3GPP TSG-SA5 Meeting #156
S5-244805
Maastricht, Netherlands, 19 - 23 August 2024
Source:
Nokia
Title:
Rel-19 pCR 28.872 Improve description of Validating planned configurations
Document for:
Approval

Agenda Item:
6.19.9 - Study on Management of planned configurations
1
Decision/action requested

The group is requested to discuss and approve the pCR below.
2
References

[1]

3GPP TS 28.872: "Study on Management of planned configurations"
3
Rationale

None.
4
Detailed proposal

The following changes are proposed for TR 28.872[1].

	Begin of modifications

5.2
Use case #2: Validating planned configurations

5.2.1
Description

Planned configurations may have inconsistencies or may not fit to the current configuration. Validation is the process to unveil and report these problems. Validation may make a subsequent activation of the planned configuration smoother. Validation is requested by MnS consumers and performed by MnS producers.

More specifically, validation may check for the following problems:

· Information model (protocol layer) errors: After applying the planned configuration to the current configuration the result must respect all the constraints defined in the information model, such as attribute properties or cardinality requirements. Note that some of these constrains may be expressed in the NRM schema, and some only in the stage 2 definitions of the NRM.

· Application layer errors: These are errors that do not relate to the information model, but to the related application (business logic). For example, an attribute value in the planned configuration may be in the value range allowed by the NRM schema but be not supported or not allowed in the current state of the application. Application layer errors are implementation specific.
The MnS consumer should be able to request validation of multiple plans using a single request. When multiple plans are validated questions about the relationship between these plans arise and the MnS consumer needs to be able to inform the MnS producer about the type of the relationship.
Furthermore, when multiple plans are validated, plan conflicts may arise and the MnS consumer needs to tell the MnS producer how to deal with these conflicts.
The MnS producer should make the validation result available to MnS consumers.

5.2.2
Potential requirements

Req-1: The 3GPP management system shall support a capability allowing a MnS consumer to request a MnS producer to validate a planned configuration.

Req-2: The 3GPP management system should support a capability allowing a MnS consumer to request a MnS producer to validate multiple planned configurations with a single request.
Req-3: The 3GPP management system shall support a capability allowing a MnS consumer to indicate to MnS producers the type of relationship between the plans, for the case where multiple plans are requested to be validated with a single request.
Req-4: The 3GPP management system shall support a capability allowing a MnS consumer to indicate to MnS producers the behavior when plan conflicts are detected, for the case where multiple plans are requested to be validated with a single request.
Req-5: The 3GPP management system shall validate a planned configuration automatically when activation of the planned configuration is requested without prior validation.
Req-6: The 3GPP management system shall made the result of the validation available for retrieval.
Req-4: The 3GPP management system shall support a capability allowing a MnS consumer to find out if a plan has been previously validated.
5.2.3
Potential solutions

5.2.3.1
Potential solution #1: Dedicated job for validation

Stage 2

A dedicated information element named "plan-validation-jobs" is introduced on the MnS producer for plan validation. This information element is located at the same level as the "plans" information element. To request plan validation, a MnS consumer needs to create a validation job below "plan-validation-jobs". Plan validation is an asynchronous process. The result is made available in the information element "results".
Completed validation jobs can be deleted by MnS consumers. The MnS producer may delete validation jobs as well to limit the number of old jobs stored on the MnS producer. The deletion policy used by the MnS producer is implementation specific.
Validation jobs are created, updated, deleted and read using normal CRUD operations.
The information model for plan validation is as follows:

plan-validation-jobs
 <job-id>
 request
 plan-ids

 plans-relationship

 conflict-mode

 result

 <plan-id>

 state

 time

 error-details

MnS consumers should request validation prior to activation. When a planned configuration is activated without prior validation the MnS producer shall validate the planned configuration automatically.
One or more plans can be validated with a single request. The plans to be validated are specified with the "plan-ids" attribute or the "transaction-id" attribute. The possibility to validate more than one plan with a single request is optional.
When more than one plan is requested to be validated the MnS consumer needs to indicate to the MnS producer the type of relationship between the plans:
· independent plans

· ordered dependent plans

· unordered dependent plans
The specified relationship applies to all plans. It is not possible to specify more than one relationship.
Independent plans are validated individually against the current configuration. A validation result is produced for each plan. The order of the plan validation is irrelevant. Independent plans are validated as follows:

· The plan p1 is validated against the current configuration c0. The result is made available.

