	
3GPP TSG-SA WG6 Meeting #61	S6-242302 
Jeju Island, South Korea, 20th - 24th May 2024	(revision of S6-242xxx)


Source:	Apple
Title:	Alternative architecture for Backend For Frontend 
Spec:	3GPP TR 23.700-22 v0.2.0 
Agenda item:	8.7
Document for:	Approval
Contact:	Walter Featherstone, w_featherstone@apple.com

1. Introduction
This paper proposes an alternative architecture for solution 1 of 23.700-22, clause 6.2 on Backend For Frontend (BFF).
2. Reason for Change
The motivation is to address the issue of the API invoker frontend being exposed to authorization and access information that could be limited to the Resource owner function.
3. Proposal
It is proposed to update solution 1 of TR 23.700-22 v0.2.0 to provide an alternative high level functional architecture for CAPIF supporting BFF.




* * * First Change * * *
[bookmark: _Toc164763605][bookmark: _Toc14352733][bookmark: _Toc19026758][bookmark: _Toc19034159][bookmark: _Toc19036349][bookmark: _Toc19037347][bookmark: _Toc25612605][bookmark: _Toc25613307][bookmark: _Toc25613571][bookmark: _Toc27647528][bookmark: _Toc160735993]6.2	Solution #1: Frontend For Backend
[bookmark: _Toc464463366][bookmark: _Toc475064960][bookmark: _Toc478400631][bookmark: _Toc7485786][bookmark: _Toc78314760][bookmark: _Toc147904935][bookmark: _Toc164763606]6.2.1	Solution description
This solution relates to KI#3 on RNAA architecture enhancements. Specifically, it proposes the Backend For Frontend (BFF) pattern (as described, for example, in clause 6.1 of IETF draft-ietf-oauth-browser-based-apps-17 [5]) to be included as an architectural option.
In 3GPP TS 23.222 [2] clause 7.5, the RNAA deployment option in which the API invoker is deployed on a UE is presented. A UE can be considered as hosting public clients according to the OAuth 2.0 Authorization Framework [6]. Such public clients lack the ability to maintain the confidentiality of secrets such as their client credentials or even access tokens provided to them. Regarding this vulnerability, as an example, clause 5.1 of IETF draft-ietf-oauth-browser-based-apps-17 [5] highlights the danger of malicious JavaScript in relation to browser-based applications (highlighted as an example of a user-agent-based application public client in the OAuth 2.0 Authorization Framework [6]). This IETF draft presents the BFF application architecture pattern as an approach in which applications are built to rely on a backend component for handling OAuth responsibilities and then all requests are proxied through this backend component. Such an architectural approach is applicable to CAPIF as described in the next sub-clause.
NOTE:	The security aspects of the CAPIF architectural variant described in this solution are the responsibility of SA3.
[bookmark: _Toc147904936][bookmark: _Toc164763607]6.2.2	Architecture Impacts
In relation to the OAuth 2.0 Authorization Framework [6] the CAPIF resource owner function (responsible for managing authorization related procedures towards the CAPIF authorization function hosted by the CAPIF core function) can be considered as the user-agent (aligned with clause 6.3.8 of 3GPP TS 23.222 [2]), which in turn manages procedures towards the authorization server in OAuth. Furthermore, the CAPIF resource owner function is responsible for interactions with the resource owner, which is anticipated to be in a similar manner to the way in which interactions between the resource owner’s user agent are described by the OAuth framework. 
With OAuth there is also a client (or client application) that interacts with the user-agent and authorization server in order to gain access to information exposed by a resource server. 
The OAuth resource server is considered as the CAPIF API exposing function, aligned with clause 6.5.3.1 of 3GPP TS 33.122 [3]. 
The OAuth client is considered as the CAPIF API invoker (aligned with clause 6.5.3.1 of 3GPP TS 33.122 [3]), where that API invoker can be UE hosted as previously highlighted. 
Then in this solution (as presented in Figure 6.2.2-1) it is proposed to support an option in which the API invoker hosted by a UE (API invoker frontend) interacts via a new reference point (CAPIF-X) with a “helper” API invoker (API invoker backend) that is placed server-side (network-side) and is considered alongside the Backend For Frontend component in the Application Architecture presented in clause 6.1.1 of IETF draft-ietf-oauth-browser-based-apps-17 [5].
According to that IETF draft, the BFF:
1.	Interacts with the authorization server as a confidential client
2.	Manages access and refresh tokens and does not share those with the client, i.e., the tokens are inaccessible to the client
3.	Proxies all requests from the client to the resource server, augmenting them with the correct access token before forwarding them to the resource server
In the IETF draft, an OAuth user-agent-based application is considered in which the client application runs within the user-agent. On the other hand, for an OAuth native application, the user-agent and client application are presented as separate entities, which is also the case the architectural solution proposal in Figure 6.2.2-1.


