3GPP TS 32.613 V5.1.0 (2003-03)
Technical Specification

3rd Generation Partnership Project;

Technical Specification Group Services and System Aspects;

Telecommunication management;

Configuration Management (CM);

Bulk CM Integration Reference Point (IRP);

CORBA solution set

 (Release 5)
[image: image1.jpg]K oy

The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.

The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.

This Specification is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification.
Specifications and reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.

Keywords

UMTS, Management

3GPP

Postal address

3GPP support office address

650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet

http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© 2003, 3GPP Organizational Partners (ARIB, CWTS, ETSI, T1, TTA, TTC).

All rights reserved.

Contents

4Foreword

Introduction
4
1
Scope
5
2
References
5
3
Definitions and abbreviations
6
3.1
Definitions
6
3.2
Abbreviations
6
3.3
IRP document version number string
6
4
Mapping
7
4.1
General Mappings
7
4.2
Operation and Notification mapping
7
4.3
Operation Parameter Mapping
7
4.4
Notification parameter mapping
10
4.5
Two modes of operations
13
4.6
Mapping from IS State Names to SS equivalents
13
5
BulkCMIRPNotifications Interface
13
5.1
Method push (M)
13
Annex A (normative):
IDL: BulkCmIRPConstDefs
15
Annex B (normative):
IDL: BulkCmIRPSystem
19
Annex C (informative):
Change history
25

Foreword

This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x
the first digit:

1
presented to TSG for information;

2
presented to TSG for approval;

3
or greater indicates TSG approved document under change control.

y
the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.

z
the third digit is incremented when editorial only changes have been incorporated in the document.

Introduction

Configuration Management (CM), in general, provides the operator with the ability to assure correct and effective operation of the 3G network as it evolves. CM actions have the objective to control and monitor the actual configuration on the Network Element (NEs) and Network Resources (NRs), and they may be initiated by the operator or functions in the Operations Systems (OSs) or NEs.

CM actions may be requested as part of an implementation programme (e.g. additions and deletions), as part of an optimisation programme (e.g. modifications), and to maintain the overall Quality of Service. The CM actions are initiated either as a single action on a NE of the 3G network or as part of a complex procedure involving actions on many NEs.

1
Scope

The purpose of this Bulk CM IRP: CORBA Solution Set is to define the mapping of the IRP information service (see 3GPP TS 32.612 [3]) to the protocol specific details necessary for implementation of this IRP in a CORBA/IDL environment.

The present document does not describe any Network Resource Model (NRM) – they are described in Generic Network Resources IRP: NRM 3GPP TS 32.622 [4], UTRAN Network Resources IRP: NRM 3GPP TS 32.642 [11], GERAN Network Resources IRP: NRM 3GPP TS 32.652 [12].

This Solution Set specification is related to 3GPP TS 32.612 V5.0.X.
2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

· References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

· For a specific reference, subsequent revisions do not apply.

· For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TS 32.101: "Telecommunication management; Principles and high level requirements".

[2]
3GPP TS 32.102: "Telecommunication management; Architecture".

[3]
3GPP TS 32.612: "Telecommunication management; Configuration Management (CM); Bulk CM Integration Reference Point (IRP); Information service".

[4]
3GPP TS 32.622: "Telecommunication management; Configuration Management (CM); Generic network resources Integration Reference Point (IRP): Network Resource Model (NRM)".
[5]
3GPP TS 32.300: "Telecommunication management; Configuration Management (CM); Name convention for Managed Objects".
[6]
OMG Notification Service, Version 1.0.
[7]
OMG CORBA services: Common Object Services Specification, Update: November 22, 1996.
[8]
The Common Object Request Broker: Architecture and Specification (for specification of valid version, see [1]).
[9]
3GPP TS 32.303: "Telecommunication management; Configuration Management (CM); Notification Integration Reference Point; CORBA solution set".
[10]
3GPP TS 32.111-3: "Telecommunication management; Fault Management; Part 3: Alarm Integration Reference Point: CORBA solution set".

[11]
3GPP TS 32.642: "Telecommunication management; Configuration Management (CM); UTRAN network resources Integration Reference Point (IRP): Network Resource Model (NRM)".
[12]
3GPP TS 32.652: "Telecommunication management; Configuration Management (CM); GERAN network resources Integration Reference Point (IRP): Network Resource Model (NRM)".

[13]
3GPP TS 32.312: "Telecommunication management; Generic Integration Reference Point (IRP) management; Information service".

3
Definitions and abbreviations

3.1
Definitions

For terms and definitions please refer to 3GPP TS 32.101 [1], 3GPP TS 32.102 [2], 3GPP TS 32.612 [3], 3GPP TS 32.622 [4], 3GPP TS 32.642 [11] and 3GPP TS 32.652 [12].

· IRP document version number string (or "IRPVersion"): See 3GPP TS 32.312 [13].

3.2
Abbreviations

For the purposes of the present document, the following abbreviations apply:

CORBA
Common Object Request Broker Architecture

DN
Distinguished Name

IS
Information Service

IDL
Interface Definition Language (OMG)

IRP
Integration Reference Point

MO
Managed Object

MOC
Managed Object Class

NRM
Network Resource Model

OMG
Object Management Group

SS
Solution Set

3.3
IRP document version number string

The IRP document version number (sometimes called "IRPVersion" or "version number") string is used to identify this specification. The string is derived using a rule described in definition "IRP document version number string".

This string is returned in getBulkCmIRPVersion method and is carried in the first field of the notification header of all notifications related to this IRP.

Take the 3GPP document number on the front page of this specification, such as "3GPP TS 32.613 V5.0.0 (2002-09)". Discard the leading "3GPP TS ". Discard all characters after and including the last period. Eliminate leading and trailing spaces. Reduce multiple consecutive spaces with one space. Express the resultant in a string. Capitalised the string. For example, if the 3GPP document version number is "3GPP TS 32. 613 V5.0.0 (2002-09)", then the IRP document version number shall be "32.613 V5.0".

