size of the SDP offer when a conference includes a large number of participants, the MRF can perform RTP pause, reuse, replace, and resume actions.  For example, in the SDP offer the MRF may use only three downlink audio m= lines (for a=sendonly/sendrecv), corresponding to three, dynamically selected, “chosen” senders, even though there are 10 participants P1-P10 or terminals in the call.  What criteria to use to “choose” senders can differ and can to some extent be left to MRF implementation, but one example is to use some talker activity measure.  The participants P1 through P10 will receive the offer from the MRF and respond with an answer accepting the offer.
For the case where there is only one talker (e.g., P1) at a given time, the MRF would route the uplink RTP packets from P1 downlink to the other participants (P2-P10).  For the case when two talkers are talking (e.g., P1, P2) or three talkers (e.g., P1, P2, P3) talking at a given time, the MRF routes the uplink packets to the other participants, using the downlink RTP streams that was set up by the SDP send direction audio m= lines mentioned above.
For the case, when one of the talkers (e.g., P3) stops and another, new talker (P4) takes the floor and begins talking, the MRF can stop forwarding (“pause”) the uplink RTP stream associated with P3, and “reuse” the same downlink RTP stream (m= line) for the uplink RTP stream from the P4 talker.  One caveat is that the MRF should have constructed the SDP offer such that the downlink RTP stream from participant P3 fits sufficiently well with the capabilities of participant P4, such that the same downlink audio m= line can be re-used for P4 as was used for P3, rather than making an SDP re-negotiation to accommodate P4. For this, the MRF may need to pre-analyze the CCCEx and the SDP of all the terminals (e.g., from the SIP OPTIONS method) and construct sub-groups that can share a given audio m= line with a given set of mandatory and optional codecs in the simulcast.
Another related issue with RTP stream selective forwarding is that the speech coding synthesis (or video coding) memories from P3 in the different downlink RTP receivers are potentially carried over to the current talker stream P4; in such case, the re-use of memories (decoding history) across different senders may affect the first few frames of decoding P4 resulting in undesirable artefacts.

For speech, these undesirable artefacts can, without introducing transcoding, be reduced or eliminated by the MRF briefly replacing the RTP stream to be used by P4 with one or more frames.  For example, the one or more frames can be a silence indicator (SID) frame, a discontinuous transmission (DTX) frame, a series of SID frames, a series of DTX frames, or a signaling to the participants that talker P3 is switching to talker P4 within the same RTP stream. The use of the one or more frames improves the decoder’s ability to refresh its synthesis memories.  If the synthesis memories are not adequately refreshed, then the undesirable sounds and artefacts may occur due to the synthesis memories from the previous talker P3 being carried over to the current talker stream for P4.  Subsequent to a “replace” operation, the MRF can “resume” the packet transmission of P4 within the third RTP indicator previously used for P3.
For video, it is not as easy for the MRF to inject “synthesized” RTP data that will reset the decoder memories.  Video memories may both be longer for video than for audio, and the video “starting point” also cannot be naively chosen by the MRF while still maintaining a good video quality after the switch.  Instead, the MRF has to be assisted by the uplink video RTP stream sender.  The P4 video RTP stream sender can be requested to send a video “starting point”, an intra picture, at its earliest convenience, by MRF issuing an RTCP FIR towards P4.  The MRF can then continue to send video from P3 to downlink RTP receivers, while monitoring the uplink RTP stream from P4 and make the switch between forwarding P3 RTP stream to forwarding P4 RTP stream downlink only when the memory-resetting intra picture arrives from P4. 
On RTP level and since the same m= line is re-used for sending downlink RTP stream first from P3 and then from P4, this selective forwarding by the MRF can look to downlink RTP stream receivers as if the RTP stream from P3 was paused and P4 was either started or resumed (depending on if it was received before or not). This is true when the RTP stream identification, SSRC, in the RTP packet header is kept untouched from uplink RTP stream sender, across the MRF, to the downlink RTP stream receivers.  Depending on MRF implementation and chosen RTP topology, the MRF can instead itself be an RTP source and generate its own RTP stream identifications (SSRC).  In this case, the apparent “pause/resume” behaviour of downlink RTP streams can be avoided by keeping the same (MRF-generated) SSRC in downlink for the m= line, even though the “contributing” uplink RTP stream (and thus its SSRC) is changed.  To still enable the downlink RTP stream receiver to identify the actual, originating uplink RTP stream sender (P3 or P4), the MRF can instead include their SSRC in the RTP header CSRC (contributing source) field.

The above pause/reuse/replace/resume like behaviour caused by an MRF using selective forwarding with “SSRC pass-through” is not to be confused with actively controlling pause/resume. There it is the responsibility of an RTP stream receiver that wants to pause or resume a stream from the sender(s) to transmit PAUSE and RESUME messages. Further, an RTP stream sender that wants to pause itself can often simply do it, but sometimes this will adversely affect the receiver and an explicit indication that the RTP stream is paused may then help. In the case where uplink RTP stream senders and downlink RTP stream receivers are interconnected by an MRF, the RTP stream receivers do not know how to control the senders’ RTP streams to achieve a good conferencing experience, only the MRF has this knowledge. The MRF uses this knowledge by RTP stream selective forwarding and reusing m= lines without additional signalling.
6.14
Use Case M: Provisioning of Talker ID

In a point-to-point call, traditional and well-established methods can be used to identify the remote party. For an outgoing call, the remote party identification is used by the originating user already when choosing whom to call. In an IMS context, the remote user is identified through its Public User Identity, likely often taken from the originating user's address book, or from some public or private directory service. Unless supplementary services such as call forwarding are used, the originating user can be reasonably certain who the remote party is. For an incoming call, the remote party's Public User Identity can be presented to the local user, given that number presentation service is enabled, and the remote user has not blocked its Public User Identity from being presented. The situation becomes slightly different when multiple UEs participate in a conference.

6.14.1
Use Case Description

In this use case, multiple UEs and thus users are connected to a multi-party conference.

It is assumed that a user is in general interested in knowing the identity of the other participants in the conference. It is further assumed that it is in general interesting to know not only a list of intended or actual participants, but also actually who is who, and in particular who is currently speaking or being shown (when video media is used in the conference). This identification is preferably made as user-friendly as possible on a human interaction level, meaning that it is presented to the UE user as participants' names or aliases ("friendly name"), not just a UE identification number such as the Public User Identity.

A UE receiving a media stream is given identification information relating a participant name with that media stream, and can therefore present the media together with the participant name. Examples can be visually highlighting a participant's name in a list when that participant is speaking, or including some visual marker related to a video or image of the speaking participant. Also non-speaking participants that are presented by image or video are possible to identify by relating their "friendly names" with the visual media. Exactly how that presentation is implemented can be left up to the UE graphical interface, as long as the necessary association is possible.

The provided participant identification is supported by the underlying IMS system, such that the identity in a subscriber database for the UE can be used, rather than some user-provided name. This can be a desirable feature whenever it is important for the participating users to have a solid authentication of conference participants.

A user not desiring to reveal any identity is still capable of participating in such conference. In this case, an anonymous but still unique identity (within the scope of the conference) can be assigned to the anonymous user by the conference focus. By that, it is possible for other users to consistently recognize a speaker, even if no "real" identity is known.

6.14.2
Problem Description

It cannot be assumed that a user is always capable of identifying who is speaking or is shown in the conference solely based on recognizing their voice or even by looking at them (if image or video are available), so some other type of identification is desirable.

In a multi-party conference with a conference focus, the participating UE either called in to the focus, or was called by the focus. Thus, the point-to-point type identification information available to the UE user is the focus itself, or maybe some service number that indirectly refers to the focus. As seen from that point-to-point call, there is no information available in the context of the conference call itself what other users are participating. This has long been the case for multi-party voice calls to a conference bridge and various (often more or less proprietary) methods are used to provide participant lists, recently often through web-based solutions. Some of those include a static list of call participants, while others also include a dynamic indication of who is currently speaking.

That type of identification functionality is desirable, but is currently not defined in a conference focus context.

6.14.3
Suggested Solution

Identification of active speakers in a conference entirely without conference focus involves multiple point-to-point calls being placed between the participants, and thus regular per-call, point-to-point number presentation methods can be used as identification. Detection and presentation of ID for active speaker(s) becomes a local matter for the receiving UE, matching some media activity measure and Public User Identity between the call legs included in the conference, presenting it in some suitable way to the UE user.

In a multi-party conference using a conference focus, it can be seen from the participant list in an XML-based conference roster which users that were invited to the conference, and which have actually joined the conference. A UE can obtain that information by subscribing to the RFC 4575 [6] conference event package from the conference focus, as described by TS 24.147 [3].

The conference focus can use methods from regular AS call control in TS 24.229 [8] (clause 5.7.1.4) to determine who a user calling in is, and can populate the conference roster sent to subscribing conference participants based on that. The IMS Public User Identity contains an optional Display Name field that should (if available) be the preferred identity information contained in the conference roster <user> element <display-text> sub-element value presented to the UE user. If a UE receives entries in a conference roster that do not have any user Display Name, the UE can, just as for regular point-to-point calls, map received Public User Identities in the <user>'s element <associated-aors> sub-element with entries from the local address book to display a remote party friendly name to the UE user. The same can be done in case <display-text> contains a Public User Identity instead of a friendly name.

The conference roster <user> element has an <endpoint> sub-element, which in turn has a <status> sub-element that can take a set of pre-defined values, including "connected" and "disconnected". This can be used by the conference focus to list not only joined participants, but also participants that are somehow invited or expected to join the conference (by means out of scope for the present document) but that did not join (yet).

To be able to indicate dynamic identity information such as who is active speaker, the participant identification described above will relate to a media level identification that is traceable end-to-end from media sender, across the conference focus, all the way to the media receiver. It is assumed that the conference focus has both participant level and media level identifications from all participants, as discussed above. It is further assumed that the conference focus also has information about what media streams are switched to different participants, including what switching criteria that are used, such as active speaker.

It should be noted that the change rate of active speaker can be as high as in the order of once every couple of seconds. It should also be noted that the potential number of receivers of such information is in general fairly high, since the solution should scale to a large number of participants. Therefore, sending explicit (for example SIP-based) dynamic identification notifications from the conference focus to all affected receivers can be very resource demanding, and is therefore not seen as a feasible approach.

Instead, existing identification already present in the media stream should be preferred, combining it with participant identification described above. A unique media ID in the affected RTP session is already available through the SSRC field in the RTP [5] header of every RTP media packet. This can be related to the participant identification in the conference roster through the <user> element's <endpoint>, <media>, and <src-id> sub-element hierarchy, where <src-id> is required to contain the related RTP stream SSRC value. By this, a receiving UE can learn the friendly name of a media stream source simply by looking in a received media RTP packet header for the SSRC value, and match that with the corresponding remote identification from the received conference roster.

This is however complicated slightly from an SSRC identification perspective by the fact that the conference focus sits in the media path between the UE originating media and the UE receiving media.

A conference focus has a choice in how it uses RTP in the conference, even when it has already chosen to switch media and thus does not perform any transcoding. This affects in what way UEs are interconnected on an RTP protocol level, which becomes of importance in any multi-party scenario, and is commonly referred to as RTP Topologies [7] and [8]. In brief, the conference focus can either pass RTP streams through without changing SSRC values, or it can re-packetize the payload from incoming RTP packets into other RTP packets, marking them with an SSRC of its own choice. There are different benefits, disadvantages, and trade-offs related with both approaches (described in [7] and [8]), neither of which will be discussed further here.

If the conference focus chooses to change incoming SSRC values, itwill also keep that information aligned with what is sent as <src-id> in the conference roster. That can be achieved in two ways; either the conference focus announces its own SSRC values in the conference roster (consistently re-mapping all received SSRC information), or it keeps the SSRC of the original RTP sender in <src-id> in the roster and instead adds the original SSRC value to the RTP header (optional) CSRC field.

Both alternatives will work if a receiving UE maps a received CSRC towards <src-id> in the roster, and uses the received SSRC to map towards <src-id> when there is no CSRC. If the UE receives an SSRC or CSRC that are not represented in the conference roster, it does not know the original sender of the stream and thus cannot present any media identification to the UE user.

To populate the <src-id> values in the conference roster, the conference focus thus needs to know what SSRC values are used by the sending participants. The conference focus can inspect RTP header SSRC in received packets from participants, and send an updated roster when there is media from a newly joining participant. All SSRC in the roster will be unique in the scope of the conference, so a new roster will also have to be sent when and if there are changes in SSRC values from participants, for example due to SSRC collisions [5].

6.15
Use Case N: Mixing at the Rendering Device – Media Handling, Concurrent Codec Capabilities Exchange

When sending the SDP Offer for a conference that has in-terminal mixing, the conference initiator needs to consider, its computational constraints, i.e. the maximum number of concurrent encoders and decoders the conference initiator can operate. Before sending the SDP Offer, the conference initiator should also be informed of the computational constraints of the other conference participants, i.e. the maximum number of concurrent encoders and decoders each terminal can operate, and take these constraints into account.

6.15.1
Format of the Concurrent Codec Capabilities Information

6.15.1.1
Using Current SDP Parameters

The CCC information described the clause 6.11.1 can be communicated in the SDP offer as described below.

The concurrent encoder capabilities can be described using the simulcast attribute. For each codec that can be operated concurrently, the SDP format tokens (usually corresponding to RTP payload) for each of these codecs are listed in the send direction, indicating that they can be simulcast by the source.