· The plan p2 is validated against the current configuration c0. The result is made available.

· and so forth until all plans are processed.

Ordered dependent plans are processed in the specified order as follows:
· The plan p1 is validated against the current configuration c0.
· The plan p1 is applied to a copy of the current configuration and stored internally as output configuration c1.

· The plan p2 is validated against the output configuration c1.

· The plan p2 is applied to the output configuration c1 and stored internally as output configuration c2.

· and so forth until all plans are processed.

Example for ordered dependent plans: Plan pB creates an object B under a parent object A that does not exist in the current configuration, and another plan pA creates the object A. In this case plan pA must be validated before plan pB.
Unordered dependent plans are processed as follows:

· The plans p1, p2,…, px are added to form a new plan pn.
· The plan pn is validated against the current configuration c0. The result is made available.

Example for unordered dependent plans: Plan pA creates an object A with a reference to an object B that does not exist in the current configuration and another plan pB creates object B with a reference to the object A that does not exist in the current configuration. In this case plan A and Plan B must be validated together against the current configuration.
Note that a plan may be valid when validated in the independent mode and invalid when validated in one of the dependent modes. For example, plan pA removes the leaf object B. This plan is valid. When validated together with plan pB, that adds a new object A under object B then object A is no leaf anymore and cannot be removed. Plan pA is hence invalid.
Multiple plans may exhibit conflicting configurations.
Example for a plan conflict: One of the validated plans sets an attribute to some value and another validated plan sets the same attribute to some other value.
In the unordered dependent and the independent mode, upon detection of a conflict, the Mns producer shall stop with error. In the ordered dependent mode, upon detection of a conflict, the MnS producer may stop or continue. The MnS consumer should indicate to the MnS producer its preference using the "conflict-mode" information element.

The following table specifies the information elements of the information model for plan validation.

	Information element name
	Description

	plan-ids
	The ordered list of the identifiers of the plans to be validated.

	transaction-id
	or alternatively, the transaction id for the transaction to be validated.

	plans-relationship
	When more than one plan shall be validated, this attribute allows to specify the relationship between the plans to be validated. Allowed values are "INDEPENDENT", "ORDERED_DEPENDENT and "UNORDERED_DEPENDENT".

	conflict-mode
	When more than one plan shall be validated, this attribute allows to specify for the "ORDERED-DEPENDENT" mode, if conflicting changes in different plans shall result in a failure, or if conflicting changes shall be applied in order. Allowed values are "STOP_ON_CONFLICT" or "CONTINUE_ON_CONFLICT".

	state
	The validation state, either "VALIDATING", "VALIDATED" or "VALIDATION_FAILED".

	time
	The date and time of the start of validation when in state VALIDATING, it should be the end of the validation when in state VALIDATED OR VALIDATION FAILED.

	error-details
	In case validation failed, error reasons are specified here.

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

HTTP/JSON

The stage 2 information model is mapped to a resource model specified by OpenAPI definitions. It is ffs if the CRUD operations specified in TS 32.158 can be used for manipulating the resource model or if some changes are needed.

The resource "plan-validation-jobs" is introduced at the same level as the resource "plans". Validation is requested by sending a PUT request to the resource "plan-validation-jobs/<jobId>".
The validation result is made available in the resource "result".

The format of the validation result depends on the format of the planned configuration. If the format is a data node tree, then it is equal to the error response format used with (3GPP) JSON Merge Patch (clause 6.6 of TS 32.158 [?]). If the format is a set of operations, then it is equal to the error response format used with (3GPP) JSON Patch (clause 6.6 of TS 32.158 [?]).
Example:

A MnS consumer may send the following message to the MnS producer for requesting validation of the plan "p1".

	PUT 3gpp/ProvMnS/1900/plan-validation-jobs/pvj1 HTTP/1.1

Host: example.org

Content-Type: application/json

{

 "request": {

 "plan-ids": ["p1", "p2"],

 "plans-relationship": "ORDERED_DEPENDENT",

 "conflict-mode": "IGNORE_CONFLICT"
 }

}

After applying the PUT request the resource structure on the MnS producer is as follows.