Figure 6.2.2-1: High level functional architecture for CAPIF supporting BFF
NOTE:	Impacts to the reference points with their assocaited procedures between the API provider domain functions and the CAPIF core function are not anticipated (and hence have not been depicted in Figure 6.2.2-1).
Editor's note:	Whether the reference point and procedures between the resource owner function and API invoker are in scope of 3GPP is TBD. 
[image: ][image: ]
Figure 6.2.2-2: BFF based procedure for service API access
Figure 6.2.2-2 illustrates the BBF based procedure. Firstly, in step 1, the UE hosted API invoker (API invoker frontend) initiates the authorization flow, where the API invoker’s objective is to gain access to particular resources offered through the service APIs exposed by the API provider domain. 
In step 2, the API invoker backend, in response to the trigger from the API invoker frontend to initiate the authorization flow, provides a response to the API invoker frontend redirecting its request towards the authorization function (step 3). 
Once the response is obtained indicating granted authorization (step 4), the resource owner function provides indication of that authorization to the API invoker backend (step 5) via the API invoker frontend. 
Next in step 6, the API invoker backend requests access to the API exposing function’s service APIs from the authorization function using the obtained authorization. 
The API invoker backend maintains an association between its session with API invoker frontend and access information it has obtained in step 7 from the authorization function.
The API invoker backend then provides indication to the API invoker frontend that service API access is permitted, e.g., through cookies using a secure HTTP session, in step 8. The indication provided by the API invoker backend does not include the access information necessary to enable the API invoker frontend to access the service APIs directly.
When the API invoker frontend subsequently initiates a service API request including the access indication information previously by the API invoker backend (step 9), the API invoker backend uses its granted service API access that it received from the authorization function (that is associated with the API invoker frontend’s resource owner function to API invoker backend session) to make the request towards the service API (step 10). 
The response from the service API (step 11) is then forwarded towards the API invoker frontend by the API invoker backend (step 12).
In order to avoid the API invoker frontend having to relay messages from the API invoker backend to the ROF (e.g., step 2 triggering step 3 and the indication from the BBF in step 8 being forwarded to the ROF), and also to avoid the ROF having to relay messages from the CCF/AF to the API invoker frontend (indication of granted authorization in step 5 and access in step 8), an alternative architecture is proposed in Figure 6.2.2-3 in which the API invoker frontend is placed behind the ROF.
[image: ]
Figure 6.2.2-2: Alternative high level functional architecture for CAPIF supporting BFF
The alternative architecture is not expected to impact the supported procedures over CAPIF-8 or CAPIF-X. However, it would mean that the API invoker frontend would not need to be exposed to the indication of granted authorization in step 5 or the access information provided in step 8.
[bookmark: _Toc147904937][bookmark: _Toc164763608]6.2.3	Corresponding APIs

Editor's note:	The CAPIF-X reference point and related procedures are FFS.
Editor's note:	New APIs are anticipated for CAPIF-8 in support of this solution, although those may leverage OAuth 2.0 Authorization Framework [6].

* * * End of Changes * * *

image3.emf



API invoker 
frontend



Resource owner 
function (ROF) 



API invoker 
backend CCF / AF AEF



2. API invoker backend provides redirect response



1. API invoker frontend initiates the authorization flow towards 
API invoker backend



3. ROF makes authorization request to AF



4. AF provides authorization response to ROF



5. ROC provides received authorization to API invoker backend 



6. API invoker backend makes access request to AF



7. AF provides access to API invoker backend



8. API invoker backend provides access indication to API invoker frontend



9. API invoker frontend makes API service request towards API 
invoker backend with the access indication obtained in step 8



10. API invoker backend makes API service request towards 
AEF with the access information it obtained in step 7



11. AEF provides API service response to API invoker 
backend



12. API invoker backend forwards API service response to API invoker frontend



UE











image4.emf



API invoker frontend



Resource owner function



API invoker backend



CAPIF core function



Authorization function



UE



CAPIF-8



CAPIF-1



CAPIF APIs
API exposing function



Service APIsService APIsService APIs



API provider domain



API publishing function



API management function



CAPIF-2



CAPIF-X











image1.emf
 


Microsoft_Word_Document.docx
[image: ]

image1.emf





API invoker frontendResource owner function




API invoker backend




CAPIF core function




Authorization function




UE




CAPIF-8




CAPIF-1




CAPIF APIs
API exposing function




Service APIsService APIsService APIs




API provider domain




API publishing function




API management function




CAPIF-2




CAPIF-X

















image2.emf



API invoker 
frontend



Resource owner 
function (ROF) 



API invoker 
backend CCF / AF AEF



2. API invoker backend provides redirect response



1. API invoker frontend initiates the authorization flow towards 
API invoker backend



3. ROF makes authorization request to AF



4. AF provides authorization response to ROF



5. ROC provides received 
authorization to API invoker backend 



6. API invoker backendmakes access request to AF



7. AF provides access to API invoker backend



8. API invoker backend provides access indication to API invoker frontend



9. API invoker frontend makes API service request towards API 
invoker backend with the access indication obtained in step 8



10. API invoker backend makes API service request towards 
AEF with the access information it obtained in step 7



11. AEF provides API service response to API invoker 
backend



12. API invoker backend forwards API service response to API invoker frontend



UE