The concurrent decoder capabilities can be described using multiple m lines. For example, if a terminal can receive and decode up to N-1 AMR-NB or AMR-WB audio streams, the SDP offer would list N-1 m lines, with each m line listing that either AMR-NB or AMR-WB can be received.

If the terminal has the ability to trim the number of received media streams to what it actually decodes, it can advertise more m lines than it actually has the concurrent decoding capabilities for.

If the terminal has limitations on the number of RTP streams it can concurrently send or receive, it indicates this by limiting the number of codecs that it lists in the simulcast attribute and limiting the number of m lines which it can receive, respectively.

As codecs have different levels of computational complexity, the number of concurrent encoders and decoders that can be used in a session can vary with the types of codecs being offered. To be able to express these different sets of codecs and number of participants, the terminal can use the SDPCapNeg protocol specified in RFC 5939 Error! Reference source not found. to describe these different sets as separate SDPCapNeg configurations. For example, a terminal may list an actual configuration with EVS, AMR-WB, and AMR-NB codecs and the ability to support 4 other participants, and another configuration supporting only AMR-WB and AMR-NB but supporting up to 8 other participants.
6.15.1.2
Using Compact SDP Parameters

As the number of concurrent decoding streams (and therefore, the number other participants in a conference) that the terminal can support increases, so does the number of m lines in SDP. Also, as the number of different types of codecs with different computational complexities are supported, the number of SDPCapNeg configurations offered also increases. Also, when concurrently supporting different types of media (audio, video, screen share), the number of SDPCapNeg configurations can increase to support the different combinations of these media in a session, e.g. audio only, audio+video, audio+video+screen share. All of these factors will greatly increase the size of the SDP offer when using the SDP parameters described in the previous clause. 
An alternative approach is to define a new SDP attribute that could communicate the CCC information in a more compact format, defined in ABNF as follows:
ccc-list 
= "a=ccc_list:" codeclist 1*63( "|" ccc-prof )

codeclist 
= codec [SP config] *63( ";" codec [SP config] )

ccc-prof  
= "ENC:" num *63( rule num ) ":DEC:" num *63( rule num )

codec 

= byte-string




; byte-string defined in RFC 4566

level 

= 1*3DIGIT

profile 
= 1*3DIGIT

config 

= ( profile SP level ) / level

rule 

= ";" / ","

num 

= 1*2DIGIT
codec is the media subtype name of a codec as defined in the RTP payload format for that codec, e.g. "H264" for H.264 as defined in [28] and "H265" for H.265 as defined in [29], respectively.
codeclist is an ordered list of the different codecs that are supported by the terminal.  The codecs should be listed in order of decreasing complexity from left to right for the "," rule to indicate the ability to substitute an instance of a more complex codec with a simpler one.
level, which is optional, specifies the level of the codec, e.g. for H.264 and H.265 the value is equal to level_idc as defined in [28] and level-id as defined in [29], both expressed in hexadecimal format, respectively, and when the codec is EVS, the value of this field could be defined as 1, 2, 3 and 4 specifying NB, WB, SWB and FB, respectively. 
profile, which is optional, specifies the profile of the codec, e.g. for H.264 and H.265 the value is equal to profile_idc as defined in [28] and profile-id as defined in [29], both expressed in hexadecimal fomat, respectively. If the profile is included then the level is also included. However, it is allowed to have the level to be present without the profile being present.
rule specifies in a particular CCC profile (ccc-prof) whether the resources used for a concurrent instance of the codec may be used instead by a concurrent instance of the codec listed afterwards, e.g., the next listed codec is less computationally complex and runs on the same processor as the previously listed codec.  When the value is "," then an instance of the subsequent codec can used in place of an instance of the previously listed codec.  When the value is ";"' an instance of the subsequent codec cannot be used instead.
num specifies the maximum number of supported concurrent encoders (when the combination follows "ENC") or decoders (when the combination follows "DEC") of the specified codec at the specified level and profile (when present).  num specifies the maximum number of instances of the particular codec that can operate concurrently when all the other codecs in the same ccc-prof have their corresponding num of instances operating. The number of instances of num that immediately follows "ENC" and the number of instances of num that immediately follows "DEC" are both the same as the number of instances of codec, and an instance of num is mapped to an instance of codec with the same order in the ordered codeclist.  

There can be multiple ccc-prof‘s to indicate support of different configurations of concurrent encoders and decoders, e.g., to indicate that supporting less concurrent encoders enables the terminal to support more concurrent decoders. ccc-prof‘s should not be in conflict with each other, i.e., indicate a different maximum number of instances (num) of a particular codec when the maximum number of instances of all the other codecs in the ccc-prof‘s are the same.  If a conflict is detected between ccc-prof‘s, the information from the first ccc-prof among the conflicting ccc-prof‘s is used and all the other conflicting ccc-prof‘s are ignored.

If the terminal has the ability to trim the number of received media streams it actually decodes, it can advertise a num value that is larger than it actually has the concurrent decoding capabilities for.

6.15.1.2.1 SDP Line Compression

From the above format it can be seen that particular combinations of support concurrent codecs, including encoder and decoder capabilities, can be indicated in a single SDP line.

For example, for the purpose of expressing concurrent codec capabilities support, the compact SDP format could be used to replace the 38 lines of SDP in bold in Table 9-c below (taken from Table T.8 of [1]) with a single line as follows:
a = ccc_list:EVS;AMR-WB;AMR:ENC:1;1;1:DEC:3,1,1

Table 9-c: Example SDP offer for CCCEx example configuration A from MSMTSI terminal

	SDP offer

	m=audio 49152 RTP/AVP 96 97 98
b=AS:42
a=tcap:1 RTP/AVPF

a=pcfg:1 t=1

a=rtpmap:96 EVS/16000/1

a=fmtp:96 br=13.2-24.4; bw=wb-swb; max-red=220

a=rtpmap:97 AMR-WB/16000/1

a=fmtp:97 mode-change-capability=2; max-red=220

a=rtpmap:98 AMR/8000/1

a=fmtp:98 mode-change-capability=2; max-red=220

a=ptime:20

a=maxptime:240

a=simulcast: send pt:96;97;98 recv pt:96,97,98

m=audio 49154 RTP/AVP 101 102 103
b=AS:42

a=tcap:1 RTP/AVPF

a=pcfg:1 t=1

a=recvonly

a=rtpmap:101 EVS/16000/1

a=fmtp:101 br=13.2-24.4; bw=wb-swb; max-red=220

a=rtpmap:102 AMR-WB/16000/1

a=fmtp:102 mode-change-capability=2; max-red=220

a=rtpmap:103 AMR/8000/1

a=fmtp:103 mode-change-capability=2; max-red=220

a=ptime:20

a=maxptime:240

a=simulcast: recv pt:101,102,103
m=audio 49156 RTP/AVPF 104 105 106
b=AS:42

a=tcap:1 RTP/AVPF

a=pcfg:1 t=1

a=recvonly

a=rtpmap:104 EVS/16000/1

a=fmtp:104 br=13.2-24.4; bw=wb-swb; max-red=220

a=rtpmap:105 AMR-WB/16000/1

a=fmtp:105 mode-change-capability=2; max-red=220

a=rtpmap:106 AMR/8000/1

a=fmtp:106 mode-change-capability=2; max-red=220

a=ptime:20

a=maxptime:240

a=simulcast: recv pt:104,105,106
m=audio 49158 RTP/AVP 107 108
b=AS:42

a=tcap:1 RTP/AVPF

a=pcfg:1 t=1

a=recvonly

a=rtpmap:107 AMR-WB/16000/1

a=fmtp:107 mode-change-capability=2; max-red=220

a=rtpmap:108 AMR/8000/1

a=fmtp:108 mode-change-capability=2; max-red=220

a=ptime:20

a=maxptime:240

a=simulcast: recv pt:107,108
m=audio 49160 RTP/AVPF 109
b=AS:29

a=tcap:1 RTP/AVPF

a=pcfg:1 t=1

a=recvonly

a=rtpmap:109 AMR/8000/1

a=fmtp:109 mode-change-capability=2; max-red=220

a=ptime:20

a=maxptime:240

a=simulcast: recv pt:109


The rest of the configurations in Table 9-d (from Table T.7 of [1] as listed below) could also be represented using the compact SDP format.

Table 9-d: Example concurrent codec capability configurations in an MSMTSI terminal

	Number of participants
	CCCEx combinations supported at the MSMTSI terminal 

	N = 6
	A. [Encoder/send: AMR, AMR-WB, EVS] 

[Decoder/recv: 1 AMR, 1 AMR-WB, 3 EVS]

B. [Encoder/send: AMR-WB, EVS] 

[Decoder/recv: 1 AMR-WB, 4 EVS]

C. [Encoder/send: EVS] 

[Decoder/recv: 5 EVS]


42 SDP lines used to represent configuration B would be compressed to a single line as:

a = ccc_list:EVS;AMR-WB;AMR:ENC:1;1;0:DEC:4,1,0          

And configuration C would replace 44 SDP lines with a single line as:

a = ccc_list:EVS;AMR-WB;AMR:ENC:1;0;0:DEC:5,0,0


So for N=6 in Table T.7 of [1], the compact SDP format compresses 38 + 42 + 44 = 124 lines of SDP down to 3 lines of SDP, resulting in a 41:1 reduction in SDP lines.

To generalize, for a value of N where there are m combinations of codecs that support N-1 concurrent decoders, then at least m*[5*(N-2)+4] lines of SDP are compressed down into m lines of SDP giving a compression ratio of at least, 

Compression ratio >= 5*(N-2)+4:1
6.15.1.2.2 SDP Line Compression for Terminal Performing Trimming of Streams
As described in clause 6.15.1.1, a terminal can support the ability to trim the number of received streams prior to decoding them in order to save decoding computational complexity.  As also described in the clause, the terminal would advertise this by listing more m lines than it could concurrently decode.  In this case, N could be made quite large.  For example, the terminal could readily support a call with N=12 participants and therefore the compression ratio would be at least,

Compression ratio >= 54:1

6.15.1.2.3 Conclusions

Using current SDP parameters to support CCCEx can become quite cumbersome and substantially increase the size of SDP.  The compact CCC SDP attribute defined in this clause provides a significant savings in SDP lines that are needed to communicate the CCC.  It is therefore recommended that this SDP attribute be supported by MSMTSI terminals to reduce the amount of signalling needed to perform CCCEx.
6.15.2
Protocol for Concurrent Codec Capabilities Exchange (CCCEx)

6.15.2.1
Recommended Requirements for the CCCEx

From the analysis provided in clause 6.11.1, the following requirements can be applied to the CCCEx protocol:

1)
Can exchange CCC before a call is ever initiated, e.g.
a)
when users enter each other's contact information into a directory on the terminal;
b)
when user the codec capabilities of a terminal change (via download or swapping of terminal hardware),
2)
Can exchange CCC at call set-up, if needed.
6.15.2.2
Potential Solution for the CCCEx

The SIP OPTIONS method specified in RFC 3261 [31] can be used to query the capabilities of another client/user agent by asking the agent to send a copy of the SDP it would offer describing its capabilities. This SDP will contain the CCC information as described in the previous clause.

The OPTIONS request can be made well in-advance of a conference call and the SDP response be stored in a profile for the queried terminal. Or, immediately before setting up a conference, the conference initiator could query the capabilities of all the terminals it plans to invite for which it does not have the information pre-stored.

6.15.3
Examples of Concurrent Codec Capabilities (CCC) Usage 

Table 10 shows example concurrent codec combinations supported at the terminal. For illustration purposes, only an audio example is shown here. As shown in Table 10, the terminal may have identified three possible CCCEx combinations through profiles (shown for 6 participants). SDP offer examples from the terminal to the MRF for each of the profiles A, B, and C are shown. If the terminal decides to send the SDP offer associated with the profile A, the MRF may then send an SDP answer as shown using the simulcast attribute and multiple m-lines.

Table 10: CCCEx using SDP through simulcast and multiple m-audio lines
	Number of participants
	Concurrent Codec Combinations supported at the terminal 
	SDP offer examples from the terminal to the MRF for profiles A, B, and C (for illustration purposes, only audio is shown below); 

The terminal would send one of the SDP offers associated with the CCCEx of profile A or B or C in the examples shown below.
	SDP Answer from the MRF to the terminal up on receiving, 

e.g. SDP offer A (N=6)

	N <= 6
	[Enc/send: AMR, AMR-WB, EVS] 

[Dec/recv: 1 AMR, 1 AMR-WB, 3 EVS]

[Enc/send: AMR-WB, EVS] 

[Dec/recv: 1 AMR-WB, 4 EVS]

[Enc/send: AMR, EVS] 

[Dec/recv: 5 EVS]
	A
	m=audio 49200 RTP/AVP 99 100 101

a=rtpmap:99 AMR/8000/1

a=rtpmap:100 AMR-WB/16000/1

a=rtpmap:101 EVS/16000/1

a=simulcast: send 99;100;101 recv 99,100,101

...

m=audio 49300 RTP/AVP 99 100 101

a=rtpmap:99 AMR/8000/1

a=rtpmap:100 AMR-WB/16000/1

a=rtpmap:101 EVS/16000/1

a=simulcast: recv 99,100,101

...

m=audio 49400 RTP/AVP 99 100 101

a=rtpmap:99 AMR/8000/1

a=rtpmap:100 AMR-WB/16000/1

a=rtpmap:101 EVS/16000/1

a=simulcast: recv 99,100,101

...

m=audio 49500 RTP/AVP 99 100

a=rtpmap:99 AMR/8000/1

a=rtpmap:100 AMR-WB/16000/1

a=simulcast: recv 99,100

...

m=audio 49600 RTP/AVP 99

a=rtpmap:99 AMR/8000/1

a=recv 99

...


	m=audio 49200 RTP/AVP 99 100 101

a=rtpmap:99 AMR/8000/1

a=rtpmap:100 AMR-WB/16000/1

a=rtpmap:101 EVS/16000/1

a=simulcast: recv 99;100;101 send 99,100,101

...

m=audio 49300 RTP/AVP 99 100 101

a=rtpmap:99 AMR/8000/1

a=rtpmap:100 AMR-WB/16000/1

a=rtpmap:101 EVS/16000/1

a=simulcast: send 99,100,101

...

m=audio 49400 RTP/AVP 99 100

a=rtpmap:99 AMR/8000/1

a=rtpmap:100 AMR-WB/16000/1

a=simulcast: send 99,100

...

m=audio 49500 RTP/AVP 99 

a=rtpmap:99 AMR/8000/1

a=send 99

...

m=audio 49600 RTP/AVP 99

a=rtpmap:99 AMR/8000/1

a=send 99

...