	{

 "plans": {

 "p1": {...},

 "p2": {...}

 },

 "plan-validation-jobs": {

 "pvj1": {

 "request": {

 "plan-ids": ["p1", "p2"],

 "plans-relationship": "ORDERED-DEPENDENT",

 "conflict-mode": "CONTINUE_ON_CONFLICT"
 },

 "result": {
 "p1": {

 "state": "VALIDATING",

 "time": "2024-08-21T16:39:55-08:00"
 },

 "p2": {

 "state": "VALIDATING",

 "time": "2024-08-21T16:39:55-08:00"
 }
 }
 }

 }

}

The validation result is made available in the resource "result". Successful validation may be advertised as follows.

	{

 "plans": {

 "p1": {...},

 "p2": {...},
 "p3": {...}
 },

 "plan-validation-jobs": {

 "pvj1": {

 "request": {...},
 "result": {
 "p1": {

 "state": "VALIDATED",

 "time": "2024-08-21T16:39:57-08:00"
 },

 "p2": {

 "state": "VALIDATED",

 "time": "2024-08-21T16:39:57-08:00"
 }

 }

 }

}

The following examples show how this resource may look like for validation failures in the different cases.

Case 1: The planned configuration is a data node tree.

In this case the validation errors are made available in the error format used with (3GPP) JSON Merge Patch.

When an attribute is bad it may look like the following.

	

{

 "plan-validation-jobs": {

 "pvj1": {

 "request": {...},
 "result": {
 "p1": {
 "state": "VALIDATION_FAILED",

 "time": "2024-08-21T16:39:57-08:00"
 "error-details": {

 "type": "MODIFICATION_NOT_ALLOWED",

 "reason": "ATTRIBUTE_INVARIANT",

 "title": "The attribute field, whose value shall be replaced, is invariant.",

 "badAttributes": [

 "#/attributes/attrA/attrB"

]
 }
 }

 }

 }

 }

}

When an object is bad it may look like the following.

	

{

 "plan-validation-jobs": {

 "pvj1": {

 "request": {...},
 "result": {
 "p1": {
 "state": "VALIDATION_FAILED",

 "time": "2024-08-21T16:39:57-08:00"
 "error-details": {

 "type": "REQUEST_OBJECTS_MISMATCH",

 "reason": "NEW_OBJECT_PARENT_NOT_FOUND",

 "title": "The object, below which objects shall be created, does not exist.",

 "badObjects": [

 "/ManagedElement=ME3/XyzFunction=XYZF1",

 "/ManagedElement=ME3/XyzFunction=XYZF2"

]
 }
 }

 }

 }

 }

}

Case 2: The planned configuration is a set of operations.

In this case the validation errors are made available in the error format used with (3GPP) JSON Patch.

When an attribute is bad the "error-details" property may look like the following.

	{

 "type": "MODIFICATION_NOT_ALLOWED",

 "reason": "ATTRIBUTE_INVARIANT",

 "title": "The attribute, whose value is requested to be replaced, is invariant.",

 "badOp": "/0"

}

When an object is bad the "error-details" property may look like the following.

	{

 "type": "VALIDATION_ERROR",

 "reason": "NEW_OBJECT_CLASS_NAME_INVALID",

 "title": "The class of the new object to be created is invalid.",

 "badOp": "/1"

}

For reporting more than one problem the "otherProblems" property is used.

	{

 "type": "VALIDATION_ERROR",

 "reason": "NEW_OBJECT_CLASS_NAME_INVALID",

 "title": "The class of the new object to be created is invalid.",

 "badOp": "/1",

 "otherProblems": [

 {

 "type": "REQUEST_OBJECTS_MISMATCH",

 "reason": "NEW_OBJECTS_PARENT_NOT_FOUND",

 "title": "The parent object of the new object to be created does not exist."

 "badOp": "/2"

 }

]

}

To find out if validation results are available for the plan "p1", a MnS consumer may send the following:

	GET 3gpp/ProvMnS/1900/plan-validation-jobs?filter=/*/p1 HTTP/1.1
Host: example.org

Accept: application/json

5.2.4
Evaluation of potential solutions

It is recommended to select potential solution #1.
	Begin of modifications