4
Mapping

4.1
General Mappings

All MOs are arranged in a containment structure, according to the containment relations defined in the NRM. This structure is held internally by the IRPAgent. Externally, the MO containment structure is defined by the semantics in the distinguished name syntax. The distinguished name (DN) for a MO contains the distinguished name of the parent plus the Relative DN for the MO itself.

Associations as defined in the NRM (UML) are in this document mapped to attributes in the MIB. The names of the roles for an association in the NRM are used for defining attribute names in the MIB. When the cardinality for a role is 0..1 or 1..1 the datatype for the attribute is defined as a MO reference. The value of a MO reference contains the distinguished name of the referred MO. When the cardinality for a role allows more than one referred MO instances, the attribute will contain a sequence of MO references (i.e., DNs).

4.2
Operation and Notification mapping

The IS part of Bulk CM: IRP defines semantics of operations and notifications visible across the Bulk Configuration IRP. The table below indicates mapping of these operations and notifications to their equivalents defined in this document.

Table 1: Mapping from IM Notification/Operation to SS equivalents

	IS Operation/ notification
	SS Method
	Qualifier

	startSession
	start_session
	M

	endSession
	end_session
	M

	upload
	upload
	M

	download
	download
	M

	activate
	activate
	M

	getSessionStatus
	get_session_status
	M

	getSessionIds
	get_session_ids
	M

	getSessionLog
	get_session_log
	M

	fallback
	fallback
	M

	abortSessionOperation
	abort_session_operation
	M

	getIRPVersion
	get_bulk_CM_IRP_versions
	M

	notifySessionStateChanged
	push_structured_event

Note that OMG Notification Service OMG Notification Service [1] defines this method.

See clause 5.1
	M

	notifyGetSessionLogEnded
	push_structured_event

Note that OMG Notification Service OMG Notification Service [1] defines this method.

See clause 5.1.
	M

	preactivate
	preactivate
	O

	validate
	validate
	O

	getOperationProfile
	get_bulk_CM_IRP_operation_profile
	O

	getNotificationProfile
	get_bulk_CM_IRP_notification_profile
	O

4.3
Operation Parameter Mapping

Reference Bulk CM IRP; Information Service [3] defines semantics of parameters carried in operations. The tables below indicate the mapping of these parameters, as per operation, to their equivalents defined in this SS.

Table 2: Mapping from IS startSession parameters to SS equivalents

	IS Operation parameter
	SS parameter
	Qualifier

	sessionId
	BulkCmIRPConstDefs::SessionId session_id
	M

	status
	exception StartSessionException, exception SessionIdInUseException, exception MaxSessionReachedException, exception ManagedGenericIRPSystem::InvalidParameter
	M

Table 3: Mapping from IS endSession parameters to SS equivalents

	IS Operation parameter
	SS Method parameter
	Qualifier

	sessionId
	BulkCmIRPConstDefs::SessionId session_id
	M

	status
	exception EndSessionException, exception UnknownSessionIdException, exception NotValidInCurrentStateException, exception ManagedGenericIRPSystem::InvalidParameter
	M

Table 4: Mapping from IS upload parameters to SS equivalents

	IS Operation parameter
	SS Method parameter
	Qualifier

	sessionId
	BulkCmIRPConstDefs::SessionId session_id
	M

	uploadDataFile Reference
	BulkCmIRPConstDefs::FileDestination sink
	M

	baseObjectInstance
	BulkCmIRPConstDefs::DistinguishedName base_object
	M

	scope, filter
	BulkCmIRPConstDefs::SearchControl search_control
	M

	status
	exception UploadException, exception UnknownSessionIdException, exception MaxSessionReachedException, exception NotValidInCurrentStateException, exception ConcurrencyException, exception IllegalDNFormatException, exception IllegalFilterFormatException, exception IllegalScopeTypeException, exception IllegalScopeLevelException, exception IllegalURLFormatException, exception ManagedGenericIRPSystem::InvalidParameter
	M

	NOTE:
The IllegalURLFormatException does not imply that the transfer protocol used must be a URL. The transfer protocol is dependant on the file format definition, i.e. in the case of XML, FileDestination will be a URL.

Table 5: Mapping from IS download parameters to SS equivalents

	IS Operation parameter
	SS Method parameter
	Qualifier

	sessionId
	BulkCmIRPConstDefs::SessionId session_id
	M

	downloadDataFileReference
	BulkCmIRPConstDefs::FileDestination source
	M

	status
	exception DownloadException, exception UnknownSessionIdException, exception MaxSessionReachedException, exception NotValidInCurrentStateException, exception IllegalURLFormatException, exception ManagedGenericIRPSystem::InvalidParameter
	M

	NOTE:
The IllegalURLFormatException does not imply that the transfer protocol used must be a URL. The transfer protocol is dependant on the file format definition, i.e. in the case of XML, FileDestination will be a URL.

Table 6: Mapping from IS activate parameters to SS equivalents

	IS Operation parameter
	SS Method parameter
	Qualifier

	sessionId
	BulkCmIRPConstDefs::SessionId session_id
	M

	activationMode
	BulkCmIRPConstDefs::ActivationModeTypeOpt activation_mode
	O

	fallbackEnabled
	boolean fallback
	M

	status
	exception ActivateException, exception UnknownSessionIdException, exception NotValidInCurrentStateException, exception ConcurrencyException, exception IllegalActivationModeException, exception ManagedGenericIRPSystem::ParameterNotSupported, exception ManagedGenericIRPSystem::InvalidParameter
	M

Table 7: Mapping from IS fallback parameters to SS equivalents

	IS Operation parameter
	SS Method parameter
	Qualifier

	sessionId
	BulkCmIRPConstDefs::SessionId session_id
	M

	status
	exception FallbackException, exception UnknownSessionIdException, exception NoFallbackException, exception NotValidInCurrentStateException, exception ConcurrencyException, exception ManagedGenericIRPSystem::InvalidParameter
	M

