
3GPP TSG RAN Rel-19 workshop RWS-230063

Taipei, June 15 - 16, 2023

Agenda Item: 5

Source: vivo

Title: Views on Rel-19 AI/ML for air interface

Document for: Discussion



Background: Expected RAN Rel-19 Timeline
Release timeline

• 18 months release duration is proposed for Rel-19 function completion 

• Target Dec 25 for R19 ASN.1 frozen (3 months gap between func. Frozen and ASN.1 Frozen)



• Rel-18 continuation

• Framework

• Use case specific issues

• New use cases

Expected Areas for Rel-19 AI/ML



• In Rel-18 study, RAN1/RAN2/RAN4 identifies the following components for LCM and focus the study in part 

of the following:

▪ Data collection

o Note: This also includes associated assistance information, if applicable.

▪ Model training

▪ Functionality/Model identification

▪ Model transfer

▪ Model inference operation

▪ Functionality/Model selection, activation, deactivation, switching, and fallback operation.

o Including: Decision by the network (either network initiated or UE-initiated and requested to the network), decision by the UE (event-triggered 

as configured by the network, UE’s decision reported to the network, or UE-autonomous either with UE decision reported to the network or 

without it)

▪ Functionality/Model monitoring

▪ Model update

o Note: Terminology is to be defined. This includes model finetuning, retraining, and re-development via online/offline training.

▪ UE capability

Rel-18 Continuation: framework



• Based on the Rel-18 study on different LCM components, the following high level framework is 

expected to be outcome of the study:

Rel-18 Continuation: framework
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• Rel-19 AI/ML work for air interface is paving way for 6G, all the major LCM components well studied in Rel-18 

should be included targeting a future-proof framework with the following assumptions.

• Considering both the cases data collection is done at UE side and at the network side

• For UE sided model, data collection is at UE side and/or network side;

• For network sided model, data collection is at network side with assistance from UE;

• For two sided model, data collection is at network side and/or UE side;

• Considering both the cases model storage entities are at UE side or network side; 

• For UE sided model, model storage is at the network side and/or at UE side;

• For network sided model, model storage is at the network side;

• For two sided model, model storage is at the network side and/or UE side;

• Considering both collaboration level y and level z

• For the case that model is stored at the network, collaboration level z is envisioned;

• Proposal: Consider a future-proof framework for Rel-18 continuation work in Rel-19 with the assumption 

that data collection can be done at both UE side and network side, model storage can be done at UE side 

and network side and both collaboration level y and level z are considered.  

Rel-18 Continuation: framework



• For collaboration level z, different model transfer cases are identified.

• Case z1/z2 are using proprietary format while Case z3/z4/z5 are using open format which is mutually 

recognizable between parties.

• SA2 has already identified a token based format alignment solution between parties.

• All different model transfer cases can rely on same 3GPP solution(s)

• E.g., both case z2 and case z4 are using the same CP solutions for CSI/beam, the same LPP based 

solutions for positioning;

• Reference model structure is being studied in RAN4   

• Different model transfer cases (z1~z5) may have different assumptions on coordination needed between 

3GPP entities and UE side;

• Proposal: At least from RAN perspective, similar specification work can be done for different model 

transfer cases (z1~z5);

Rel-18 Continuation: framework



• The following use cases are studies in Rel-18:

• CSI: CSI compression, CSI prediction.

• Beam prediction: spatial domain, temporal domain;

• Positioning: Assisted, Direct 

• All use cases show gains compared with legacy; 

• CSI compression is with less gain compared to other cases but can be easily extended to time 

domain compression with much larger gains; (More results can be found in Appendix2)

• CSI compression is the only two sided case among the six sub use cases;

• Proposal: consider all six sub use cases studied in Rel-18 to be included in Rel-19 WI;

Rel-18 Continuation: Use cases



• At least the following areas are identified with SA impact for the three studied use cases:

• AI + Positioning procedures and signaling

• Model identification procedures and signaling

• Model transfer/Data collection related issues;

• SA2 did not have discussion on related work in Rel-18:

• SA2 Work expected would be large.  