	
	
	B
	m=audio 49200 RTP/AVP 100 101

a=rtpmap:100 AMR-WB/16000/1

a=rtpmap:101 EVS/16000/1

a=simulcast: send 100;101 recv 100,101

...

m=audio 49300 RTP/AVP 100 101

a=rtpmap:100 AMR-WB/16000/1

a=rtpmap:101 EVS/16000/1

a=simulcast: recv 100,101

...

m=audio 49400 RTP/AVP 100 101

a=rtpmap:100 AMR-WB/16000/1

a=rtpmap:101 EVS/16000/1

a=simulcast: recv 100,101

...

m=audio 49500 RTP/AVP 100 101

a=rtpmap:100 AMR-WB/16000/1

a=rtpmap:101 EVS/16000/1

a=simulcast: recv 100,101

...

m=audio 49600 RTP/AVP 100

a=rtpmap:100 AMR-WB/16000/1

a=recv 100

...


	

	
	
	C
	m=audio 49200 RTP/AVP 99 101

a=rtpmap:99 AMR/8000/1

a=rtpmap:101 EVS/16000/1

a=simulcast send 99;101 recv 99,101

...

m=audio 49300 RTP/AVP 99 101

a=rtpmap:99 AMR/8000/1

a=rtpmap:101 EVS/16000/1

a=simulcast recv 99,101

...

m=audio 49400 RTP/AVP 99 101

a=rtpmap:99 AMR/8000/1

a=rtpmap:101 EVS/16000/1

a=simulcast recv 99,101

...

m=audio 49500 RTP/AVP 99 101

a=rtpmap:99 AMR/8000/1

a=rtpmap:101 EVS/16000/1

a=simulcast recv 99,101

...

m=audio 49600 RTP/AVP 99 101

a=rtpmap:99 AMR/8000/1

a=rtpmap:101 EVS/16000/1

a=simulcast recv 99,101

...


	


Table 11 shows the case when the MRF determines fewer participants (N=6) are in the multiparty conference than what terminal offered through SDP (N=10), and in the SDP answer indicates that the MSMTSI MRF will send 5 streams to the terminal.

Table 11: CCCEx using SDP through simulcast and multiple m-audio lines

	Number of participants
	Concurrent Codec Combinations supported at the terminal (consider one profile)
	SDP offer examples from the terminal to the MRF (for illustration purposes, only audio is shown below); supporting 9 m-lines
	SDP Answer from the MRF to the terminal up on receiving, 

e.g. SDP offer A

(But there are only 6 participants in the call)

	N= 10
	[Enc/send: AMR, AMR-WB, EVS] 

[Dec/recv: 3 AMR, 3 AMR-WB, 3 EVS]


	m=audio 49200 RTP/AVP 99 100 101

a=rtpmap:99 AMR/8000/1

a=rtpmap:100 AMR-WB/16000/1

a=rtpmap:101 EVS/16000/1

a=simulcast: send 99;100;101 recv 99,100,101

...

m=audio 49300 RTP/AVP 99 100 101

a=rtpmap:99 AMR/8000/1

a=rtpmap:100 AMR-WB/16000/1

a=rtpmap:101 EVS/16000/1

a=simulcast: recv 99,100,101

...

m=audio 49400 RTP/AVP 99 100 101

a=rtpmap:99 AMR/8000/1

a=rtpmap:100 AMR-WB/16000/1

a=rtpmap:101 EVS/16000/1

a=simulcast: recv 99,100,101

...

m=audio 49500 RTP/AVP 99 100

a=rtpmap:99 AMR/8000/1

a=rtpmap:100 AMR-WB/16000/1

a=simulcast: recv 99,100

...

m=audio 49600 RTP/AVP 99 100

a=rtpmap:99 AMR/8000/1

a=rtpmap:100 AMR-WB/16000/1

a=simulcast: recv 99,100

...

m=audio 49700 RTP/AVP 99 100

a=rtpmap:99 AMR/8000/1

a=rtpmap:100 AMR-WB/16000/1

a=simulcast: recv 99,100

...

m=audio 49800 RTP/AVP 99

a=rtpmap:99 AMR/8000/1

a=recv 99

...

m=audio 49900 RTP/AVP 99

a=rtpmap:99 AMR/8000/1

a=recv 99

...

m=audio 49100 RTP/AVP 99

a=rtpmap:99 AMR/8000/1

a=recv 99

...


	m=audio 49200 RTP/AVP 99 100 101

a=rtpmap:99 AMR/8000/1

a=rtpmap:100 AMR-WB/16000/1

a=rtpmap:101 EVS/16000/1

a=simulcast: recv 99;100;101 send 99,100,101

...

m=audio 49300 RTP/AVP 99 100 101

a=rtpmap:99 AMR/8000/1

a=rtpmap:100 AMR-WB/16000/1

a=rtpmap:101 EVS/16000/1

a=simulcast: send 99,100,101

...

m=audio 49400 RTP/AVP 100 101

a=rtpmap:100 AMR-WB/16000/1

a=rtpmap:101 EVS/16000/1

a=simulcast: send 100,101

...

m=audio 49500 RTP/AVP 99 100

a=rtpmap:99 AMR/8000/1

a=rtpmap:100 AMR-WB/16000/1

a=simulcast: send 99,100

...

m=audio 49600 RTP/AVP 99

a=rtpmap:99 AMR/8000/1

a=send 99

...

m=audio 0 RTP/AVP 99 100

...

m=audio 0 RTP/AVP 99 100

...

m=audio 0 RTP/AVP 99 100

...

m=audio 0 RTP/AVP 99 100

...




Table 12 shows the case where the MRF determines two new participants (total N= 8) joined the multiparty conference since the SDP offer/answer in Table 11 (with N=10). The MRF then sends a second SDP offer to the terminal as shown in Table 12. The MRF may know based on the first SDP offer from the terminal (as in Table 11), that the terminal is capable of concurrently receiving and decoding 9 audio streams and can send a second SDP offer to allow for up to 10 participants. Further, an MSMTSI terminal can receive more audio streams than it is capable of decoding concurrently at a given time. In such case, the MSMTSI terminal can choose which streams to prioritize and which ones to ignore.
Table 12: CCCEx using SDP through simulcast and multiple m-audio lines
	SDP offer example from the terminal to the MRF (N=10)
	SDP Answer from the MRF to the terminal up on receiving the SDP offer; 

MRF determines that there are only N=6 participants in the multiparty conference at this time and send the SDP answer
	(Two new participants joined the conference after first SDP offer/answer)

Second SDP offer from MRF to the terminal, N=8

	m=audio 49200 RTP/AVP 99 100 101

a=rtpmap:99 AMR/8000/1

a=rtpmap:100 AMR-WB/16000/1

a=rtpmap:101 EVS/16000/1

a=simulcast: send 99;100;101 recv 99,100,101

...

m=audio 49300 RTP/AVP 99 100 101

a=rtpmap:99 AMR/8000/1

a=rtpmap:100 AMR-WB/16000/1

a=rtpmap:101 EVS/16000/1

a=simulcast: recv 99,100,101

...

m=audio 49400 RTP/AVP 99 100 101

a=rtpmap:99 AMR/8000/1

a=rtpmap:100 AMR-WB/16000/1

a=rtpmap:101 EVS/16000/1

a=simulcast: recv 99,100,101

...

m=audio 49500 RTP/AVP 99 100

a=rtpmap:99 AMR/8000/1

a=rtpmap:100 AMR-WB/16000/1

a=simulcast: recv 99,100

...

m=audio 49600 RTP/AVP 99 100

a=rtpmap:99 AMR/8000/1

a=rtpmap:100 AMR-WB/16000/1

a=simulcast: recv 99,100

...

m=audio 49700 RTP/AVP 99 100

a=rtpmap:99 AMR/8000/1

a=rtpmap:100 AMR-WB/16000/1

a=simulcast: recv 99,100

...

m=audio 49800 RTP/AVP 99

a=rtpmap:99 AMR/8000/1

a=recv 99

...

m=audio 49900 RTP/AVP 99

a=rtpmap:99 AMR/8000/1

a=recv 99

...

m=audio 49100 RTP/AVP 99

a=rtpmap:99 AMR/8000/1

a=recv 99

...


	m=audio 49200 RTP/AVP 99 100 101

a=rtpmap:99 AMR/8000/1

a=rtpmap:100 AMR-WB/16000/1

a=rtpmap:101 EVS/16000/1

a=simulcast: recv 99;100;101 send 99,100,101

...

m=audio 49300 RTP/AVP 99 100 101

a=rtpmap:99 AMR/8000/1

a=rtpmap:100 AMR-WB/16000/1

a=rtpmap:101 EVS/16000/1

a=simulcast: send 99,100,101

...

m=audio 49400 RTP/AVP 100 101

a=rtpmap:100 AMR-WB/16000/1

a=rtpmap:101 EVS/16000/1

a=simulcast: send 100,101

...

m=audio 49500 RTP/AVP 99 100

a=rtpmap:99 AMR/8000/1

a=rtpmap:100 AMR-WB/16000/1

a=simulcast: send 99,100

...

m=audio 49600 RTP/AVP 99

a=rtpmap:99 AMR/8000/1

a=send 99

...

m=audio 0 RTP/AVP 99 100

...

m=audio 0 RTP/AVP 99 100

...

m=audio 0 RTP/AVP 99 100

...

m=audio 0 RTP/AVP 99 100

...


	m=audio 49200 RTP/AVP 99 100 101

a=rtpmap:99 AMR/8000/1

a=rtpmap:100 AMR-WB/16000/1

a=rtpmap:101 EVS/16000/1

a=simulcast: recv 99;100;101 send 99,100,101

...

m=audio 49300 RTP/AVP 99 100 101

a=rtpmap:99 AMR/8000/1

a=rtpmap:100 AMR-WB/16000/1

a=rtpmap:101 EVS/16000/1

a=simulcast: send 99,100,101

...

m=audio 49400 RTP/AVP 100 101

a=rtpmap:100 AMR-WB/16000/1

a=rtpmap:101 EVS/16000/1

a=simulcast: send 100,101

...

m=audio 49500 RTP/AVP 99 100

a=rtpmap:99 AMR/8000/1

a=rtpmap:100 AMR-WB/16000/1

a=simulcast: send 99,100

...

m=audio 49600 RTP/AVP 99

a=rtpmap:99 AMR/16000/1

a=send 99

...

m=audio 49700 RTP/AVP 99

a=rtpmap:99 AMR/8000/1

a=send 99

...

m=audio 49800 RTP/AVP 100

a=rtpmap:100 AMR-WB/16000/1

a=send 100

...




6.15.4
Compact CCC SDP Parameter for Session Initiation
6.15.4.1
Introduction
Compared to using Compact CCC for CCCEx, the gains of using Compact CCC for MMCMH session initiation is limited by the need for the SDP Offer to be compliant with the SDP Offer/Answer model specified in RFC 3264.  For CCCEx, all the CCC can be compressed down to one SDP line.  For session initiation, the SDP offer must contain enough media lines to allow the SDP answer to select any combination of codec configurations that are supported by the terminals.  For example, there must be at least R media lines in the offer, where R is the maximum number media sources that the offerer can concurrently receive and decode.

The construction of the SDP offer can be performed as demonstrated in the following example.  Consider audio codecs AMR-NB, AMR-WB, and EVS.

· Let A = max number of concurrent AMR-NB codecs

· Let B = max number of concurrent AMR-WB codecs

· Let C = max number of concurrent EVS codecs

Assume A >= B >= C due to their relative complexity.

Then the Offer can list a total of A media lines where:

· Each of the A media lines will include AMR-NB as a codec

· B of the media lines will include AMR-WB as a codec, received simulcast with AMR-NB

· C of the media lines will include EVS as a codec, received simulcast with both AMR-WB and AMR-NB

For indicating the terminal’s sending/encoding capabilities at least one of the above media lines would also include all of the codecs in a simulcast sending configuration.

The above A media lines will cover all possible media configurations that could be selected in the SDP answer.  To communicate limitations in acceptable configurations the answer has to rely on the compact CCC SDP line which is also included in the offer.

