3GPP TSG-SA5 Meeting #156 	S5-244583d1
Maastricht, The Netherlands, 19 - 23 August 2024						Revision of S5-244323

Source:	Ericsson España S.A.
Title:	DP on Real and Float data types
Document for:	Endorsement
Agenda Item:	5.2
1	Decision/action requested
The group is asked to discuss and endorse the proposal.
2	References
[1] 3GPP TS 32.156: “Telecommunication management; Fixed Mobile Convergence (FMC) model repertoire”.
[2] ITU-T X.680,"OSI networking and system aspects – Abstract Syntax Notation One (ASN.1)".
[3] 3GPP TS 28.622: “Telecommunication management; Generic Network Resource Model (NRM) Integration Reference Point (IRP); Information Service”
3	Rationale
[bookmark: _Hlk173924197]3.1	Background
This section provides background information on existing material regarding Float and Real data types.
3.1.1	Float vs Real
Float and Real are data types used for representing floating-point numbers. Despite their common objective, these data types exhibit some differences. One of the most noticeable differences is regarding precision (decimal digits). and storage size (bytes).
On the one hand, Float Real is a data type that allows storing approximate values with the specified mantissa of the floating-point number (see ITU-T X.680 [2]). The precision of this approximation depends on It can be represented with Float (n), where n is the number of bits that are used to store the mantissa; the higher the number, the higher the precision., thus impacting the precision and storage; Table 2 illustrates this impact. The “n” value is an integer in the range [1, 53], with default value “n=53”. This means that by default, Float data type can hold 8 bytes and has a 15-digit precision.

Table 1: Impact of n in Float type
	“n” value
	Storage size (bytes)
	
	Precision (digits)

	1-24
	4
	
	7

	25-53
	8
	
	15

On the other hand, Real Float is a data type with the same properties and functionalities as FloatReal, except that “n” is limited to 24that precision is limited to 7 decimal digits. ; actually, Real can be represented with Float (24). The real data type can then hold 4 bytes and has a 7-digit precision.
Table 2 below summarizes the noteworthy differences between both data types.
Table 2: Comparative analysis of Float and Real data types
	Aspect
	Float
	Real

	Number type
	Double-precision floating point number
	Single-precision floating point number

	IEEE 754 convention
	binary64
	binary32

	Storage size (bytes)
	8
	4

	Precision (digits)
	15
	7

By means of example, when it is required to represent a 10-bit precision number, it is recommended to use Real instead of Float (10); this allows you to save storage space.
3.1.2	Material in existing 3GPP Technical Specifications
TS 32.160 [1] lists the different data types used in FMC repertoire. . This list includes eleven data types:
· Two user-defined data types: <<dataType>> (clause 5.3.4) and ENUM (clause 5.3.5)
· Nine predefined data types (clause 5.4.3): three UML defined data types (Table 3) and six non-UML defined data types (Table 4).
As seen, TS 32.160 [1] only Real is listed as valid data type .

Table 13: UML defined data types (see table 5.4.3.1-1 from TS 32.160 [1])
	Name
	Description and reference

	Boolean
	See Boolean type of ITU-T X.680 [2]

	Integer
	See Integer type of ITU-T X.680 [2]

	String
	See PrintableString type of ITU-T X.680 [2]

Table 24: Non-UML defined data types (see table 5.4.3.1-2 from TS 32.160 [1])
	Name
	Description and reference

	AttributeValuePair
	This data type defines an attribute name and the attribute’s value.

	BitString
	This data type is defined by Bit string of subclause 3 and subclause G.2.5 of ITU-T X.680 [2].

	DateTime
	This data type defines Date/Time Format, and it is protocol specific.

	DN
	This data type defines the DN (see Distinguished Name of TS 32.300) of an object. It contains a sequence of one or more name components. The “initial sub-sequence” (note 1) of a DN is also a DN of an object.

Note 1: Suppose an object’s DN is composed of a sequence of 4 name components, i.e. 1st, 2nd, 3rd and 4th components. The “initial sub-sequence” of this DN is composed of the 1st, 2nd and 3rd components.

	External
	This data type is defined by another organization.

	Real
	This data type is defined by Real type of ITU-T X.680 [2]

In Rel-19 version of TS 28.622 [3], the clause 5.2 was introduced. This clause, entitled “Simple Data Types”, defines nineteen data types. These data types (from now referred to as add-on data types) represent specializations of the data types defined in FMC model repertoire (from now, referred to as baseline data types). Table 3 captures this specialization; the first column specifies the add-on data type, and the second column the baseline data type. defines nineteen common data types for generic usage. Table 5 list them.