Table 8: Mapping from IS abortSessionOperation parameters to SS equivalents

	IS Operation parameter
	SS Method parameter
	Qualifier

	sessionId
	BulkCmIRPConstDefs::SessionId session_id
	M

	status
	exception AbortSessionOperationException, exception UnknownSessionIdException, exception NotValidInCurrentStateException, exception ManagedGenericIRPSystem::InvalidParameter
	M

Table 9: Mapping from IS getSessionIds parameters to SS equivalents

	IS Operation parameter
	SS Method parameter
	Qualifier

	sessionIdList
	return of type BulkCmIRPConstDefs::SessionIdList
	M

	status
	exception GetSessionIdsException, exception ManagedGenericIRPSystem::InvalidParameter
	M

Table 10: Mapping from IS getSessionStatus parameters to SS equivalents

	IS Operation parameter
	SS Method parameter
	Qualifier

	sessionId
	BulkCmIRPConstDefs::SessionId session_id
	M

	sessionState
	return of type BulkCmIRPConstDefs::SessionState
	M

	Not specified in IS
	BulkCmIRPConstDefs::ErrorInformation error_information
	M

	status
	exception GetSessionStatusException, exception UnknownSessionIdException, exception ManagedGenericIRPSystem::InvalidParameter
	M

Table 11: Mapping from IS getSessionLog parameters to SS equivalents

	IS Operation parameter
	SS Method parameter
	Qualifier

	sessionId
	BulkCmIRPConstDefs::SessionId session_id
	M

	logFileReference
	BulkCmIRPConstDefs::FileDestination sink
	M

	contentType
	boolean only_error_info
	M

	status
	exception GetSessionLogException, exception UnknownSessionIdException, exception IllegalURLFormatException, exception ManagedGenericIRPSystem::InvalidParameter
	M

	NOTE:
The IllegalURLFormatException does not imply that the transfer protocol used must be a URL. The transfer protocol is dependant on the file format definition, i.e. in the case of XML, FileDestination will be a URL.

Table 12: Mapping from IS getBulkCmIRPVersion parameters to SS equivalents

	IS Operation parameter
	SS Method parameter
	Qualifier

	versionNumberList
	return of type ManagedGenericIRPConstDefs::VersionNumberSet
	M

	status
	exception GetBulkCmIRPVersionsException
	M

Table 13: Mapping from IS validate parameters to SS equivalents

	IS Operation parameter
	SS Method parameter
	Qualifier

	sessionId
	BulkCmIRPConstDefs::SessionId session_id
	M

	activationMode
	BulkCmIRPConstDefs::ActivationModeTypeOpt activation_mode
	O

	status
	exception ValidateException , exception UnknownSessionIdException, exception NotValidInCurrentStateException, exception ConcurrencyException, exception IllegalActivationModeException, exception ManagedGenericIRPSystem::ParameterNotSupported, exception ManagedGenericIRPSystem::InvalidParameter, exception ManagedGenericIRPSystem::OperationNotSupported
	M

Table 14: Mapping from IS preactivate parameters to SS equivalents

	IS Operation parameter
	SS Method parameter
	Qualifier

	sessionId
	BulkCmIRPConstDefs::SessionId session_id
	M

	verificationMode
	BulkCmIRPConstDefs::VerificationModeTypeOpt verification_mode
	O

	activationMode
	BulkCmIRPConstDefs::ActivationModeTypeOpt activation_mode
	O

	fallbackEnabled
	boolean fallback
	M

	status
	exception PreactivateException, exception UnknownSessionIdException, exception NotValidInCurrentStateException, exception ConcurrencyException, exception IllegalActivationModeException, exception IllegalVerificationModeException, exception ManagedGenericIRPSystem::ParameterNotSupported, exception ManagedGenericIRPSystem::InvalidParameter, exception ManagedGenericIRPSystem::OperationNotSupported
	M

Table 15: Mapping from IS getOperationProfile parameters to SS equivalents

	IS Operation parameter
	SS Method parameter
	Qualifier

	irpVersion
	ManagedGenericIRPConstDefs::VersionNumber bulk_CM_IRP_version
	M

	operationNameProfile, operationParameterProfile
	Return value of type ManagedGenericIRPConstDefs::MethodList
	M

	status
	Exceptions:

GetBulkCMIRPOperationProfileException,

ManagedGenericIRPSystem::OperationNotSupported,

ManagedGenericIRPSystem::InvalidParameter
	M

Table 16: Mapping from IS getNotificationProfile parameters to SS equivalents

	IS Operation parameter
	SS Method parameter
	Qualifier

	irpVersion
	ManagedGenericIRPConstDefs::VersionNumber bulk_CM_IRP_version
	M

	notificationNameProfile, notificationParameterProfile
	Return value of type ManagedGenericIRPConstDefs::MethodList
	M

	status
	Exceptions:

GetBulkCMIRPNotificationProfileException,

ManagedGenericIRPSystem::OperationNotSupported,

ManagedGenericIRPSystem::InvalidParameter
	M

4.4
Notification parameter mapping

Reference 3G TS 32.612 [3] defines semantics of parameters carried in notifications. The following tables indicate the mapping of these parameters to their OMG CORBA Structured Event (defined in OMG Notification Service [6]) equivalents. The composition of OMG Structured Event, as defined in the OMG Notification Service [6], is:

Header

 Fixed Header

 domain_name

 type_name

 event_name

 Variable Header

Body

 filterable_body_fields

 remaining_body
The following tables list all OMG Structured Event attributes in the second column. The first column identifies the Bulk CM IRP: IS [3] defined notification parameters.

Table 17: Mapping from IS notifyGetSessionLogEnded parameters to SS equivalents

	IS Parameter
	OMG CORBA Structured Event Attribute
	Qualifier
	Comment

	There is no corresponding IS attribute.
	domain_name
	M
	It carries the IRP document version number string. See sub-clause 3.3.