6.15.4.2
Compression Gains
Without using the Compact CCC SDP line, the SDP offer for the above example would have to include the following sets of media lines:

1. A media lines indicating the configuration when the maximum number of decodable streams is supported.  This is the same as the above case when the Compact CCC is used except that there will be at least B media lines with two codecs and C media lines with three codecs in simulcast receiving configurations.  Each of these additional codecs will add two more SDP lines in the media line.

2. A set of media lines for each configuration that can support a different number and set of concurrently decoded streams. 

· For example, if supporting a single EVS decoder reduces the maximum number of AMR-NB streams from A to A1EVS then there needs to be a separate set of A1EVS +1 receiving media lines listing these many AMR-NB codecs and one line that contains EVS.

· Each of the sets of media lines would require a different media configuration as specified in the MediaCapNeg framework.

· An example of the different sets of configurations that could be required is illustrated in the following table taken from Table 10.  This lists three different configurations for N=6. There will be more sets of configurations for different values of N.

Using the compact CCC SDP parameters would avoid needing to list any of the other configuration aside from the A media lines and avoid the need to use the MediaCapNeg framework.

The amount of SDP lines saved will depend on the relative complexity of each of the codecs, i.e., the more variation in their relative complexity the more sets of media lines will be needed as substituting one codec instance for another will have a greater effect on the number of concurrent decoders.

To give an example, assume that codec C is 2x as complex as codec B which is 2x as complex as codec A.  

When using the Compact CCC SDP format, there would only be on set of A media lines in the SDP offer that would contain the following number of SDP lines:

· 7 lines for common SDP aspects

· 2 lines for each of the A media lines including codec A

· 2 lines for each of the B media lines including codec B

· 2 lines for each of the C media lines including codec C
· 1 line for the Compact CCC SDP parameters

This gives a total of 8+2A+2B+2C = 8+2A+A+0.5A = 8+3.5A SDP lines

When not using the Compact CCC SDP format, there would be the following sets of media lines:

	Set of Media Lines
	# of Codecs
	# of SDP lines
	Total # of SDP lines



	1
	Codec A: A

Codec B: 0

Codec C: 0
	7 lines for common SDP aspects

2 lines for each of the A media lines with codec A
	2A + 7

	2
	Codec A: A-2

Codec B: 1

Codec C: 0
	7 lines for common SDP aspects

2 lines for each of the (A-4) media lines including codec A

2 lines for two media lines including codec B
	2A + 5

	3A
	Codec A: A-4

Codec B: 2

Codec C: 0
	7 lines for common SDP aspects

2 lines for each of the (A-4) media lines including codec A

2 lines for two media lines including codec B
	2A + 3

	3B
	Codec A: A-4

Codec B: 0

Codec C: 1
	7 lines for common SDP aspects

2 lines for each of the (A-4) media lines including codec A

2 lines for two media lines including codec B
	2A + 1

	4A
	Codec A: A-6

Codec B: 3

Codec C: 0
	7 lines for common SDP aspects

2 lines for each of the (A-6) media lines including codec A

2 lines for three media lines including codec B
	2A + 1

	4B
	Codec A: A-6

Codec B: 1

Codec C: 1
	7 lines for common SDP aspects

2 lines for each of the (A-6) media lines including codec A

2 lines for one media line including codec B

2 lines for one media line including codec C
	2A - 1

	Etc…
	…
	…
	…


Extending the above pattern it can be seen that the total number of SDP lines needed to indicate all the possible configurations is

A (1 + 2 + 3 + … A/4) x (2A + mi)

Where mi is a constant for a particular set of media lines that is independent of A. At a minimum a lower bound on the above is that the number of media lines at least

0.25 A4 + A3

Therefore the gains of using the compact CCC SDP in the SDP offer is to reduce the number of SDP lines by about a factor of (0.25 A4 + A3)/(3.5A+8) ~= 0.0714A3 + 0.286A2
· For A = 4 there is a compression gain factor of 5.81

· For A = 8 there is a compression gain factor of 42.67

· For A = 16 there is a compression gain factor of 320

This demonstrates that the compression gains in reducing the size of the SDP can be substantial, especially for terminals that have the capability to support a large number of concurrent codecs of different computational complexities.
6.15.4.3
Offer-Answer Rules

When an answerer receives an offer that includes the compact CCC SDP attribute, if the answerer supports this attribute the answerer includes the compact CCC SDP attribute in the SDP answer.  The setting of the attribute describes the complete concurrent codec capabilities of the answerer, irrespective of what was included in the SDP offer. If the answerer does not support the CCC SDP attribute, it is removed from the answer, according to regular SDP offer/answer rules.   
Inclusion of the CCC of the answerer provides the following benefits:

· The offerer is given an indication that the answerer understood the compact CCC SDP attribute and that the answerer selected the media configurations in the SDP answer using the constrainsts described by the attribute.

· The offerer obtains the CCC of the answering terminal which it can store and use when intiating future MMCMH sessions with the answering  terminal.
· The answerer does not have to bother with the complexity of generating a different setting of the compact CCC SDP attribute based on the offer it received, since the CCC answer content does not depend on the CCC offer content.

One limitation of the use of the compact CCC SDP attribute to compress the number of media lines in the offer as described above in clause 6.15.4.2 is that the answerer must understand the compact CCC SDP attribute so that it knows that not all of the media configurations described in the SDP offer are actually supported.  If an answerer does not understand the compact CCC SDP attribute it may select a set of concurrent codecs that are not properly supported by the offerer.

Therefore, whenever an offerer uses the compact CCC SDP attribute along with the single media configuration of A media lines, it must either:

1. Know that the answerer can properly understand the compact CCC SDP attribute.  

For example, the offerer has previously queried the answerer’s CCC using the OPTIONs method and received a response including the compact CCC SDP.  The offerer records that this answerer understands the compact CCC attribute and can use this parameter when initiating a session with this terminal.

2. Prevent an answerer that does not understand the compact CCC attribute from selecting an unsupported configuration.  

This can be done by defining a new tag for CCC which is populated in the Require header of the SIP INVITE along with the compact CCC SDP attribute in the body.  If the answerer understands the CCC tag then it will respond to the INVITE accordingly.  If the answerer does not understand the CCC tag it will reject the INVITE and the offerer will have to send a re-INVITE without the compact CCC SDP attribute and includes a more verbose offer that explicitly includes all the supported media configurations.

Using this approach has the disadvantage that sessions initiated to terminals that do not understand the compact CCC SDP attribute will always require a re-INVITE.  The occurrence of this can be reduced by mandating that all MMCMH-capable MTSI terminals support the compact CCC SDP attribute.  However, the issue will still arise when initiating sessions with non-MMCMH MTSI terminals.

3. Allow for the possibility that the answerer may ignore the compact CCC SDP parameter and select a media configuration that is not supported by the offerer.  If the offerer does not receive the compact CCC SDP parameter in the answer, the offerer checks that the selected configuration can be properly supported in the session. If the configuration can not be supported, the offerer sends a re-INVITE without the compact CCC SDP attribute that either includes a more verbose offer that explicitly includes all the supported media configurations, or makes necessary restrictions to the new SDP offer based on the received SDP answer.

4. The probability of this re-INVITE occurring can be reduced by mandating that all MMCMH-capable MTSI terminals support the compact CCC SDP attribute.  The scenarios where the answering terminal is a non-MMCMH MTSI terminal do not necessarily require a re-INVITE.  Since the answering terminal does not support MMCMH it will not select more that one codec type per media, i.e., it will ignore the simulcast parameter and not select to send on multiple media lines.  Therefore, a re-INVITE is only needed if the answerer has selected to encode or decode a codec that is not a common codec for an MRF-based conference and the MRF that sent the offer is unable to transcode between the selected codec and different codecs used by other participants.

6.15.4.4
Conclusions
Using current SDP parameters to support CCCEx can become quite cumbersome and substantially increase the size of SDP during MMCMH session initiation.  The compact CCC SDP attribute provides a significant savings in SDP lines in the offer used to initiate the MMCMH session. It also avoids the need to use MediaCapNeg to communicate various configurations of concurrent codec operation.  Therefore, it is recommended that support of the compact CCC SDP attribute be mandated for MMCMH session initiation.
6.16
Use Case O: Media Distribution Without Conference Focus – Session Establishment Aspects

In this clause, session establishment aspects without conference focus are presented for media handling and distribution via multi-unicast and multi-cast topology.

6.16.1
Session Establishment Without a Conference Focus in Multi-unicast Topology

One method to establish a session without a Focus is to make extensive use the SIP REFER method as defined in [26].

The initiator (Terminal A) first establishes one-to-one SIP dialogs with each of the other (N-1) participants (Terminals B and C). Once the dialogs are established, Terminal A then issues multiple SIP REFERs to each of the other participants requesting them to establish a session with each of the other (N-2) participants. This is done by including the SIP URI indicating INVITE to the other terminals as the Refer-To URI.

For example, Terminal A issues a REFER to Terminal B, requesting B to send a SIP INVITE to Terminal C. For redundancy and to minimize conference set-up delay, Terminal A should also send a reciprocal REFER to Terminal C, requesting C to send a SIP INVITE to Terminal B. If there were more participants, e.g. a fourth Terminal D, Terminal A would send at least one additional REFER each to Terminals B and C requesting that they also send INVITEs to Terminal D. Again, to introduce redundancy and minimize conference set-up delay, terminal A should also send a REFER to terminal D requesting that it also send INVITEs to Terminals B and C.

When redundant INVITEs are requested by the conference initiator via the REFERs, a terminal that receives a REFER requesting it to send an INVITE to a terminal from which it has already received an INVITE should no longer send an INVITE to that terminal.

To decrease overall SIP signalling load in the network at the cost of potentially increasing the conference set-up time, the conference initiator may decide not to request redundant INVITEs be sent among the participants. For example, if the participants are numbered 1 to N, with 1 being the conference initiator, the conference sends the following:

· A SIP REFER to terminal 2 requesting that the terminal send INVITEs to terminals 3 to N

· A SIP REFER to terminal 3 requesting that the terminal send INVITEs to terminals 4 to N

· A SIP REFER to terminal M requesting that the terminal send INVITEs to terminals M+1 to N

Note: 
It is for further study whether a special indication has to be given to terminals receiving a REFER to indicate that they do not terminate the existing SIP dialogs and media session with the other terminals, and also do not send an INVITE to a terminal from which it has already received an INVITE. This could make use of a newly 3GPP feature tag to indicate to the terminal that it is to maintain multiple media streams and SIP dialogs for multi-unicast media delivery.
One method to establish a session without a Focus is for the conference initiator to invite the other participants to join the multicast group over which the media is to be delivered. Once all the participants join a multicast group they can all transmit and receive media from that group using the multicast IP address. The conference initiator may select and assign the multicast IP groups (e.g. public or operator controlled private IP address) associated with the mandatory and recommended codecs.

If the conference initiator wishes to offer the use of multiple codecs for a particular media type then the initiator establishes a multicast group for each of the codecs to be used. Furthermore, at least one of these multicast groups will be assigned to a codec that is supported by all the terminals (i.e. a mandatory codec). This guarantees that all the invited participants will have at least one multicast group from which they can decode the media.
6.17
Use Case P: Codec Migration
6.17.1
General

A general assumption in most use cases above is that to enable media switching instead of transcoding in the MSMTSI MRF, all MSMTSI UE in the same conference must in the simplest case use fully bitstream-compatible encodings of the same media codec.
6.17.2
Problem Description
In times of migrating the MSMTSI UE device fleet from one codec to a new (better) one, it would be desirable to allow MSMTSI UE implementing the new codec to use it when communicating in the conference with other MSMTSI UE also implementing that same new codec, while still avoiding media transcoding in MSMTSI MRF to the largest extent possible. Examples of such codec migration are from H.264 [30] Constrained Baseline Profile (CBP) to H.264 Constrained High Profile (CHP), migration from H.264 CHP to H.265 [40], or migration from AMR-WB [41] to EVS [42].

To have an MSMTSI conference perform transcoding between call legs with UE using different codecs requires significant resources in the MSMTSI MRF, causes media quality degradation, and adds to end-to-end delay, which are the core reasons to introduce MSMTSI functionality. Accepting large-scale transcoding in this case would thus go against the intent with MSMTSI.

To force all UE implementing the new codec to fall back to using the old codec in the conference would either provide a lower media quality and/or higher bitrate than necessary to those UEs, compared to using the new codec at least between the UEs that have implemented it.
6.17.3
Proposed Solution

6.17.3.1
General
This can be solved using several different strategies, with different drawbacks and advantages. In some cases, media transcoding can still be the best strategy. Which strategy that is most cost-effective depends both on how many MSMTSI UE with different codecs there are in a conference, and the "cost function" for the different strategies in a certain implementation.

It is here assumed that at least during the early phases of new codec deployment, a UE or MRF (not just MSMTSI) implementing support for a new codec also implements support for one or more legacy codecs, to ensure interoperability with existing UE. In later phases of new codec deployment, when the number of UE implementing only the old codec is sufficiently low, new UE or MRF can (more) safely implement just the new codec without causing transcoding.

It could be noted that the approaches listed below are generally compatible with each other and with MSMTSI UE capabilities, as long as a few UE and MRF conditions are fulfilled (also listed below). The details and parameterization of choosing approach can thus be left to individual MSMTSI MRF implementations.