Table 35: Simple data types (see Table 5.2-1 from 3GPP TS 28.622 [3])
	Type Name
	Type Definition
	Description

	FullTime
	String
	String with format "full-time" as defined in RFC 3339 [54]

	DateMonth
	String
	String with format "date-month" as defined in RFC 3339 [54]

	DateMonthDay
	String
	String with format "date-mday" as defined in RFC 3339 [54]

	Float
	Real
	The type is Real with format "float" as defined in OpenAPI Specification [63]
Editor Note: format for YANG may need further study

	Latitude
	Real
	The type is Real, the range is [-90, 90]

	Longitude
	Real
	The type is Real, the range is [-180, 180]

	DnList
	array(DN)
	List of DN

	Mcc
	String
	Mobile Country Code, see clause 2.3 of TS 23.003 [5] for MCC,, String with pattern: '^[0-9]{3}$'
Editor Note: Pattern may need further study, e.g. alternatie pattern as '^ [02-79][0-9][0-9] $'

	Mnc
	String
	Mobile Network Code, see clause 2.3 of TS 23.003 [5] for MNC, String with pattern: '^[0-9]{2,3}$'

	Nid
	String
	This represents the Network Identifier, which together with a PLMN ID is used to identify an SNPN (see 3GPP TS 23.003 [5] and 3GPP TS 23.501 [8] clause 5.30.2.1).
Pattern: '^[A-Fa-f0-9]{11}$'

	Tac
	String
	2 or 3-octet string identifying a tracking area code as specified in clause 9.3.3.10 of 3GPP TS 38.413 [34], in hexadecimal representation. Each character in the string shall take a value of "0" to "9", "a" to "f" or "A" to "F" and shall represent 4 bits. The most significant character representing the 4 most significant bits of the TAC shall appear first in the string, and the character representing the 4 least significant bit of the TAC shall appear last in the string.

pattern: '(^[A-Fa-f0-9]{4}$)|(^[A-Fa-f0-9]{6}$)'

Examples:
A legacy TAC 0x4305 shall be encoded as "4305".
An extended TAC 0x63F84B shall be encoded as "63F84B"

Editor Note: Format may need further study

	UtraCellId
	Integer
	UTRAN cells identified by UTRAN CGI

Editor Note: to add the limit number

	EutraCellId
	String
	28-bit string identifying an E-UTRA Cell Id as specified in clause 9.3.1.9 of 3GPP TS 38.413 [34], in hexadecimal representation. Each character in the string shall take a value of "0" to "9", "a" to "f" or "A" to "F" and shall represent 4 bits. The most significant character representing the 4 most significant bits of the Cell Id shall appear first in the string, and the character representing the 4 least significant bit of the Cell Id shall appear last in the string.

Pattern: '^[A-Fa-f0-9]{7}$'

Example:
An E-UTRA Cell Id 0x5BD6007 shall be encoded as "5BD6007".

	NrCellId
	String
	36-bit string identifying an NR Cell Id as specified in clause 9.3.1.7 of 3GPP TS 38.413 [34], in hexadecimal representation. Each character in the string shall take a value of "0" to "9", "a" to "f" or "A" to "F" and shall represent 4 bits. The most significant character representing the 4 most significant bits of the Cell Id shall appear first in the string, and the character representing the 4 least significant bit of the Cell Id shall appear last in the string.

Pattern: '^[A-Fa-f0-9]{9}$'

Example:
An NR Cell Id 0x225BD6007 shall be encoded as "225BD6007".

	Fqdn
	String
	Fully Qualifed Domain Name, refere to clause 19.4.2 of TS 23.003[5]

Pattern: '^([0-9A-Za-z]([-0-9A-Za-z]{0,61}[0-9A-Za-z])?\.)+[A-Za-z]{2,63}\.?$'

minLength: 4
maxLength: 253

	Ipv4Addr
	String
	String identifying a IPv4 address formatted in the "dotted decimal" notation as defined in IETF RFC 1166 [60].
Pattern: '^(([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])\.){3}([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])$'
example: '198.51.100.1'