It indicates the syntax and semantics of the Structured Event as defined by this specification.

	notificationType
	type_name
	M
	It carries the string NOTIFY_GET_SESSION_LOG_ENDED.

	sessionLogStatus
	event_name
	M
	It carries either the string GET_SESSION_LOG_COMPLETED_SUCCESSFULLY or

GET_SESSION_LOG_COMPLETED_UNSUCCESSFULLY. In the case of the latter, the NV pair indicating ERROR_INFORMATION may be present.

	There is no corresponding IS parameter
	Variable Header
	
	

	managedObjectClass, managedObjectInstance
	One NV pair of filterable_body_fields
	M
	NV stands for name-value pair. Order arrangement of NV pairs is not significant. The name of NV-pair is always encoded in string.

Name of NV pair is the MANAGED_OBJECT_INSTANCE of interface AttributeNameValue of module NotificationIRPConstDefs.

Value of NV pair is a string. See encoding of this string in [5].

These are attributes of Header defined in the IS.

	notificationId
	One NV pair of filterable_body_fields
	M
	Name of NV pair is the NOTIFICATION_ID of interface AttributeNameValue of module NotificationIRPConstDefs.

Value of NV pair is a long.

This is an attribute of Header defined in the IS.

	eventTime
	One NV pair of filterable_body_fields
	M
	Name of NV pair is the EVENT_TIME of interface AttributeNameValue of module NotificationIRPConstDefs.

Value of NV pair is a IRPTime.

This is an attribute of Header of the IS.

	systemDN
	One NV pair of filterable_ body_fields
	M
	Name of NV pair is the SYSTEM_DN of interface AttributeNameValue of module NotificationIRPConstDefs.

Value of NV pair is a string.

This is an attribute of Header defined in the IS.

	sessionId
	One NV pair of filterable_ body_fields
	M
	Name of NV pair is the SESSION_ID of interface AttributeNameValue of module BulkCMIRPConstDefs.

Value of NV pair is a string.

	sourceIndicator
	One NV pair of filterable_ body_fields
	O
	Name of NV pair is the SOURCE_INDICATOR of interface AttributeNameValue of module BulkCMIRPConstDefs.

Value of NV pair is a string.

	There is no corresponding IS attribute.
	One NV pair of filterable_ body_fields
	
	Name of NV pair is the ERROR_INFORMATION of interface AttributeNameValue of module BulkCMIRPConstDefs.

Value of NV pair is a string.

Table 18: Mapping from IS notifySessionStateChanged parameters to SS equivalents

	IS Parameter
	OMG CORBA Structured Event attribute
	Qualifier
	Comment

	There is no corresponding IS attribute
	domain_name
	M
	It carries the IRP document version number string. See sub-clause 3.3.

It indicates the syntax and semantics of the Structured Event as defined by this specification.

	notificationType
	type_name
	M
	It carries the string NOTIFY_SESSION_STATE_CHANGED.

This is an attribute of Header defined in the IS.

	sessionState
	event_name
	M
	It carries one of the following:

Upload_Failed

Upload_Completed,

Download_Failed,

Download_Completed,

Activation_Failed,

Activation_Partly_Realised,

Activation_Completed,

Fallback_Failed,

Fallback_Partly_Realised,

Fallback_Completed,

VALIDATION_FAILED,

VALIDATION_COMPLETED,

PREACTIVATION_FAILED,

PREACTIVATION_PARTLY_REALISED,

preaCTIVATION_completed
In the case of XXX_FAILED and XXX_PARTLY_REALISED, the NV pair indicating ERROR_INFORMATION may be present.

	There is no corresponding IS attribute
	Variable Header
	
	

	managedObjectClass, managedObjectInstance
	One NV pair of filterable_body_fields
	M
	NV stands for name-value pair. Order arrangement of NV pairs is not significant. The name of NV-pair is always encoded in string.

Name of NV pair is the MANAGED_OBJECT_INSTANCE of interface AttributeNameValue of module NotificationIRPConstDefs.

Value of NV pair is a string. See encoding of this string in [5].

These are attributes of Header defined in the IS.

	notificationId
	One NV pair of filterable_body_fields
	M
	Name of NV pair is the NOTIFICATION_ID of interface AttributeNameValue of module NotificationIRPConstDefs.

Value of NV pair is a long.

This is an attribute of Header defined in the IS.

	eventTime
	One NV pair of filterable_body_fields
	M
	Name of NV pair is the EVENT_TIME of interface AttributeNameValue of module NotificationIRPConstDefs.

Value of NV pair is a IRPTime.

This is an attribute of Header of the IS.

	systemDN
	One NV pair of filterable_body_fields
	M
	Name of NV pair is the SYSTEM_DN of interface AttributeNameValue of module NotificationIRPConstDefs.

Value of NV pair is a string.

This is an attribute of Header defined in the IS.

	sessionId
	One NV pair of filterable_body_fields
	M
	Name of NV pair is the SESSION_ID of interface AttributeNameValue of module BulkCMIRPConstDefs.

Value of NV pair is a string.

	sourceIndicator
	One NV pair of filterable_body_fields
	O
	Name of NV pair is the SOURCE_INDICATOR of interface AttributeNameValue of module BulkCMIRPConstDefs.

Value of NV pair is a string.

	There is no corresponding IS attribute.
	One NV pair of filterable_body_fields
	
	Name of NV pair is the ERROR_INFORMATION of interface AttributeNameValue of module BulkCMIRPConstDefs.

Value of NV pair is a string.

4.5
Two modes of operations

The upload, download, validate, preactivate, activate, get_session_log, and fallback are methods that use asynchronous mode of operation. The IRPManager uses the methods to request a task to be done. The IRPAgent, via the method return, indicates that it has understood the request and has begun to perform the task requested. When the IRPAgent has completed the requested task, either successfully or not, the IRPAgent will emit a notification, e.g., notifySessionStateChanged() defined in IS level and mapped to push() in SS level, to indicate the completion status of the requested task. If the IRPManager has subscribed (e.g., via the attach_push() of Notification IRP) for notifications, then the IRPManager will receive the notification.