6.17.3.2
Codec Fall-back
The simplest approach to handle different codecs in different UE and still avoid transcoding is to make UE implementing the new codec fall back to use the old codec instead whenever any UE in the conference does not implement the new codec. This works with the assumption above that any UE implementing the new codec also implements the old one.

As long as there are UE implementing just the old codec in the conference, the new codec will never be used. If only UE implementing the new codec are in the conference, the new codec can be used, but the entire conference will have to be re-negotiated to use the old codec whenever a UE implementing just the old codec joins. Similarly, if all UE implementing only the old codec leaves the conference, the conference can (but need not) be re-negotiated to use the new codec.

With this approach, even a single UE that implements just the old codec would cause a large amount of quality degradation (or increased bitrate, if quality is to be kept constant) for many UE implementing the new codec. This can still be a reasonable approach when there are few UE implementing the new codec. As the number of UE implementing the new codec increases, so does the quality impact of adapting the conference to old-codec-only UE, making codec fall-back less and less preferable.

The conditions to be able to use this approach is that MSMTSI UE implementing the new codec also implements the old codec, that the MSMTSI MRF supports media switching of both new and old codecs, and that the MSMTSI MRF contains the logic to trigger codec fall-back and upgrade through session re-negotiation.
6.17.3.3
Transcoding
When there is a low number of UEs, possibly only one, implementing just the old codec in a conference, using transcoding towards such UE is likely the best option. Using transcoding in this case also avoids codec fall-back (see clause 6.17.3.2) for the entire conference.

Using transcoding is less preferable (compared to switching) the more UEs implementing just the old codec there are in the conference, since there are then more UEs getting less than optimum quality and more transcoding resources are required in the conference.

Transcoding between old and new codecs is needed in the MSMTSI MRF to be able to use this approach, including selectively applying that transcoding to call legs that need it. The MSMTSI UE is not impacted by this approach.
6.17.3.4
Codec Simulcast
When there are approximately the same number of UEs with old-codec-only capability and new codec capability in a conference, the cost to align codecs is also the highest. If codec fallback is used (see clause 6.17.3.2), about half of the conference participants (the ones with the new codec) will suffer from lower media quality and/or higher bitrate than necessary (from other UEs implementing, but not using, the new codec). If transcoding is used (see clause 6.17.3.3), again about half of the conference participants will be negatively affected, in this case by the transcoding.

If a UE that implements the new codec also implements the old one, and if there are sufficient uplink resources, such UE can send media with both the new and the old codecs at the same time. Sending different representations of the same media source is called simulcast [12] and in this case the different simulcast versions are thus encoded with different codecs.

Such simulcast allows the MSMTSI MRF to switch the new codec simulcast version to UEs implementing the new codec, and switch the old codec simulcast version to UEs implementing only the old codec, resulting in best possible quality to all receiving UEs. UEs only implementing the old codec can obviously not do such simulcast, but as long as the UEs implementing the new codec also implements the old codec (as described above), all UEs in the conference can receive media encoded with the old codec.

An example of the use case with a conference among MSMTSI UEs having different (video) codec capabilities is depicted in Figure 20 below. Video is used in this example, but there is nothing that prevents applying the same use case to other media, for example for audio media and codec migration from AMR-WB to EVS.
[image: image24.png]Active speaker

&

Previous
active speaker

Gl

UEC UEB





Figure 20 Dual-codec UE is active speaker
In Figure 20, UE A and UE C have H.265 video codec capability, in addition to H.264 video codec capability. UE B and UE D have H.264 video codec capability, but no capability for H.265. UE A is currently the active speaker and sends video as a simulcast of both H.264 and H.265 to the MSMTSI MRF. The MRF can then, without any transcoding, forward H.264 to UE B and UE D, and forward H.265 to UE C.

In a conference using codec simulcast that switches media streams based on speaker activity, change of active speaker might thus also change media stream codec, as seen from a receiving UE implementing both the old and the new codec. This happens when active speaker changes from a UE implementing the new codec to a UE implementing only the old one, or vice versa. Such mid-stream codec changes in downlink would need to be fast and could be fairly frequent, meaning that session re-negotiation with a new SDP offer/answer to change codec is not a viable option.

Figure 21 below continues the use case from Figure 20, where active speaker has changed from UE A to UE B.

[image: image25.png]Previous
active speaker

v . Active speaker

N
N
NN
ENIRN
N
[N
N
N
NN
N
\ & %

UEB





Figure 21 Single-codec UE is active speaker
In the previous Figure 20, the active speaker stream encoded with H.265 was forwarded by MRF from UE A to UE C, which has both H.264 and H.265 capability. In Figure 21, active speaker is now UE B that does not have H.265 capability. The active speaker RTP stream forwarded by MRF from UE B to UE C is thus encoded with H.264. As seen from UE C, the active speaker RTP stream changed codec on-the-fly when changing active speaker. The RTP payload type contained in the RTP header of every RTP packet indicates what codec is used, so UE C only has to check the RTP payload type of each RTP packet to know what decoder to use for that packet, as long as SDP answer contained the mapping of payload type to actual codec configuration for both of the used codecs, in this example H.264 and H.265.

This fast change of payload type due to change of simulcast version has implications on how SDP codec negotiation is made for such session, see Annex A.2.4. To support the type of simulcast described above, the session needs to allow an RTP stream to change RTP payload type (and thus simulcast version) from one RTP packet to the next. That is only possible if the SDP answer is allowed to contain RTP payload types representing all simulcast versions to be used in the session. Note that in TS 24.229 [8] Rel-13 and earlier, having multiple RTP payload types in an SDP answer is explicitly disallowed. This is however not disallowed by the IETF base specifications SDP [13] and SDP offer/answer [43].

It can be noted that this simulcast approach is rather similar to use case "L" in clause 6.13, although the use case motivation is different.
6.17.3.5
Recommended Requirements for Codec Simulcast
To be able to use the above described codec simulcast approach, where the MSMTSI MRF selectively forwards RTP streams using a codec format relevant to individual MSMTSI UE, an MSMTSI UE implementing the new codec needs to:

· Implement also the old codec

· Support sending simulcast of new and old codecs

· Accept an SDP answer containing both new and old codecs when simulcast is used
Correspondingly, to support this use case, MSMTSI MRF supporting the new codec needs to:

· Support also the old codec

· Support receiving simulcast of new and old codecs

· Generate an SDP answer containing both new and old codecs when simulcast is used
7
Conclusion

The present document has identified a number of new and compelling use cases that provide advanced conferencing services by supporting the session establishment and transport of multiple media streams between conference participants. The report then studies the session establishment and media handling procedures needed to support the identified use cases and potential solutions.
Annex A:
SDP examples for Multi-stream Multiparty Conference Media Handling

A.1
General

This annex gives a few examples of media portions from possible SDP offers and answers involving an MSMTSI client and/or MSMTSI MRF. It is not feasible to cover all possible variants of different communication scenarios and MSMTSI capabilities and hence these examples should be regarded as just a few examples of many possible alternatives. For brevity, these examples do not make use of all functionality (like robustness etc.) or list all codecs that could be used in a real SDP offer/answer, and for the same reason also limits the number of supported streams compared to what could be used in a real SDP offer/answer.

A.2
MSMTSI video offer/answer examples

A.2.1
MSMTSI offer/answer towards an MTSI client

This offer includes sending two different simulcast streams for the main video, receiving two thumbnail videos, both sending and receiving screenshare video, and has support for BFCP to control screenshare and (possibly) main video, which are all features that can be supported by MSMTSI but that are not supported by a regular MTSI client. All audio is omitted in this example, for brevity, but could be added according to the other examples (e.g. in clause A.3) in this annex.

Video levels are in this example aligned with the maximum size of the video stream, and the maximum receive bandwidth limit is set by the "b="-line rather than just implicitly by the video level bandwidth limit.

The main video is listed as the first video "m="-line and is also explicitly identified through "a=content:main".

One subsequent "m="-line is explicitly identified as screenshare video, using "a=content:slides".

The rest of the video "m="-lines indicate support for two additional, receive-only video thumbnails.

All video "m="-lines offer support for RTP level pause/resume, indicated through "a=rtcp-fb:* ccm pause". The "nowait" parameter is set, indicating that the MSMTSI client expects the RTP media streams to be sent point-to-point on RTP level. That can for example be either between MSMTSI clients in terminal, or between an MSMTSI client in terminal and an MSMTSI MRF. In either case, the "nowait" parameter indicates it is not expected that multiple receivers of the RTP streams are able to send RTCP back to request RTP level pause/resume.

BFCP support is offered with client role.

Blank lines are here added in the SDP for improved readability, but are not be included in an actual SDP. SDP lines specifically interesting to this example are highlighted in bold, which would also not be the case in an actual SDP.

Table A.1: Example SDP offer from MSMTSI towards MTSI

	SDP offer

	m=video 49154 RTP/AVPF 101 102

b=AS:1060

b=RS:0

b=RR:2500

a=rtpmap:101 H264/90000

a=rtpmap:102 H264/90000

a=fmtp:101 packetization-mode=0; profile-level-id=42e01f; \

   sprop-parameter-sets=Z0KADZWgUH6Af1A=,aM46gA==

a=fmtp:102 packetization-mode=0; profile-level-id=42e00c; \

   sprop-parameter-sets=J0LgDJWgUH6Af1A=,KM46gA==

a=imageattr:101 send [x=1280,y=720] [x=848,y=480] [x=640,y=360] [x=320,y=240] recv [x=1280,y=720,q=0.6] [x=848,y=480] [x=640,y=360] [x=320,y=240]

a=imageattr:102 send [x=176,y=144] [x=224,y=176] [x=320,y=180] recv [x=176,y=144] [x=224,y=176] [x=320,y=180,q=0.6]

a=simulcast: send pt:101;102 recv pt:101

a=content:main

a=rtcp-rsize

a=rtcp-fb:* trr-int 5000

a=rtcp-fb:* nack

a=rtcp-fb:* nack pli

a=rtcp-fb:* ccm fir

a=rtcp-fb:* ccm tmmbr

a=rtcp-fb:* ccm pause nowait

a=extmap:4 urn:3gpp:video-orientation

m=video 49156 RTP/AVPF 103

b=AS:800

b=RS:0

b=RR:2500

a=rtpmap:103 H264/90000

a=fmtp:103 packetization-mode=0; profile-level-id=42e01f; \

   sprop-parameter-sets=Z0KADZWgUH6Af1A=,aM46gA==

a=imageattr:103 send [x=1280,y=720] [x=848,y=480] [x=640,y=360] recv [x=1280,y=720,q=0.6] [x=848,y=480] [x=640,y=360]

a=content:slides

a=rtcp-rsize

a=rtcp-fb:* trr-int 5000

a=rtcp-fb:* nack

a=rtcp-fb:* nack pli

a=rtcp-fb:* ccm fir

a=rtcp-fb:* ccm tmmbr

a=rtcp-fb:* ccm pause nowait

a=extmap:4 urn:3gpp:video-orientation

m=video 49158 RTP/AVPF 104

b=AS:240

b=RS:0

b=RR:2500

a=rtpmap:104 H264/90000

a=fmtp:104 packetization-mode=0; profile-level-id=42e00c

a=imageattr:104 recv [x=176,y=144] [x=224,y=176] [x=320,y=180,q=0.6]

a=recvonly

a=rtcp-rsize

a=rtcp-fb:* trr-int 5000

a=rtcp-fb:* nack

a=rtcp-fb:* nack pli

a=rtcp-fb:* ccm fir

a=rtcp-fb:* ccm tmmbr

a=rtcp-fb:* ccm pause nowait

a=extmap:4 urn:3gpp:video-orientation

m=video 49160 RTP/AVPF 105

b=AS:240

b=RS:0

b=RR:2500

a=rtpmap:105 H264/90000

a=fmtp:105 packetization-mode=0; profile-level-id=42e00c

a=imageattr:105 recv [x=176,y=144] [x=224,y=176] [x=320,y=180,q=0.6]

a=recvonly

a=rtcp-rsize

a=rtcp-fb:* trr-int 5000

a=rtcp-fb:* nack

a=rtcp-fb:* nack pli

a=rtcp-fb:* ccm fir

a=rtcp-fb:* ccm tmmbr

a=rtcp-fb:* ccm pause nowait

a=extmap:4 urn:3gpp:video-orientation

m=application 50324 TCP/BFCP *

a=floorctrl:c-only

a=setup:actpass

a=connection:new


Table A.2: Example SDP answer from MTSI towards MSMTSI

	SDP answer

	m=video 49154 RTP/AVPF 101

b=AS:450

b=RS:0

b=RR:2500

a=rtpmap:101 H264/90000

a=fmtp:101 packetization-mode=0; profile-level-id=42e00d; \

   sprop-parameter-sets=J0LgDJWgUH6Af1A=,KM46gA==;

a=imageattr:101 send [x=320,y=240] recv [x=320,y=240]

a=rtcp-fb:* trr-int 5000

a=rtcp-fb:* nack

a=rtcp-fb:* nack pli

a=rtcp-fb:* ccm fir

a=rtcp-fb:* ccm tmmbr

a=extmap:4 urn:3gpp:video-orientation

m=video 0 RTP/AVPF 103

m=video 0 RTP/AVPF 104

m=video 0 RTP/AVPF 105

m=application 0 TCP/BFCP *


The answerer, being an MTSI client, knows of no MSMTSI features, but has correctly disabled all of them in the SDP answer, according to generic SDP offer/answer rules, keeping unsupported "m="-lines with port set to zero, leaving the session effectively identical to a regular MTSI session with a single video and mono audio.