	Ipv6Addr
	String
	String identifying an IPv6 address formatted according to clause 4 of IETF RFC 5952 [61]. The mixed IPv4 IPv6 notation according to clause 5 of IETF RFC 5952 [61] shall not be used.
Pattern: '^((:|(0?|([1-9a-f][0-9a-f]{0,3}))):)((0?|([1-9a-f][0-9a-f]{0,3})):){0,6}(:|(0?|([1-9a-f][0-9a-f]{0,3})))$'
and
Pattern: '^((([^:]+:){7}([^:]+))|((([^:]+:)*[^:]+)?::(([^:]+:)*[^:]+)?))$'
example: '2001:db8:85a3::8a2e:370:7334'

	Ipv6Prefix
	String
	String identifying an IPv6 address prefix formatted according to clause 4 of IETF RFC 5952 [61]. IPv6Prefix data type may contain an individual /128 IPv6 address.
Pattern: '^((:|(0?|([1-9a-f][0-9a-f]{0,3}))):)((0?|([1-9a-f][0-9a-f]{0,3})):){0,6}(:|(0?|([1-9a-f][0-9a-f]{0,3})))(\/(([0-9])|([0-9]{2})|(1[0-1][0-9])|(12[0-8])))$'
and
Pattern: '^((([^:]+:){7}([^:]+))|((([^:]+:)*[^:]+)?::(([^:]+:)*[^:]+)?))(\/.+)$'
example: '2001:db8:abcd:12::0/64'

	Uri
	String
	String providing an URI formatted according to IETF RFC 3986 [62].

	NOTE 1:	The string Pattern in X.2-1 may have different variants with no “^” or “$” in the pattern string.

As seen, Float data type is listed in the fourth row.
The nineteen data types defined in TS 28.622 [3] (which include Float) aim to complement the eleven data types defined in TS 32.160 [1] (which include Real), resulting in a total of thirty data types that can reused/imported across the different stage-2 Technical specifications, including (but not limited to): TS 28.622 (Generic NRM), TS 28.104 (MDA), TS 28.105 (AI/ML), TS 28.541 (5G NRM), etc.
3.2	Observations
Related to clause 3.1.1.
· Observation #1: Real and Float are two data types used for representing floating-point numbers. Real holds 4 bytes and has a 7-digit precision, while Float holds 8 bytes and has a 15-digit precision. For more details, see Table 2. Their main difference is the achievable precision. While float allows representing numbers with precision up to 7 decimal digits, Real has no such limitation (i.e., higher precision can be achieved with higher number of bits to store the mantissa).
·
Related to clause 3.1.2.
· Observation #22: Table 5 associates Float (“type name” column) with Real (“type definition” column). This association, without further clarification, is confusing; it can be interpreted that Float and Real are interchangeable, which is not correct. It should be noted that the “type name” column lists add-on data types (introduced in TS 28.622 [3]), while “type definition” column lists baseline data types (introduced in TS 32.156 [2]).
· Observation #3: 3GPP SA5 specifications contain attributes using both data types; however, the main difference oproperties of these data types (see Table 2) is not reported in any 3GPP specification. This may have led to situations where the attribute is set to Float or Real with no criteria, i.e. without awareness on the impact (e.g. resource usage, precision) that each option offers. For example, there may have been situations where 5-digit precision attributes n-bit precision attributes with n<24 are set to FloatReal, when the Real Float type will would have suffice.
3.3	Problem statement

The need of using/keeping both Real and Float to represent OAM and charging data has never been discussed nor agreed in 3GPP SA5. ; the fact that both data types exist (in IEEE specifications, programming languages, etc.) does not mean that OAM data needs them both.
The 3GPP SA5 needs to decide on the way forward for stage-2. There are two possible outcomes resulting from this decision:
3GPP SA5 agrees that Real data type is enough to represent OAM data. In this case, where only one data type is needed, using a second data type (i.e. Float) is not just unneeded; it is an error.
3GPP SA5 agrees that Real data type is not enough to represent OAM data, and therefore Float is also needed. In this case, 3GPP SA5 must prove and document the need to keep them both.

It is recommended to document the features of the selected data type(s), according to Table 2, so readers/developers become aware of these features when using the data type(s).
3.4	Potential solutions
This section details the potential solutions associated to the outcomes reported in clause 3.3.to address the problem statement in clause 3.3.
3.4.1		Potential solution #1
This solution applies for outcome 1, i.e. 3GPP SA5 agrees that Real data type is enough to represent OAM data. Embracing this solution requires making changes in both 3GPP TS 32.156 [1] and 3GPP TS 28.622 [3], as follows:
· In Table 5.2-1 from 3GPP TS 28.622 [3], remove the row that describes Float data type.
· In table 5.4.3.1-2 from TS 32.156 [1], use the “description and references” column to describe what Real data type represents, according to information from Table 2.