The start_session, end_session, abort_session_operation, get_session_status, get_session_ids, get_bulk_CM_IRP_operation_profile, get_bulk_CM_IRP_notification_profile and get_bulkCM_IRP_version are methods that use synchronous mode of operation. The IRPManager uses these methods to request some information or a task to be done. The IRPAgent performs the requested task and, via the method return, indicates the requested information or if the requested task has completed successfully or not.

4.6
Mapping from IS State Names to SS equivalents

State names, as defined in the IS part of Bulk CM, consists of two sub-parts in this SS, namely SubPhase and SubState. The table below shows the mapping between these substates and the IS state name. All combinations of SubPhase and SubState not described below are considered invalid.

Table 19: Mapping from IS State Names to SS equivalents

	IS State Name
	SS SubPhase
	SS SubState

	IDLE
	IDLE_PHASE
	COMPLETED

	UPLOAD_FAILED
	UPLOAD_PHASE
	FAILED

	UPLOAD_IN_PROGRESS
	UPLOAD_PHASE
	IN_PROGRESS

	UPLOAD_COMPLETED
	UPLOAD_PHASE
	COMPLETED

	DOWNLOAD_FAILED
	DOWNLOAD_PHASE
	FAILED

	DOWNLOAD_IN_PROGRESS
	DOWNLOAD_PHASE
	IN_PROGRESS

	DOWNLOAD_COMPLETED
	DOWNLOAD_PHASE
	COMPLETED

	ACTIVATION_FAILED
	ACTIVATION_PHASE
	FAILED

	ACTIVATION_IN_PROGRESS
	ACTIVATION_PHASE
	IN_PROGRESS

	ACTIVATION_COMPLETED
	ACTIVATION_PHASE
	COMPLETED

	ACTIVATION_PARTLY_COMPLETED
	ACTIVATION_PHASE
	PARTLY_REALISED

	FALLBACK_FAILED
	FALLBACK_PHASE
	FAILED

	FALLBACK_IN_PROGRESS
	FALLBACK_PHASE
	IN_PROGRESS

	FALLBACK_COMPLETED
	FALLBACK_PHASE
	COMPLETED

	FALLBACK_PARTLY_COMPLETED
	FALLBACK_PHASE
	PARTLY_REALISED

	VALIDATION_FAILED
	VALIDATION_PHASE
	FAILED

	VALIDATION_IN_PROGRESS
	VALIDATION_PHASE
	IN_PROGRESS

	VALIDATION_COMPLETED
	VALIDATION_PHASE
	COMPLETED

	PREACTIVATION_FAILED
	PREACTIVATION_PHASE
	FAILED

	PREACTIVATION_IN_PROGRESS
	PREACTIVATION_PHASE
	IN_PROGRESS

	PREACTIVATION_COMPLETED
	PREACTIVATION_PHASE
	COMPLETED

	PREACTIVATION_PARTLY_COMPLETED
	PREACTIVATION_PHASE
	PARTLY_REALISED

5
BulkCMIRPNotifications Interface

OMG CORBA Notification push operation is used to realise the notification of BulkCMIRPNotifications. All the notifications in this interface are implemented using this push_structured_event method.

5.1
Method push (M)

module CosNotifyComm {

…

Interface SequencePushConsumer : NotifyPublish {

void push_structured_events(

in CosNotification::EventBatch notifications)

raises(CosEventComm::Disconnected);

…

}; // SequencePushConsumer

…

}; // CosNotifyComm

NOTE 1:
The push_structured_events method takes an input parameter of type EventBatch as defined in the OMG CosNotification module (OMG Notification Service [6]). This data type is the same as a sequence of Structured Events. Upon invocation, this parameter will contain a sequence of Structured Events being delivered to IRPManager by IRPAgent to which it is connected.

NOTE 2:
The maximum number of events that will be transmitted within a single invocation of this operation is controlled by IRPAgent wide configuration parameter.

NOTE 3:
The amount of time the supplier (IRPAgent) of a sequence of Structured Events will accumulate individual events into the sequence before invoking this operation is controlled by IRPAgent wide configuration parameter as well.

NOTE 4:
IRPAgent may push EventBatch with only one Structured Event.

Annex A (normative):
IDL: BulkCmIRPConstDefs

#ifndef BulkCmIRPConstDefs_IDL

#define BulkCmIRPConstDefs_IDL

// This statement must appear after all include statements

#pragma prefix "3gppsa5.org"

/* ## Module: BulkCmIRPConstDefs

This module contains type definitions for the Bulk CM IRP

==

*/

module BulkCmIRPConstDefs

{

 /*

 This block identifies the notification types defined by

 this Bulk CM IRP version.

 This string is used in the second field of the Structured

 Event.

 */

 interface NotificationType

 {

 const string NOTIFY_SESSION_STATE_CHANGED = "x1";

 const string NOTIFY_GET_SESSION_LOG_ENDED = "x2";

 };

 /*

 This block assigns value for the name of the NV of the Structured Event.

 */

 interface AttributeNameValue

 {

 const string SESSION_ID = "k";

 const string SOURCE_INDICATOR = "m";

 const string ERROR_INFORMATION = "n";

 };

 /*

 This block defines all possible values for sessionState.

 One of these strings appear in the event_name of the

 Structured Event of notifySessionStateChanged notification.