A.2.2
MSMTSI answer from an MSMTSI MRF

This example assumes the same offer as in Table A.1, which is thus not repeated here, but the answerer is here an MSMTSI MRF, supporting all of the offered MSMTSI-specific features. All audio is omitted in this example, for brevity, but could be added according to any of the other examples in this annex.

Note that the "isFocus" tag, identifying this answer as an MRF, is included as part of SIP headers and is thus not visible in the SDP in this example.

The MSMTSI MRF accepts to receive the two offered simulcast streams for the main video. Then, the MSMTSI MRF can send video for the two supported thumbnails, and can also control both main video and screenshare video through BFCP.

It can be noted that the MSMTSI MRF needs to keep all payload type formats that it accepts to use for simulcast on the "m="-line in the answer.

The MSMTSI MRF is, by including the RTP-level "nowait" parameter on the "a=rtcp-fb:* ccm pause" line in the SDP answer, confirming that it will effectively be the offering MSMTSI clients only peer regarding exchange of RTP level pause/resume messages, and no hold-off period will therefore be necessary when resuming paused streams (see [X7]).

The "a=label" lines are added by the MSMTSI MRF to support identification of BFCP-controlled "m="-lines, relating BFCP floor identifications to "m="-lines through "a=floorid" lines under the BFCP "m="-line. In this example, both the main video and the screenshare video "m="-lines are floor controlled. The thumbnail videos are however not floor controlled, so there are no "a=label" lines for those "m="-lines.

Blank lines are here added in the SDP for improved readability, but are not be included in an actual SDP. SDP lines specifically interesting to this example are highlighted in bold, which would also not be the case in an actual SDP.

Table A.3: Example SDP answer from MSMTSI MRF towards MSMTSI

	SDP answer

	m=video 49154 RTP/AVPF 101 102

b=AS:1060

b=RS:0

b=RR:2500

a=rtpmap:101 H264/90000

a=rtpmap:102 H264/90000

a=fmtp:101 packetization-mode=0; profile-level-id=42e01f; \

   sprop-parameter-sets=Z0KADZWgUH6Af1A=,aM46gA==

a=fmtp:102 packetization-mode=0; profile-level-id=42e00c; \

   sprop-parameter-sets=J0LgDJWgUH6Af1A=,KM46gA==

a=imageattr:101 send [x=1280,y=720] [x=848,y=480] [x=640,y=360] [x=320,y=240] recv [x=1280,y=720,q=0.6] [x=848,y=480] [x=640,y=360] [x=320,y=240]

a=imageattr:102 send [x=176,y=144] [x=224,y=176] [x=320,y=180] recv [x=176,y=144] [x=224,y=176] [x=320,y=180,q=0.6]

a=simulcast: recv pt:101;102 send pt:101

a=content:main

a=label:m

a=rtcp-rsize

a=rtcp-fb:* trr-int 5000

a=rtcp-fb:* nack

a=rtcp-fb:* nack pli

a=rtcp-fb:* ccm fir

a=rtcp-fb:* ccm tmmbr

a=rtcp-fb:* ccm pause nowait

a=extmap:4 urn:3gpp:video-orientation

m=video 49156 RTP/AVPF 103

b=AS:800

b=RS:0

b=RR:2500

a=rtpmap:103 H264/90000

a=fmtp:103 packetization-mode=0; profile-level-id=42e01f; \

   sprop-parameter-sets=Z0KADZWgUH6Af1A=,aM46gA==

a=imageattr:103 send [x=1280,y=720] [x=848,y=480] [x=640,y=360] recv [x=1280,y=720,q=0.6] [x=848,y=480] [x=640,y=360]

a=content:slides

a=label:s

a=rtcp-rsize

a=rtcp-fb:* trr-int 5000

a=rtcp-fb:* nack

a=rtcp-fb:* nack pli

a=rtcp-fb:* ccm fir

a=rtcp-fb:* ccm tmmbr

a=rtcp-fb:* ccm pause nowait

a=extmap:4 urn:3gpp:video-orientation

m=video 49158 RTP/AVPF 104

b=AS:240

b=RS:0

b=RR:2500

a=rtpmap:104 H264/90000

a=fmtp:104 packetization-mode=0; profile-level-id=42e00c; \

   sprop-parameter-sets=J0LgDJWgUH6Af1A=,KM46gA==

a=imageattr:104 send [x=176,y=144] [x=224,y=176] [x=320,y=180,q=0.6]

a=sendonly

a=rtcp-rsize

a=rtcp-fb:* trr-int 5000

a=rtcp-fb:* nack

a=rtcp-fb:* nack pli

a=rtcp-fb:* ccm fir

a=rtcp-fb:* ccm tmmbr

a=rtcp-fb:* ccm pause nowait

a=extmap:4 urn:3gpp:video-orientation

m=video 49160 RTP/AVPF 105

b=AS:240

b=RS:0

b=RR:2500

a=rtpmap:105 H264/90000

a=fmtp:105 packetization-mode=0; profile-level-id=42e00c; \

   sprop-parameter-sets=J0LgDJWgUH6Af1A=,KM46gA==

a=imageattr:105 send [x=176,y=144] [x=224,y=176] [x=320,y=180,q=0.6]

a=sendonly

a=rtcp-rsize

a=rtcp-fb:* trr-int 5000

a=rtcp-fb:* nack

a=rtcp-fb:* nack pli

a=rtcp-fb:* ccm fir

a=rtcp-fb:* ccm tmmbr

a=rtcp-fb:* ccm pause nowait

a=extmap:4 urn:3gpp:video-orientation

m=application 50324 TCP/BFCP *

a=floorctrl:s-only

a=floorid:1 mstrm:m

a=floorid:2 mstrm:s

a=confid:23984

a=userid:48249

a=setup:active

a=connection:new


A.2.3
MSMTSI answer from an MSMTSI client in terminal

This example assumes the same offer as in clause A.2, which is thus not repeated here, but the answerer is here an MSMTSI client in terminal, supporting all of the offered MSMTSI-specific features, although not all of them are feasible to use between MSMTSI clients in terminal. All audio is omitted in this example, for brevity, but could be added according to any of the other examples in this annex.

The answering MSMTSI client has no reason to send any thumbnail videos to another MSMTSI client in terminal, and has thus disabled them. There is no need for simulcast, meaning that the simulcast attribute is removed from the SDP and simulcast will not be used. It can however act as BFCP server and can also support simultaneous main video and screen sharing, which are both kept.
Blank lines are here added in the SDP for improved readability, but are not be included in an actual SDP. SDP lines specifically interesting to this example are highlighted in bold, which would also not be the case in an actual SDP.

Table A.4: Example SDP answer from MSMTSI towards another MSMTSI

	SDP answer

	m=video 49154 RTP/AVPF 101

b=AS:1060

b=RS:0

b=RR:2500

a=rtpmap:101 H264/90000

a=fmtp:101 packetization-mode=0; profile-level-id=42e01f; \

   sprop-parameter-sets=Z0KADZWgUH6Af1A=,aM46gA==

a=imageattr:101 send [x=1280,y=720] [x=848,y=480] [x=640,y=360] [x=320,y=240] recv [x=1280,y=720,q=0.6] [x=848,y=480] [x=640,y=360] [x=320,y=240]

a=content:main

a=rtcp-rsize

a=rtcp-fb:* trr-int 5000

a=rtcp-fb:* nack

a=rtcp-fb:* nack pli

a=rtcp-fb:* ccm fir

a=rtcp-fb:* ccm tmmbr

a=rtcp-fb:* ccm pause nowait

a=extmap:4 urn:3gpp:video-orientation

m=video 49156 RTP/AVPF 103

b=AS:800

b=RS:0

b=RR:2500

a=rtpmap:103 H264/90000

a=fmtp:103 packetization-mode=0; profile-level-id=42e01f; \

   sprop-parameter-sets=Z0KADZWgUH6Af1A=,aM46gA==

a=imageattr:103 send [x=1280,y=720] [x=848,y=480] [x=640,y=360] recv [x=1280,y=720,q=0.6] [x=848,y=480] [x=640,y=360]

a=content:slides

a=label:10

a=rtcp-rsize

a=rtcp-fb:* trr-int 5000

a=rtcp-fb:* nack

a=rtcp-fb:* nack pli

a=rtcp-fb:* ccm fir

a=rtcp-fb:* ccm tmmbr

a=rtcp-fb:* ccm pause nowait

a=extmap:4 urn:3gpp:video-orientation

m=video 0 RTP/AVPF 104

m=video 0 RTP/AVPF 105

m=application 50324 TCP/BFCP *

a=floorctrl:s-only

a=floorid:1 mstrm:10

a=confid:237

a=userid:278

a=setup:passive

a=connection:new


A.2.4
MSMTSI Offer and Answer Using Codec Simulcast
Below is an example SDP offer/answer fragment for an MSMTSI UE and an MSMTSI MRF implementing codec simulcast functionality, as described by clause 6.17. Note that this is just an SDP fragment, highlighting the most important parts related to the needed functionality in bold text, for readability.
SDP lines specifically interesting to this example are highlighted in bold, which would not be the case in an actual SDP. Any video media beyond the main video, audio, and BFCP are omitted from the example, for brevity.
Table A.11: Multi-codec Offer to Multi-stream Capable Conference
	SDP Offer from MSMTSI UE

	m=video 49152 RTP/AVPF 96 97
b=AS:1060

b=RS:0

b=RR:2500
a=rtpmap:96 H264/90000
a=fmtp:96 packetization-mode=1; profile-level-id=42e01f; \

   sprop-parameter-sets=Z0KADZWgUH6Af1A=,aM46gA==
a=rtpmap:97 H265/90000
a=fmtp:98 profile-id=1; level-id=93; \

   sprop-vps=QAEMAf//AWAAAAMAgAAAAwAAAwBdLAUg; \

   sprop-sps=QgEBAWAAAAMAgAAAAwAAAwBdoAKAgC0WUuS0i9AHcIBB; \

   sprop-pps=RAHAcYDZIA==
a=imageattr:96 send [x=1280,y=720] [x=848,y=480] [x=640,y=360] [x=320,y=240] recv [x=1280,y=720,q=0.6] [x=848,y=480] [x=640,y=360] [x=320,y=240]

a=imageattr:97 send [x=1280,y=720] [x=848,y=480] [x=640,y=360] [x=320,y=240] recv [x=1280,y=720,q=0.6] [x=848,y=480] [x=640,y=360] [x=320,y=240]

a=sendrecv

a=rid:1 pt=96

a=rid:2 pt=97

a=simulcast: send 1,2 recv 1;2

a=content:main

a=rtcp-rsize

a=rtcp-fb:* trr-int 5000

a=rtcp-fb:* nack

a=rtcp-fb:* nack pli

a=rtcp-fb:* ccm fir

a=rtcp-fb:* ccm tmmbr

a=rtcp-fb:* ccm pause nowait
a=extmap:4 urn:3gpp:video-orientation


The "m=" line in the offer in combination with the "a=sendrecv" line offers to send and receive two different codec formats. The "a=simulcast" line in the offer references both of those codec formats indirectly via the rid-to-payload type mapping on the "a=rid" line [44] (see also Annex C.2). The "a=simulcast" line offers to send two simulcast RTP streams, one stream for each offered codec format. It also offers to receive a single RTP stream with either one of those same two codecs. The "b=" line in the offer describes the maximum acceptable bandwidth for the single RTP stream in the receive direction.

Table A.12: Multi-codec Answer from Multi-stream Capable Conference
	SDP Answer from MSMTSI MRF

	m=video 49152 RTP/AVPF 96 97
b=AS:2010

b=RS:0

b=RR:2500

a=rtpmap:96 H264/90000

a=fmtp:96 packetization-mode=1; profile-level-id=42e01f; \

   sprop-parameter-sets=Z0KADZWgUH6Af1A=,aM46gA==a=rtpmap:97 H265/90000

a=fmtp:97 profile-id=1; level-id=93; \

   sprop-vps=QAEMAf//AWAAAAMAgAAAAwAAAwBdLAUg; \

   sprop-sps=QgEBAWAAAAMAgAAAAwAAAwBdoAKAgC0WUuS0i9AHcIBB; \

   sprop-pps=RAHAcYDZIA==

a=imageattr:96 send [x=1280,y=720] [x=848,y=480] [x=640,y=360] [x=320,y=240] recv [x=1280,y=720,q=0.6] [x=848,y=480] [x=640,y=360] [x=320,y=240]

a=imageattr:97 send [x=1280,y=720] [x=848,y=480] [x=640,y=360] [x=320,y=240] recv [x=1280,y=720,q=0.6] [x=848,y=480] [x=640,y=360] [x=320,y=240]a=sendrecv

a=rid:1 pt=96

a=rid:2 pt=97

a=simulcast: recv 1,2 send 1;2

a=content:main

a=rtcp-rsize

a=rtcp-fb:* trr-int 5000

a=rtcp-fb:* nack

a=rtcp-fb:* nack pli

a=rtcp-fb:* ccm fir

a=rtcp-fb:* ccm tmmbr

a=rtcp-fb:* ccm pause nowait
a=extmap:4 urn:3gpp:video-orientation


The "m=" line in the answer in combination with the "a=sendrecv" line generally accepts to send and receive any one of the two offered codec formats. The "a=simulcast" line in the answer details that by accepting to receive two RTP streams as a simulcast of the two different codec formats. It also accepts to send a single RTP stream that may use either one of the same two codecs, but only a single format at a time for any given RTP timestamp for that RTP stream. The "b=" line in the answer describes the maximum acceptable aggregate bandwidth for both RTP streams containing the two simulcast versions.