• Rel-18 RAN study item did not trigger any SA2 work successfully. Lessons learned are that RAN 

should coordinate with SA as early as possible.

• Proposal: RAN should coordinate with SA to study and specify the corresponding solutions for 

application of AI/ML in air interface.  

Rel-18 continuation: Relationship with SA



• Rel-18 studied PHY layer use cases. Rel-19 should consider more use cases that can further expand the 

application of AI/ML in air interface :

• Higher layer use cases

• Use cases that utilize features not directly related to channel

• Candidate use cases include:

• AI based mobility enhancements (RAN2-led) (More results can be found in Appendix3)

• PA efficiency/nonlinearity improvement, including e.g., one-sided or two-sided operation 

(RAN1 or RAN4-led) (More results can be found in Appendix4 and joint contribution RWS-

230240)

New use cases for Rel-19 AI/ML for air interface



• Rel-18 continuation work for the framework aspects is expected to be RAN2 leading

• Rel-18 continuation work for case specific aspects are correlated with specific procedure designed for 

MIMO and positioning, which would be RAN1 expertise. 

• Consider the following possible options on table for arrangement of new WI/SI in Rel-19.

Arrangement of related work in Rel-19

R18 SI

R19 WI for 
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MIMO and 
positioning specific 
normative work 
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R19 SI(s) on 
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both generic and 
case specific 
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R19 SI(s) on 
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Option 1
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• Consider a future-proof framework for Rel-18 continuation work in Rel-19 with the assumption 

that data collection can be done at both UE side and network side, model storage can be done at 

UE side and network side and both collaboration level y and level z are considered.  

• At least from RAN perspective, similar specification work can be done for different model 

transfer cases (z1~z5);

• Consider all six sub use cases studied in Rel-18 to be included in Rel-19 WI;

• Consider another SI with more use cases to be included for a more comprehensive study:

• Higher layer use cases

• Use cases that utilize features not directly related to channel

• RAN should coordinate with SA to study and specify the corresponding solutions for application 

of AI/ML in air interface

Summary of views for Rel-19 AI/ML work
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Appendix1: Rel-18 discussion on model transfer cases
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Appendix1: Rel-18 discussion on model transfer options



Appendix2: Temporal-spatial-frequency domain CSI compression 

• Principle: exploiting temporal correlation in consecutive CSIs to further improve the performance gains
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Appendix2: Temporal-spatial-frequency domain CSI compression 

• Initial results on joint compressing 4 PMIs (rank1 considered)

SGCS on PMI0 SGCS on PMI1 SGCS on PMI2 SGCS on PMI3 Averaged SGCS

Legacy R16 codebook 0.8172 0.8170 0.8171 0.8172 0.8172

Benchmark: s-f model
with payload 64*4

0.9071 (+11.02%) 0.9070 (+11.01%) 0.9074 (+11.05%) 0.9072 (+11.01%) 0.9072 (+11.01%)

Joint compression model
with payload 64*4

0.9522 (+16.51%) 0.9610 (+17.62%) 0.9613 (+17.64%) 0.9573 (+17.14%) 0.9579 (+17.21%)

Joint compression model
with payload 64*2

0.9250 (+13.21%) 0.9368 (+14.66%) 0.9393 (+14.95%) 0.9321 (+14.06%) 0.9351 (+14.42%)

Joint compression model
with payload 64

0.8747 (+7.04%) 0.8933 (+9.33%) 0.8937 (+9.37%) 0.8796 (+7.63%) 0.8853 (+8.33%)

• Exploiting temporal domain correlation further provides ~6% relative SGCS gain on top of s-f domain 

compression, and the total improvement over legacy R16 CB is ~17% SGCS (~50% to ~60% additional gain)

• Overhead further reduces ~60% compared with s-f model, and the overall overhead reduction compared 

with R16 CB improves from ~30% to ~70%

Simulation parameters: Uma 38.901, 100 users with spatial consistency, carrier frequency 3GHz, subcarrier spacing 30KHz, 13 subbands (10MHz, 4RBs/subband), 32 gNB antenna ( [Mg 
Ng M N P; Mp Np] = [1 1 2 8 2; 2 8]), 2 UE antenna ([Mg Ng M N P; Mp Np] = [1 1 1 1 2; 1 1]), 100% outdoor UE, 30km/h, layer0 considered.