 */

 interface SessionStateChangeNotification

 {

 const string UPLOAD_FAILED = "x1";

 const string UPLOAD_COMPLETED = "x2";

 const string DOWNLOAD_FAILED = "x3";

 const string DOWNLOAD_COMPLETED = "x4";

 const string ACTIVATION_FAILED = "x5";

 const string ACTIVATION_PARTLY_REALISED = "x6";

 const string ACTIVATION_COMPLETED = "x7";

 const string FALLBACK_FAILED = "x8";

 const string FALLBACK_PARTLY_REALISED = "x9";

 const string FALLBACK_COMPLETED = "x10";

 const string VALIDATION_FAILED = "x11";

 const string VALIDATION_COMPLETED = "x12";

 const string PREACTIVATION_FAILED = "x13";

 const string PREACTIVATION_PARTLY_REALISED = "x14";

 const string PREACTIVATION_COMPLETED = "x15";

 };

 /*

 This block defines all possible values for sessionLogStatus

 One of these strings appear in the event_name of the Structured

 Event of notifyGetSessionLogEnded notification.

 */

 interface LogStateNotification

 {

 const string GET_SESSION_LOG_COMPLETED_SUCCESSFULLY = "x1";

 const string GET_SESSION_LOG_COMPLETED_UNSUCESSFULLY = "x2";

 };

 /*

 For each started configuration session a unique identifier is generated

 by the IRPManager. An sessionId can not be used for an upload if it is

 already in use of a download configuration and vice versa.

 */

 typedef string SessionId;

 /*

 This string field is used in order to provide additional error information

 if an operation has failed.

 */

 typedef string ErrorInformation;

 /*

 Defines the different subphases of a configuration session

 e.g. thus it is easy to implement a detection of an upload

 or a download/activate session.

 */

 enum SubPhase {IdlePhase, DownloadPhase, UploadPhase, ActivationPhase,

 FallbackPhase, PreactivationPhase, ValidationPhase};

 /*

 Defines the different substates of a configuration session. This includes

 the transition state as well.

 */

 enum SubState {Completed, Failed, PartlyRealised, InProgress};

 /*

 Defines state of a configuration session with the phase and the substate

 of the configuration.

 */

 struct SessionState

 {

 SubPhase sub_phase;

 SubState sub_state;

 };

 /*

 Contains the list of all current sessionIds

 */

 typedef sequence <BulkCmIRPConstDefs::SessionId> SessionIdList;

 /*

 Specifies a complete destination path (including filename).

 */

 typedef string FileDestination;

 /*

 The format of Distinguished Name is specified in

 the Naming Conventions for Managed Objects; 3G TS 32.300 Annex H.

 e.g. "SubNetwork=10001,ManagedElement=400001" identifies an

 G3ManagedElement instance of the object model.

 */

 typedef string DistinguishedName;

 /*

 Used within the upload method to give filter critera

 */

 typedef string FilterType;

 /*

 Defines the kind of scope to use in a search together with

 SearchControl.level, in a SearchControl value.

 SearchControl.level is always >= 0. If a level is bigger than the

 depth of the tree there will be no exceptions thrown.

 */

 enum ScopeType {BaseOnly, BaseNthLevel, BaseSubtree, BaseAll};

 /*

 Controls the searching for MOs during upload, and contains:

 the type of scope ("type" field),

 the level of scope ("level" field),

 the filter ("filter" field),

 The type and level fields are mandatory.

 The filter field is mandatory (The filter will have to be

 set to an empty string if it has no other value).

 */

 struct SearchControl

 {

 ScopeType type;

 unsigned long level;

 FilterType filter;

 };

 /*

 This indicates how the activation is executed, either with least service

 impact or least elapsed time.

 */ enum ActivationMode {LeastServiceImpact, LeastElapsedTime};

 /*

 This indicates the level of verification of bulk configuration data done,

 either full or limited checking.

 */ enum VerificationMode {FullChecking, LimitedChecking};

 /* ActivationModeTypeOpt is a type carrying an optional parameter.

 If the boolean is TRUE, the value is present.

 Otherwise, the value is absent.

 */
 union ActivationModeTypeOpt switch(boolean)

 {

 case TRUE: ActivationMode activation_mode;

 };

 /* VerificationModeTypeOpt is a type carrying an optional parameter.

 If the boolean is TRUE, the value is present.

 Otherwise, the value is absent.

 */
 union VerificationModeTypeOpt switch(boolean)

 {

 case TRUE: VerificationMode verification_mode;

 };

};

#endif

Annex B (normative):
IDL: BulkCmIRPSystem

#ifndef BulkCmIRPSystem_IDL

#define BulkCmIRPSystem_IDL

#include "BulkCmIRPConstDefs.idl"

#include "ManagedGenericIRPConstDefs.idl"

#include "ManagedGenericIRPSystem.idl"

// This statement must appear after all include statements

#pragma prefix "3gppsa5.org"

/* ## Module: BulkCmIRPSystem

This module implements capabilities of Bulk CM IRP.

==

*/

module BulkCmIRPSystem

{

 /*

 The request cannot be processed due to a situation of concurrency.

 E.g. two concurrent activation requests involving the same ManagedElement

 instance. The semantics carried in reason is outside the scope of this IRP.

 */

 exception ConcurrencyException { string reason; };

 /*

 The provided filter is malformed or invalid. The semantics carried in reason

 is outside the scope of this IRP.

 */

 exception IllegalFilterFormatException { string reason; };

 /*

 The provided Distinguished Name is malformed or invalid. The semantics

 carried in reason is outside the scope of this IRP.

 */

 exception IllegalDNFormatException { string reason; };

 /*

 The provided scope type is illegal. The semantics carried in reason is

 outside the scope of this IRP.

 */

 exception IllegalScopeTypeException { string reason; };

 /*

 The provided scope level is illegal. The semantics carried in reason is

 outside the scope of this IRP.

 */

 exception IllegalScopeLevelException { string reason; };

 /*

 The request cannot be processed because no fallback data is available, i.e.

 fallback capability was previously not asked for.

 */

 exception NoFallbackException {};

 /*

 The provided sessionId value is already used for another configuration

 session. The semantics carried in reason is outside the scope of this IRP.

 */

 exception SessionIdInUseException { string reason; };

 /*

 The provided URL is malformed or invalid. The semantics carried in reason is

 outside the scope of this IRP.

 */

 exception IllegalURLFormatException{ string reason; };

 /*

 The provided sessionId value does not identify any existing configuration

 session.