It should be noted that the "m=" line in the offer and in the answer jointly describe an intended asymmetry in the number of RTP streams related to that "m=" line, as well as an asymmetry in bandwidth in the two directions.

Both MSMTSI UE and MSMTSI MRF make use of RTP level pause/resume, to be able to quickly pause and resume simulcast versions that are not forwarded and thus temporarily not needed by the MSMTSI MRF. This is indicated in the SDP example above by inclusion of an "a=rtcp-fb:* ccm pause nowait" line in both offer and answer. 

A.3
MSMTSI audio offer/answer examples

A.3.1
MSMTSI offer with multi-stream audio support

This offer includes multi-stream audio, sending simulcast with multiple codecs for the main audio, receiving two additional audio participants for local rendering, and receiving codec simulcast for all received audio streams. All video is omitted in this example, for brevity, but could be added according to any of the other examples in this annex.

Three different codecs are offered as audio simulcast in the send direction, separated by semicolons. In the simulcast receive direction, a single stream is offered, explicitly accepting three different alternative simulcast formats, separated by comma, which means that the used audio codec (RTP payload format) is allowed to change from one RTP packet to the next.

Blank lines are here added in the SDP for improved readability, but are not be included in an actual SDP. SDP lines specifically interesting to this example are highlighted in bold, which would also not be the case in an actual SDP.

Table A.5: Example SDP offer from MSMTSI multi-stream audio

	SDP offer

	m=audio 49152 RTP/AVP 98 97 99

b=AS:42

a=tcap:1 RTP/AVPF

a=pcfg:1 t=1

a=rtpmap:98 EVS/16000/1

a=fmtp:98 br=13.2-24.4; bw=wb-swb; max-red=220

a=rtpmap:97 AMR-WB/16000/1

a=fmtp:97 mode-change-capability=2; max-red=220

a=rtpmap:99 AMR/8000/1

a=fmtp:99 mode-change-capability=2; max-red=220

a=ptime:20

a=maxptime:240

a=simulcast: send pt:97;98;99 recv pt:97,98,99

m=audio 49154 RTP/AVP 101 102 103

b=AS:42

a=tcap:1 RTP/AVPF

a=pcfg:1 t=1

a=recvonly

a=rtpmap:101 EVS/16000/1

a=fmtp:101 br=13.2-24.4; bw=wb-swb; max-red=220

a=rtpmap:102 AMR-WB/16000/1

a=fmtp:102 mode-change-capability=2; max-red=220

a=rtpmap:103 AMR/8000/1

a=fmtp:103 mode-change-capability=2; max-red=220

a=ptime:20

a=maxptime:240

a=simulcast: recv pt:101,102,103

m=audio 49156 RTP/AVPF 104 105 106

b=AS:42

a=tcap:1 RTP/AVPF

a=pcfg:1 t=1

a=recvonly

a=rtpmap:104 EVS/16000/1

a=fmtp:104 br=13.2-24.4; bw=wb-swb; max-red=220

a=rtpmap:105 AMR-WB/16000/1

a=fmtp:105 mode-change-capability=2; max-red=220

a=rtpmap:106 AMR/8000/1

a=fmtp:106 mode-change-capability=2; max-red=220

a=ptime:20

a=maxptime:240

a=simulcast: recv pt:104,105,106


A.3.2
MSMTSI answer with multi-stream audio support

This answer builds on the offer in clause A.3.1, includes multi-stream audio, accepting to receive simulcast with multiple codecs for the main audio, sending two additional audio participants for local rendering, and sending codec simulcast for all received audio streams. All video is omitted in this example, for brevity, but could be added according to any of the other examples in this annex.

The three different codecs from the offer are accepted as audio simulcast in the receive direction, separated by semicolons. In the simulcast send direction, a single stream is accepted, explicitly listing three different alternative simulcast formats, separated by comma, which means that the used audio codec (RTP payload format) may change from one RTP packet to the next.

As in clause A.2.2, it can be noted that the MSMTSI MRF needs to keep all payload type formats that it accepts to use for simulcast on the "m="-line in the answer.

Blank lines are here added in the SDP for improved readability, but are not be included in an actual SDP. SDP lines specifically interesting to this example are highlighted in bold, which would also not be the case in an actual SDP.

Table A.6: Example SDP answer from MSMTSI MRF accepting multi-stream audio

	SDP answer

	m=audio 49152 RTP/AVPF 98 97 99

b=AS:113

a=acfg:1 t=1

a=rtpmap:98 EVS/16000/1

a=fmtp:98 br=13.2-24.4; bw=wb-swb; max-red=220

a=rtpmap:97 AMR-WB/16000/1

a=fmtp:97 mode-change-capability=2; max-red=220

a=rtpmap:99 AMR/8000/1

a=fmtp:99 mode-change-capability=2; max-red=220

a=ptime:20

a=maxptime:240

a=simulcast: recv pt:97;98;99 send pt:98,97,99

m=audio 49154 RTP/AVPF 101 102 103

b=AS:42

a=acfg:1 t=1

a=sendonly

a=rtpmap:101 EVS/16000/1

a=fmtp:101 br=13.2-24.4; bw=wb-swb; max-red=220

a=rtpmap:102 AMR-WB/16000/1

a=fmtp:102 mode-change-capability=2; max-red=220

a=rtpmap:103 AMR/8000/1

a=fmtp:103 mode-change-capability=2; max-red=220

a=ptime:20

a=maxptime:240

a=simulcast: send pt:101,102,103

m=audio 49156 RTP/AVPF 104 105 106

b=AS:42

a=acfg:1 t=1

a=sendonly

a=rtpmap:104 EVS/16000/1

a=fmtp:104 br=13.2-24.4; bw=wb-swb; max-red=220

a=rtpmap:105 AMR-WB/16000/1

a=fmtp:105 mode-change-capability=2; max-red=220

a=rtpmap:106 AMR/8000/1

a=fmtp:106 mode-change-capability=2; max-red=220

a=ptime:20

a=maxptime:240

a=simulcast: send pt:104,105,106


A.3.3
MSMTSI CCCEx SDP offer/answer example

Table A.7 shows example concurrent codec combinations supported at the terminal. All video is omitted in this example, for brevity, but could be added according to any of the other examples in this annex. As shown in Table A.7, the terminal may have identified three possible CCCEx combinations through profiles (shown for 6 participants). SDP offer examples from the terminal to the MRF for profile A is shown in Table A.8. The MSMTSI MRF may then send an SDP answer as shown using the simulcast attribute and multiple m-lines in Table A.9 enabling a multi-stream multiparty conference (among 6 participants). 

Table A.7: Example concurrent codec capability configurations in an MSMTSI terminal

	Number of participants
	CCCEx combinations supported at the MSMTSI terminal 

	N = 6
	D. [Encoder/send: AMR, AMR-WB, EVS] 

[Decoder/recv: 1 AMR, 1 AMR-WB, 3 EVS]

E. [Encoder/send: AMR-WB, EVS] 

[Decoder/recv: 1 AMR-WB, 4 EVS]

F. [Encoder/send: AMR, EVS] 

[Decoder/recv: 1 AMR, 5 EVS]

	
	G. 

	
	H. 


Table A.8: Example SDP offer for CCCEx example configuration A from MSMTSI terminal

	SDP offer

	m=audio 49152 RTP/AVP 96 97 98

b=AS:42

a=tcap:1 RTP/AVPF

a=pcfg:1 t=1

a=rtpmap:96 EVS/16000/1

a=fmtp:96 br=13.2-24.4; bw=wb-swb; max-red=220

a=rtpmap:97 AMR-WB/16000/1

a=fmtp:97 mode-change-capability=2; max-red=220

a=rtpmap:98 AMR/8000/1

a=fmtp:98 mode-change-capability=2; max-red=220

a=ptime:20

a=maxptime:240

a=simulcast: send pt:96;97;98 recv pt:96,97,98

m=audio 49154 RTP/AVP 101 102 103

b=AS:42

a=tcap:1 RTP/AVPF

a=pcfg:1 t=1

a=recvonly

a=rtpmap:101 EVS/16000/1

a=fmtp:101 br=13.2-24.4; bw=wb-swb; max-red=220

a=rtpmap:102 AMR-WB/16000/1

a=fmtp:102 mode-change-capability=2; max-red=220

a=rtpmap:103 AMR/8000/1

a=fmtp:103 mode-change-capability=2; max-red=220

a=ptime:20

a=maxptime:240

a=simulcast: recv pt:101,102,103

m=audio 49156 RTP/AVPF 104 105 106

b=AS:42

a=tcap:1 RTP/AVPF

a=pcfg:1 t=1

a=recvonly

a=rtpmap:104 EVS/16000/1

a=fmtp:104 br=13.2-24.4; bw=wb-swb; max-red=220

a=rtpmap:105 AMR-WB/16000/1

a=fmtp:105 mode-change-capability=2; max-red=220

a=rtpmap:106 AMR/8000/1

a=fmtp:106 mode-change-capability=2; max-red=220

a=ptime:20

a=maxptime:240

a=simulcast: recv pt:104,105,106

m=audio 49158 RTP/AVP 107 108

b=AS:42

a=tcap:1 RTP/AVPF

a=pcfg:1 t=1

a=recvonly

a=rtpmap:107 AMR-WB/16000/1

a=fmtp:107 mode-change-capability=2; max-red=220

a=rtpmap:108 AMR/8000/1

a=fmtp:108 mode-change-capability=2; max-red=220

a=ptime:20

a=maxptime:240

a=simulcast: recv pt:107,108

m=audio 49160 RTP/AVPF 109

b=AS:29

a=tcap:1 RTP/AVPF

a=pcfg:1 t=1

a=recvonly

a=rtpmap:109 AMR/8000/1

a=fmtp:109 mode-change-capability=2; max-red=220

a=ptime:20

a=maxptime:240

a=simulcast: recv pt:109


Table A.9: Example SDP answer from MSMTSI MRF accepting multi-stream audio and enabling a conference with 6 participants (for SDP offer in Table A.8)

	SDP answer

	m=audio 49152 RTP/AVPF 96 97 98

b=AS:113

a=acfg:1 t=1

a=rtpmap:96 EVS/16000/1

a=fmtp:96 br=13.2-24.4; bw=wb-swb; max-red=220

a=rtpmap:97 AMR-WB/16000/1

a=fmtp:97 mode-change-capability=2; max-red=220

a=rtpmap:98 AMR/8000/1

a=fmtp:98 mode-change-capability=2; max-red=220

a=ptime:20

a=maxptime:240

a=simulcast: recv pt:96;97;98 send pt:96,97,98

m=audio 49154 RTP/AVPF 101 102 103

b=AS:42

a=acfg:1 t=1

a=sendonly

a=rtpmap:101 EVS/16000/1

a=fmtp:101 br=13.2-24.4; bw=wb-swb; max-red=220

a=rtpmap:102 AMR-WB/16000/1

a=fmtp:102 mode-change-capability=2; max-red=220

a=rtpmap:103 AMR/8000/1

a=fmtp:103 mode-change-capability=2; max-red=220

a=ptime:20

a=maxptime:240

a=simulcast: send pt:101,102,103

m=audio 49156 RTP/AVPF 105 106

b=AS:42

a=acfg:1 t=1

a=sendonly

a=rtpmap:105 AMR-WB/16000/1

a=fmtp:105 mode-change-capability=2; max-red=220

a=rtpmap:106 AMR/8000/1

a=fmtp:106 mode-change-capability=2; max-red=220

a=ptime:20

a=maxptime:240

a=simulcast: send pt:105,106

m=audio 49158 RTP/AVP 108

b=AS:29

a=tcap:1 RTP/AVPF

a=pcfg:1 t=1

a=rtpmap:108 AMR/8000/1

a=fmtp:108 mode-change-capability=2; max-red=220

a=ptime:20

a=maxptime:240

a=send 108

m=audio 49160 RTP/AVPF 109

b=AS:29

a=tcap:1 RTP/AVPF

a=pcfg:1 t=1

a=recvonly

a=rtpmap:109 AMR/8000/1

a=fmtp:109 mode-change-capability=2; max-red=220

a=ptime:20

a=maxptime:240

a=send pt:109


Table A.10 shows example where the MSMTSI MRF identifies there are only four participants in the conference and disables the two "m="lines.