• Impact of PA non-linearity 

– Higher power back-off decreasing transmission power imposing UL coverage and throughput 

• In-band distortion: EVM

• In-band emission: IBE

• Out-of-band emission: ACLR, SEM

– PA non-linearity impairment is heavier in large band width 

• Popular methods to withstand PA non-linearity

– PAPR reduction 

• TR: generate peak canceling signal for the reserved tones

• SLM: select the scrambled signal from all scrambled signal set with lowest PAPR

• etc.

– Digital predistortion 

• Look up table: DPD based on AM In (V) – AM Out (V) shaping and AM (V) - PM Out (deg) shaping table

• Volterra series: DPD formulated on Volterra series with estimated parameters

• etc.

Appendix3: AI/ML for PA nonlinearity handling



• TR (Tone reserve) 

– Implementation 

• AI-assisted TR 

– AI-inferenced signal transmitting on reserved tones

– AI-assisted peak canceling signa generation 

• Potential spec impact

– Position and number of reserved tones should be informed to receiver

Appendix3: AI + Tone Reservation for PAPR reduction 
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• SLM (selective mapping) 

– Implementation 

• AI-assisted TR 

– AI-assisted sequence generation for selective mapping

• Potential spec impact

– Selected scrambling sequence should be informed to receiver for descrambling 
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Appendix3: AI + SLM for PAPR reduction 



• DPD 

– Direct learning and indirect learning are considered

– Performance evaluation

• Potential spec impact is required to achieve adaptive DPD with feedback loop

– Potential UL transmission delay due to DPD 

– Specific signal transmission for fine tuning  with worse EVM/ACLR than required

– etc.

Appendix3: AI + DPD for PA nonlinearity optimization 
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Appendix4: AI+Mobility field test 

Carrier Frequency: FR1, 3.5GHz   UE speed: 80~120km/h

◼ During UE high-speed movement, the RSRP of the neighbor may becomes better than the serving cell in a short period 

of time.

◼ UE will handover to the neighbor cell and handover back quickly to the last serving cell, i.e., ping-pong handover occurs.
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Appendix4: AI+Mobility field test 

◼ UE speed: 80~120km/h

◼ Dataset

▪ Training dataset: 15 UE trajectory

▪ Test dataset: 1 UE trajectory

◼ AI Model

▪ Fully Connected Neural Network

◼ Input

▪ History RSRP of serving & neighbor cell (interval = 10ms)

▪ History UE location and speed (interval = 1s)

▪ Observation window = 2s

◼ Output

▪ Predict RSRP of serving cell

▪ Predict RSRP of neighbor cell

▪ Prediction timing = 2s

◼ Performance

▪ RMSE = 0.8dBm

◼ Field test RSRP 

◼ Predict RSRP
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Appendix4: AI+Mobility Ray tracing test

UE1 speed: 30km/h

T1 duration: 1960ms

UE2 speed: 60km/h

T2 duration: 960ms

◼ When the UE passes through the crossover, the RSRP of cell2 will change dramatically and UE handover to cell 2.

◼ For UE1 at a low speed, it will be served by cell 2 for a longer time (over 1 second).

◼ For UE2 at a high speed, it will only be served by cell 2 for less than 1 second.

◼ Both UEs may experience RLF when leaving the crossover and will reestablishment RRC connection on cell 3.

Simulation scenario and UE trajectory

T1 T2
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Appendix4: AI+Mobility Ray tracing test

Cell 1 Cell 2 Cell 3

Prediction 1 RMSE = 0.0044dB RMSE = 1.08dB RMSE = 0.26dB

Prediction 2 RMSE = 0.0062dB RMSE = 1.11dB RMSE = 0.26dB

Prediction 3 RMSE = 0.0844dB RMSE = 1.23dB RMSE = 0.28dB

Carrier Frequency: FR2, 30GHz

Prediction 1: RSRP of every 80ms in 320ms after T0

Prediction 2: RSRP of 1s after T0

Prediction 3: RSRP of 2s after T0

◼ Accuracy of RRM measurement prediction
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Appendix4: AI+Mobility System evaluation test
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◼ Simulation assumption