 */

 exception UnknownSessionIdException {};

 /*

 The request cannot be processed because it is not valid in the current state

 of the configuration session.

 */

 exception NotValidInCurrentStateException

 {

 BulkCmIRPConstDefs::SessionState current_state;

 };

 /*

 The request cannot be processed because the maximum number of simultaneously

 running configuration sessions has been reached. The semantics carried in

 reason is outside the scope of this IRP.

 */

 exception MaxSessionReachedException { string reason; };

 /*

 The provided ActivationMode type is illegal. The semantics carried in reason

 is outside the scope of this IRP.

 */

 exception IllegalActivationModeException { string reason; };

 /*

 The provided VerificationMode type is illegal. The semantics carried in

 reason is outside the scope of this IRP.

 */

 exception IllegalVerificationModeException { string reason; };

 /*

 System otherwise fails to complete the operation. System can provide reason

 to qualify the exception. The semantics carried in reason

 is outside the scope of this IRP.

 */

 exception GetBulkCmIRPVersionsException { string reason; };

 exception UploadException { string reason; };

 exception DownloadException { string reason; };

 exception ActivateException { string reason; };

 exception ValidateException { string reason; };

 exception PreactivateException { string reason; };

 exception GetBulkCMIRPOperationProfileException { string reason; };

 exception GetBulkCMIRPNotificationProfileException { string reason; };

 exception GetSessionLogException { string reason; };

 exception StartSessionException { string reason; };

 exception GetSessionStatusException { string reason; };

 exception FallbackException { string reason; };

 exception EndSessionException { string reason; };

 exception AbortSessionOperationException { string reason; };

 exception GetSessionIdsException { string reason; };

 /*

 Defines the System interface of a EM. It defines all methods which are

 necessary to control a configuration session from a IRPManager.

 */

 interface BulkCmIRP

 {

 /*

 Return the list of all supported Bulk CM IRP versions.

 */

 ManagedGenericIRPConstDefs::VersionNumberSet get_bulk_CM_IRP_versions (

)

 raises (GetBulkCmIRPVersionsException);

 /*

 Return the list of all supported operations and their supported

 parameters for a specific BulkCM IRP version.

 */

 ManagedGenericIRPConstDefs::MethodList get_bulk_CM_IRP_operation_profile (

 in ManagedGenericIRPConstDefs::VersionNumber bulk_CM_IRP_version

)

 raises (GetBulkCMIRPOperationProfileException,

 ManagedGenericIRPSystem::OperationNotSupported,

 ManagedGenericIRPSystem::InvalidParameter);

 /*

 Return the list of all supported notifications and their supported

 parameters for a specific BulkCM IRP version.

 */

 ManagedGenericIRPConstDefs::MethodList

 get_bulk_CM_IRP_notification_profile

 (

 in ManagedGenericIRPConstDefs::VersionNumber bulk_CM_IRP_version

)

 raises (GetBulkCMIRPNotificationProfileException,

 ManagedGenericIRPSystem::OperationNotSupported,

 ManagedGenericIRPSystem::InvalidParameter);

 /*

 Uploads a configuration from the subnetwork. The result is put in a

 configuration data file in an area specified by the IRPManager.

 The MIB of the subnetwork is iterated by means of containment search,

 using a SearchControl to control the search and the returned results.

 All MOs in the scope constitutes a set that the filter works on.

 In case of a concurrent running session the function will

 return an exception. If the value of the given baseObject or FilterType

 does not exist then this asynchronous error condition will be notified.

 */

 void upload (

 in BulkCmIRPConstDefs::SessionId session_id,

 in BulkCmIRPConstDefs::FileDestination sink,

 in BulkCmIRPConstDefs::DistinguishedName base_object,

 in BulkCmIRPConstDefs::SearchControl search_control

)

 raises (UploadException, UnknownSessionIdException,

 MaxSessionReachedException, NotValidInCurrentStateException,

 ConcurrencyException,

 IllegalDNFormatException, IllegalFilterFormatException,

 IllegalScopeTypeException, IllegalScopeLevelException,

 IllegalURLFormatException,

 ManagedGenericIRPSystem::InvalidParameter);

 /*

 Indicates the EM that it can download a configuration data file from

 a given configuration data file storage area. The EM will check the

 consistence of the configuration data and the software compatibilty.

 */

 void download (

 in BulkCmIRPConstDefs::SessionId session_id,

 in BulkCmIRPConstDefs::FileDestination source

)

 raises (DownloadException, UnknownSessionIdException,

 MaxSessionReachedException, NotValidInCurrentStateException,

 IllegalURLFormatException,

 ManagedGenericIRPSystem::InvalidParameter);

 /*

 Activates a previously downloaded and sucessfully parsed configuration

 inside a session. This means that the configuration will be introduced

 in the live sub-network. In case of a concurrent running session

 the function will return an exception.

 */

 void activate (

 in BulkCmIRPConstDefs::SessionId session_id,

 in BulkCmIRPConstDefs::ActivationModeTypeOpt activation_mode,

 in boolean fallback

)

 raises (ActivateException, UnknownSessionIdException,

 NotValidInCurrentStateException, ConcurrencyException,

 IllegalActivationModeException,

 ManagedGenericIRPSystem::ParameterNotSupported,
 ManagedGenericIRPSystem::InvalidParameter);

 /*

 Uploads a log from the subnetwork which is usally used for error

 analysis. The log is put in a logfile in the filesystem which can

 be accessed by the EM. If there are no log entries an empty log file

 is uploaded.

 */

 void get_session_log (

 in BulkCmIRPConstDefs::FileDestination sink,

 in BulkCmIRPConstDefs::SessionId session_id,

 in boolean only_error_info

)

 raises (GetSessionLogException, UnknownSessionIdException,

 IllegalURLFormatException,

 ManagedGenericIRPSystem::InvalidParameter);

 /*

 Creates an instance of the configuration session state machine. The

 IDLE_PHASE & COMPLETED is notified

 */

 void start_session (

 in BulkCmIRPConstDefs::SessionId session_id

)

 raises (StartSessionException, SessionIdInUseException,

 MaxSessionReachedException,

 ManagedGenericIRPSystem::InvalidParameter);

 /*

 Returns the state of a configuration session.