Table A.10: Example SDP answer from MSMTSI MRF accepting multi-stream audio and enabling a conference with 4 participants (for SDP offer in Table A.8)

	SDP answer

	m=audio 49152 RTP/AVPF 96 97 98

b=AS:113

a=acfg:1 t=1

a=rtpmap:96 EVS/16000/1

a=fmtp:96 br=13.2-24.4; bw=wb-swb; max-red=220

a=rtpmap:97 AMR-WB/16000/1

a=fmtp:97 mode-change-capability=2; max-red=220

a=rtpmap:98 AMR/8000/1

a=fmtp:98 mode-change-capability=2; max-red=220

a=ptime:20

a=maxptime:240

a=simulcast: recv pt:96;97;98 send pt:96,97,98

m=audio 49154 RTP/AVPF 101 102 103

b=AS:42

a=acfg:1 t=1

a=sendonly

a=rtpmap:101 EVS/16000/1

a=fmtp:101 br=13.2-24.4; bw=wb-swb; max-red=220

a=rtpmap:102 AMR-WB/16000/1

a=fmtp:102 mode-change-capability=2; max-red=220

a=rtpmap:103 AMR/8000/1

a=fmtp:103 mode-change-capability=2; max-red=220

a=ptime:20

a=maxptime:240

a=simulcast: send pt:101,102,103

m=audio 49156 RTP/AVPF 105 106

b=AS:42

a=acfg:1 t=1

a=sendonly

a=rtpmap:105 AMR-WB/16000/1

a=fmtp:105 mode-change-capability=2; max-red=220

a=rtpmap:106 AMR/8000/1

a=fmtp:106 mode-change-capability=2; max-red=220

a=ptime:20

a=maxptime:240

a=simulcast: send pt:105,106

m=audio 0 RTP/AVP 108

m=audio 0 RTP/AVP 109


Annex B:
QoS for Multi-stream Multiparty Conference Media Handling

B.1
General

This annex describes how the QoS bandwidth is reserved for MMCMH sessions based on the codec and bandwidth information in the SDP answer, the number of conference participants, and the topology of the multi-party session.

When determining the QoS bandwidth to reserve for the MMCMH session, the SDP answer is examined for the following: 

· When simulcast is included, the bandwidth reserved for the transmission of the media (on either the uplink or downlink) is enough to cover the simulcast.  If multiple media formats are sent concurrently then the reserved bandwidth is enough to carry the sum of their bandwidth requirements. If media formats are sent alternatively, then the reserved bandwidth is enough to carry the bandwidth requirements of the highest codec rate that can be used.

· If multiple active media lines are included, the reserved bandwidth is enough to carry the sum of the bandwidth requirements of each active media line.

To enable the PCRF to determine the required bandwidth in each direction (i.e., uplink and downlink), the MSMTSI terminal and MRF, 

· Include the b=AS parameter in the SDP answer to indicate the maximum needed bandwidth for the receiving direction

· Can include in the SDP answer the Maximum Desired Bandiwdth (GBR) and Maxiumum Supported Bandwidth attributes (MBR) as specified in clause 6.2.7.3 of [1] for the sending direction

B.2
QoS for MSMTSI video offer/answer examples
Table B.1 provides examples of the QoS bandwidth that could be reserved for the example SDP answers listed in Annex T of [1]
Table B.1: Example QoS bandwidth reservations for example SDP answers in Annex T of [1]
	Table in Annex T of [1] which has the example SDP answer
	Uplink GBR (kbps)
	Uplink MBR (kbps)
	Dowlink GBR (kbps)
	Downlink MBR (kbps)
	Comments

	T.2
	
	452.5
	
	452.5
	Assumed PCC chose symmetric QoS for DL



	T.3
	
	2105
	
	2590
	Assumed PCC chose symmetric QoS for DL

	T.4
	
	1865
	
	1865
	Estimating QoS for MSMTSI terminal's links, assumed PCC chose symmetric QoS for DL

	T.6
	118
	118
	133.5
	133.5
	Can not assume symmetric because simulcast is on uplink.  Assuming GBR= MBR for speech, but can set GBR lower if PCRF looks at codec-specific parameters and determines the lowest operating rate of the codecs

	T.9
	118
	118
	194
	194
	Can not assume symmetric because simulcast is on uplink.  Assuming GBR= MBR for speech, but can set GBR lower if PCRF looks at codec-specific parameters and determines the lowest operating rate of the codecs

	T.10
	118
	118
	133.5
	133.5
	Can not assume symmetric because simulcast is on uplink.  Assuming GBR= MBR for speech, but can set GBR lower if PCRF looks at codec-specific parameters and determines the lowest operating rate of the codecs


Annex C:
Technical Background

C.1
General

This annex provides additional clarifying text and motivations for technical choices made in the solutions described by this technical report. Such detailed discussion may be hard to find a suitable place for within the use cases or proposed solutions (clause 6) and could also make the use case or solution text harder to read. This annex enables using a reference instead.

C.2
Simulcast Stream Identification
C.2.1
General
The way to specify simulcast in SDP [12] mandatorily references an identification method of simulcast RTP streams called "RtpStreamId" [44]. The reasons for this may not be obvious in those specifications and are therefore elaborated here.

Simulcast is defined as simultaneously sending multiple different representations of the same media source (content), for example by using different codecs. Other differences in representation, identified in [12] as applicable for simulcast purposes are, for example, sampling (spatial and/or temporal) and bandwidth. SDP aspects of those differences in representation are discussed in subsequent clauses.

IETF RFC 7656 [45] describes that an "m=" line in SDP should typically represent a single media source. Therefore, simulcast is typically localized semantically to a single "m=" line.

The "a=rid" line defines the simulcast identification in SDP and the corresponding RtpStreamId identifier is also present in the RTP stream itself, as described by [44]. RtpStreamId is an RTCP SDES item that is included in RTCP sender reports and can, if needed, also be included in RTP packets as an RTP SDES header extension. Use of RTP header extensions can be negotiated separately via the "a=extmap" SDP attribute.

C.2.2
Codec Identification in SDP
The codec format used by a certain RTP stream is specified in SDP by the "format" tags listed last on the "m=" line, which for RTP streams is mapped 1:1 to RTP payload types in the RTP header by including corresponding "a=rtpmap:<payload type> <codec tag>/<sampling rate>/<parameters>" lines under the "m=" line. The <codec tag> identifies the codec. Codecs are often flexible enough to allow some configuration. Codec configuration parameters are typically defined in a separate RTP payload format specification for that codec and can be tied to an RTP payload type by using corresponding "a=fmtp" lines under the "m=" line. Some other, codec-agnostic properties can also be tied to an RTP payload type through various "a=" lines, if their definition allows a reference to the SDP format. This suggests that it could be viable to use an RTP payload type to identify a simulcast RTP stream.
C.2.3
Sampling Identification in SDP

Sampling generally refers to the procedure to convert a continuous signal to a number of discrete samples. All media handled by SDP and RTP is digital and thus sampled in both spatial (room) and temporal (time) domains. What it means to sample and even how the sampled result is named, typically depends on what media type is sampled.

Temporal sampling for audio decides what audio frequency range, bandwidth, that can be represented by the sampled result. For example, wideband audio covering 50 – 7000 Hz typically uses 16 000 Hz sample rate. The <sampling rate> field on the "a=rtpmap" line (see clause X.2.2) describes the clock rate used by the timestamp field in the RTP header. This rate was historically often identical to the audio sampling rate, but there were deviations and some recently defined audio codecs also deviate from that principle. Therefore, there is no existing SDP information that uniquely identifies audio sampling rate and can be used with simulcast audio streams that differ in temporal sampling.

Temporal sampling for video decides how fluent motion can be represented by the sampled result. Sampling of video frames results in a certain video framerate, for example 30 or 50 frames per second (Hz). The existing "a=framerate" SDP attribute applies to video, but cannot be tied to a certain format and thus must be interpreted to apply to all codecs related to an "m=" line, which means that "a=framerate" cannot be used for simulcast video streams with different temporal sampling.

Spatial sampling for audio relates to the ability to represent an audible spatial position. This is in general related to the number of audio channels used to convey an audio media source representation. The number of audio channels is specified by the optional <parameters> field on the "a=rtpmap" line (see clause X.2.2) and is per default one (mono) if omitted. It can be noted that knowing the number of channels is not fully sufficient for multi-channel audio, but also the spatial channel configuration is needed for accurate representation of spatial positions. The number of audio channels can thus only to some extent be used with SDP format for simulcast audio streams that differ in spatial sampling.

Spatial sampling for video results in a certain horisontal and vertical video resolution, affecting the amount of visual detail that can be represented in a single (typically rectangular) video frame (or picture). Each spatial sample in the frame is a picture element, pixel. A video frame can consist of, for example, 1280 x 720 pixels. The "a=imageattr" SDP attribute can be used to specify video resolution, can be tied to an SDP format, and can thus be used to describe simulcast video streams that differ in spatial sampling.

C.2.4
Bandwidth Identification in SDP

The existing "b=" line in SDP describes bandwidth (or bitrate) and can be scoped apply to a certain "m=" line, but cannot be tied to a certain format and thus must be interpreted to apply to all codecs related to an "m=" line, which means that "b=" cannot be used for any simulcast streams with different bandwidth. However, the "a=bw-info" SDP attribute, defined by clause 19 in TS 26.114 [1], provides the possibility to relate an SDP format with a bandwidth and can thus be used for simulcast streams that differ in bandwidth.

C.2.5
Simulcast Usage for WebRTC

C.2.5.1
General

Simulcast, as specified by IETF, should be possible to use in all applicable IETF contexts, including WebRTC. One important aspect of WebRTC is to use as few transport resources as possible, even if many simultaneous media streams are used. WebRTC is designed to be an end-to-end protocol, which, for example, means that the typical conferencing scenario does not involve any central conferencing equipment and each participant contributes to such distributed conference with its own media streams. Conferences with a few tens of participants, each contributing with up to a handful of streams, should not be an unreasonable scenario. WebRTC is also designed for use with NAT and firewalls, where it is a cost to use many UDP ports. One way to save resources in that context is thus to use the same UDP port for all RTP and RTCP streams to and from a WebRTC client. In terms of SDP, this includes using the same port for all "m=" lines.

C.2.5.2
RTP Payload Type Uniqueness

Since all "m=" lines use the same port, the RTP payload type definitions, in terms of what codec and configuration parameters they describe, can no longer be scoped by UDP port and must thus be aligned across the entire SDP. Each different codec and configuration combination consequently requires the use of an RTP payload type that is unique across the entire SDP.

C.2.5.3
RTP Payload Type Depletion

When many simultaneous and independent streams are used, for example in a multi-party conference, each participant could resonably need to use a handful of RTP payload types for the streams it sends. The RTP payload type number space is limited by the 7 bits allocated to it in the RTP header, corresponding to 128 values (0-127). Some parts of that number space are not usable to avoid emulation of RTCP packet headers, which is in turn caused by the WebRTC decision to always use the same UDP port for RTP and RTCP. As a result, only 96 values are safe to use. If every participant in a conference uses different codec and configuration combinations for a handful of streams, the entire usable RTP payload type space would be depleted at about 20 participants.

If RTP payload type alone would be used as simulcast stream identification, any use of simulcast would worsen this RTP payload type depletion problem.

C.2.6
Conclusion

There are a few simulcast stream representation configurations that cannot be described in SDP in the context of an "m=" line today, which requires use of one or more new SDP constructs, but preferably as few as possible.

While there is hardly any risk to run out of RTP payload types when they are scoped to an SDP "m=" line by separate UDP ports, there is a real risk when all "m=" lines use the same UDP port and also use RTP/RTCP multiplexing to save NAT and firewall resources.

The RtpStreamId [44] identifier provides a single solution that mitigates both of the above problems for simulcast streams, by introducing a level of indirection compared to using RTP payload type directly, and by allowing to attribute a set of stream representation characteristics to an RtpStreamId, applicable for use in simulcast context. Using RtpStreamId in an RTP header extension is needed when multiple RtpStreamId use the same RTP payload type, and when at the same time there is a risk that no RTCP sender reports carrying RtpStreamId have reached the receiver yet.
While RtpStreamId is clearly not needed for every use of simulcast, it is hard to motivate use of different identification methods depending on how simulcast streams are configured. It is also hard to motivate the specification and implementation complexity that comes with describing and selecting such different identification methods being used for different conditions.
Annex D:
Change history
	Change history

	Date
	TSG SA#
	TSG Doc.
	CR
	Rev
	Subject/Comment
	Old
	New

	2015-12
	70
	SP-150661
	
	
	Presented to TSG SA#70 for approval
	
	1.0.0

	2015-12
	70
	SP-150814
	
	
	TR number included. Presented to TSG SA#70 for approval
	1.0.0
	1.0.1

	2015-12
	70
	
	
	
	Approved at TSG 70
	1.0.1
	13.0.0


	Change history

	Date
	Meeting
	TDoc
	CR
	Rev
	Cat
	Subject/Comment
	New version

	2016-09
	73
	SP-160597
	0001
	-
	C
	Addition of codec migration use case
	14.0.0

	2016-09
	73
	SP-160597
	0002
	2
	C
	Querying and exchanging codec capabilities for MMCMH
	14.0.0

	2016-09
	73
	SP-160597
	0003
	2
	C
	Update to Compact CCC SDP Attribute
	14.0.0

	2016-12
	74
	SP-160772
	0004
	2
	F
	Correction to Compact Concurrent Codec Capabilities SDP ABNF
	14.1.0

	2016-12
	74
	SP-160772
	0005
	1
	B
	Compact Concurrent Codec Capabilities SDP Usage for MMCMH Session Initiation
	14.1.0

	2016-12
	74
	SP-160772
	0006
	3
	C
	Common Codec Identification and Usage
	14.1.0

	2016-12
	74
	SP-160772
	0007
	-
	C
	MSMTSI MRF handling with reduced m-lines
	14.1.0

	2016-12
	74
	SP-160772
	0008
	-
	C
	Clarifications on Use of RtpStreamId Identifier for Simulcast
	14.1.0

	2016-12
	74
	SP-160772
	0009
	-
	B
	QoS for MMCMH Sessions
	14.1.0


_1527943792.vsd
�

MRF



_1527943803.vsd
�

Conference initiator





image1.jpeg