Attributes Values or assumptions

Carrier Frequency FR1: 4GHz; FR2: 30GHz

TRP Number 7 sites, 3 sector per site

Channel Model
3D-Uma in TR 38.901, support Spatial consistency

ISD = 200m

UE speed 120km/h

Mobility management

Event: A3; Hysteresis: 2dB; 

Offset: 1dB; TimeToTrigger: 320ms, 40ms

Handover preparation time: 50ms; 

Handover execution time: 40ms

RLM

L1 measurement period: 20ms

Qin sliding window length: 100ms

Qout sliding window length: 200ms

Qin threshold: -6dB; Qout threshold: -8dB

N310: 1; N311: 1; T310: 1s

Handover model and 

corresponding metrics 

As defined in TR 36.839

Short time of stay: served by the target cell for less than 1s after HO

◼ Simulation scenario 
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Appendix4: AI+Mobility System evaluation test

◼ RRM prediction based HO

Legacy HO, 

TTT = 320

Legacy HO, 

TTT = 40

AI based 

HO

CHO, 

TTT = 320

CHO, 

TTT = 40

AI based 

CHO

FR1

HOF rate 9.16% 2.2% 1.95% 0.28% 0.15% 0.32%

Ping-pong HO rate 1.1% 3.6% 0.37% 1.0% 3.7% 0.37%

Short Time of Stay (1s) rate 13.4% 18.9% 5.7% 13.6% 18.8% 5.67%

FR2

HOF rate 7.4% 2.5% 2.0% 0.42% 0.43% 0.44%

Ping-pong HO rate 5.2% 10.3% 2.7% 5.2% 10.3% 2.7%

Short Time of Stay (1s) rate 24.1% 36.7% 10.4% 24.4% 36.5% 10.8%

❑ With RRM prediction, the unintended events rate during HO and CHO can be significantly reduced, including 

HOF rate, ping-pong HO rate and short time of stay rate. 
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Appendix5: Rel-18 discussion on Model/functionality identification
Model identification for Type 1 training 
two-sided model and one-sided model 

transferred from network to UE

Step 0: Alignment of model structure.
Network trains the model parameters
based on collected data.

Step2a: Network delivers the UE-sided
model parameters to UE, with other
necessary information;

Step3: Using model ID or applicability
ID, network controls LCM of the UE
sided part of two sided models.

Step1: UE AI/ML-enabled Feature/FG
report to network;

Step2b: Alignment of additional
conditions (e.g., scenarios, sites, and
datasets) between network and UE.

Step4: Additional conditions (e.g.,
scenarios, sites, and datasets) may be
updated during usage.

Model identification for Type 3 training 
two-sided model (separate  training at 

two sides)

Step0: Alignment of model structure,
quantization. Network/UE exchange
data needed, trains the two-sided
model and align on model/app ID.

Step3: Using model ID or applicability
ID, network can indicate or assist LCM,
including model selection or switching.

Step1: UE AI/ML-enabled Feature/FG
report to network;

Step2b: Alignment of additional
conditions (e.g., scenarios, sites, and
datasets) between network and UE.

Step4: Additional conditions (e.g.,
scenarios, sites, and datasets) may be
updated during usage.

AI/ML-enabled Feature/FG + additional 
conditions for UE developed UE-sided 

model

Step3: Using applicability ID, network
can indicate or assist LCM, including
model selection or switching, model
activation/deactivation.

Step1: UE AI/ML-enabled Feature/FG
report to network;

Step4: Additional conditions (e.g.,
scenarios, sites, and datasets) may be
updated during usage.

Functionality identification

Step1: UE AI/ML-enabled Feature/FG
report to network;

Step2: Based on UE report and
continuously monitored wireless
conditions, network controls LCM of
the AI/ML based functionality.

Step0: UE collects the data needed for
training and UE trains the model.
Alignment of necessary information.

Step2b: Alignment of additional
conditions (e.g., scenarios, sites, and
datasets) between network and UE.