 */

 BulkCmIRPConstDefs::SessionState get_session_status (

 in BulkCmIRPConstDefs::SessionId session_id,

 out BulkCmIRPConstDefs::ErrorInformation error_information

)

 raises (GetSessionStatusException, UnknownSessionIdException,

 ManagedGenericIRPSystem::InvalidParameter);

 /*

 Actives a fallback area. Each time a configuration is activated a

 fallback area can be created, s. activate parameter.

 This area is backup of the complete configuration which can be

 restored by this method. The process is as follows:

 1. When the method activate(...,..., TRUE) is used,

 a copy of the valid area is taken before the activation

 of the new planned data has started. Only one fallback area can

 exists at a time for a specific scope of the subnetwork.

 2. When a fallback area is avilable and triggered by this method, the

 previous valid area is replaced with the data stored in

 the fall back area.

 If the EM detects that the former configuration has never been

 changed it returns an exception because it does not trigger an

 activation of the former data.

 */

 void fallback (

 in BulkCmIRPConstDefs::SessionId session_id

)

 raises (FallbackException, UnknownSessionIdException, NoFallbackException,

 NotValidInCurrentStateException, ConcurrencyException,

 ManagedGenericIRPSystem::InvalidParameter);

 /*

 The IRPManager invokes this operation to delete all its temporary

 entities and the related sessionId which belong to the scope of

 a configuration session. This includes the related error and log

 informationen too.

 */

 void end_session (

 in BulkCmIRPConstDefs::SessionId session_id

)

 raises (EndSessionException, UnknownSessionIdException,

 NotValidInCurrentStateException,

 ManagedGenericIRPSystem::InvalidParameter);

 /*

 The IRPManager invokes this operation to abort an active operation

 during a configuration session. It is only effecting

 a configuration session in state IN_PROGRESS. In this case the

 current session task is interrupted, e.g. the activating in progress,

 using best effort strategy, and a state change is notified

 */

 void abort_session_operation (

 in BulkCmIRPConstDefs::SessionId session_id

)

 raises (AbortSessionOperationException, UnknownSessionIdException,

 NotValidInCurrentStateException,

 ManagedGenericIRPSystem::InvalidParameter);

 /*

 Returns a list all sessionIds of current running configuration sessions.

 */

 BulkCmIRPConstDefs::SessionIdList get_session_ids (

)

 raises (GetSessionIdsException);

 /*

 Validates previously downloaded bulk configuration data inside a session.

 Detects errors in the data prior to requesting preactivation or

 activation.

 */

 void validate (

 in BulkCmIRPConstDefs::SessionId session_id,

 in BulkCmIRPConstDefs::ActivationModeTypeOpt activation_mode

)

 raises (ValidateException, UnknownSessionIdException,

 NotValidInCurrentStateException, ConcurrencyException,

 IllegalActivationModeException,

 ManagedGenericIRPSystem::ParameterNotSupported,
 ManagedGenericIRPSystem::InvalidParameter,

 ManagedGenericIRPSystem::OperationNotSupported);

 /*

 Preactivates previously downloaded bulk configuration data inside a

 session. This operation validates configuration data changes in the

 context of the current data and pre-processes the configuration data

 changes.

 */

 void preactivate (

 in BulkCmIRPConstDefs::SessionId session_id,

 in BulkCmIRPConstDefs::VerificationModeTypeOpt verification_mode,

 in BulkCmIRPConstDefs::ActivationModeTypeOpt activation_mode,

 in boolean fallback

)

 raises (PreactivateException, UnknownSessionIdException,

 NotValidInCurrentStateException, ConcurrencyException,

 IllegalActivationModeException, IllegalVerificationModeException,

 ManagedGenericIRPSystem::ParameterNotSupported,
 ManagedGenericIRPSystem::InvalidParameter,

 ManagedGenericIRPSystem::OperationNotSupported);

 };

};

#endif

Annex C (informative):
Change history

	Change history

	Date
	TSG #
	TSG Doc.
	CR
	Rev
	Subject/Comment
	Old
	New

	Jun 2001
	S_12
	SP-010283
	--
	--
	Approved at TSG SA #12 and placed under Change Control
	2.0.0
	4.0.0

	Dec 2001
	S_14
	SP-010644
	001
	--
	Correction of a notification name and Addition of missing table for fallback operation
	4.0.0
	4.1.0

	Dec 2001
	S_14
	SP-010644
	002
	--
	Corrections to the exceptions in the Bulk CM IRP CORBA Solution Set
	4.0.0
	4.1.0

	Jun 2002
	S_16
	SP-020297
	003
	--
	Add missing CORBA exceptions and descriptions of CORBA exception usage
	4.1.0
	4.2.0

	Jun 2002
	S_16
	SP-020296
	004
	--
	Correction of behaviour for IS parameter "saveFallback" of IS operation "activate"
	4.1.0
	4.2.0

	Sep 2002
	S_17
	SP-020485
	005
	--
	Correction of Mapping fallbackEnabled Qualifier
	4.2.0
	4.3.0

	Sep 2002
	S_17
	SP-020486
	006
	--
	Add Bulk CM IRP CORBA Solution Set Enhancements Rel-5
	4.3.0
	5.0.0

	Mar 2003
	S_19
	SP-030140
	008
	--
	Add subphases "PreactivationPhase" and "ValidationPhase" in ‘BulkCmIRPConstDefs’ IDL definition
	5.0.0
	5.1.0

	Mar 2003
	S_19
	SP-030140
	009
	--
	Add missing Rel-4 CORBA IDL exceptions
	5.0.0
	5.1.0

	
	
	
	
	
	
	
	