Table 5.2-1 in 3GPP TS 28.622 [3] would look like as pictured below.
	Type Name
	Type Definition
	Description

	FullTime
	String
	String with format "full-time" as defined in RFC 3339 [54]

	DateMonth
	String
	String with format "date-month" as defined in RFC 3339 [54]

	DateMonthDay
	String
	String with format "date-mday" as defined in RFC 3339 [54]

	Float
	Real
	The type is Real with format "float" as defined in OpenAPI Specification [63]
Editor Note: format for YANG may need further study

	Latitude
	Real
	The type is Real, the range is [-90, 90]

Table 5.4.3.1-2 in TS 32.156 [1] would look like as pictured below.
	Name
	Description and reference

	AttributeValuePair
	This data type defines an attribute name and the attribute’s value.

	BitString
	This data type is defined by Bit string of subclause 3 and subclause G.2.5 of ITU-T X.680 [2].

	DateTime
	This data type defines Date/Time Format, and it is protocol specific.

	DN
	This data type defines the DN (see Distinguished Name of TS 32.300) of an object. It contains a sequence of one or more name components. The “initial sub-sequence” (note 1) of a DN is also a DN of an object.

Note 1: Suppose an object’s DN is composed of a sequence of 4 name components, i.e. 1st, 2nd, 3rd and 4th components. The “initial sub-sequence” of this DN is composed of the 1st, 2nd and 3rd components.

	External
	This data type is defined by another organization.

	Real
	This data type is defined by Real type of ITU-T X.680 [2]

3.4.2		Potential solution #2.1
This solution applies for outcome 2, i.e. 3GPP SA5 agrees that both Real and Float data types are needed. Embracing this solution requires making changes in 3GPP TS 28.622 [3] only. The proposed changes are for Table 5.2-1, as follows:
:
· Remove the “type definition” column (2nd column) from the table, while making sure that the information contained therein is included in the “description” column (3rd column).
· Add a new row to the table, to represent Real data type, and include a reference to the place where originally defined: table 5.4.3.1-2 from TS 32.160 [1].
· In the rows now used for Float and Real data types, use the “description” column to emphasize on their noteworthy differences, according to Table 2.
Table 5.2-1 in 3GPP TS 28.622 [3] would look like as pictured below.
	Type Name
	Type Definition
	Description

	FullTime
	String
	String with format "full-time" as defined in RFC 3339 [54]

	DateMonth
	String
	String with format "date-month" as defined in RFC 3339 [54]

	DateMonthDay
	String
	String with format "date-mday" as defined in RFC 3339 [54]

	Float
	Real
	

The type is Real with format "float" as defined in OpenAPI Specification [63]
Editor Note: format for YANG may need further study

	
	
	

	Latitude
	Real
	The type is Real, the range is [-90, 90]

	

3.4.3		Potential solution #2.2
This solution applies for outcome 2, i.e. 3GPP SA5 agrees that both Real and Float data types are needed. Embracing this solution requires making changes in both 3GPP TS 32.156 [1] and 3GPP TS 28.622 [3]. The applicable changes are as follows:
· In Table 5.2-1 from 3GPP TS 28.622 [3], remove the row that describes Float data type.
· In Table 5.4.3.1-2 from TS 32.156 [1], add a new data type called Float.
· In the rows now used in Table 5.4.3.1-2 for Float and Real data types, use the “description and references” column to emphasize on their noteworthy differences, according to Table 2.
Table 5.2-1 in 3GPP TS 28.622 [3] would look like as pictured below.
	Type Name
	Type Definition
	Description

	FullTime
	String
	String with format "full-time" as defined in RFC 3339 [54]

	DateMonth
	String
	String with format "date-month" as defined in RFC 3339 [54]

	DateMonthDay
	String
	String with format "date-mday" as defined in RFC 3339 [54]

	Float
	Real
	The type is Real with format "float" as defined in OpenAPI Specification [63]
Editor Note: format for YANG may need further study

	Latitude
	Real
	The type is Real, the range is [-90, 90]

Table 5.4.3.1-2 in TS 32.156 [1] would look like as pictured below.
	Name
	Description and reference

	AttributeValuePair
	This data type defines an attribute name and the attribute’s value.

	BitString
	This data type is defined by Bit string of subclause 3 and subclause G.2.5 of ITU-T X.680 [2].

	DateTime
	This data type defines Date/Time Format, and it is protocol specific.

	DN
	This data type defines the DN (see Distinguished Name of TS 32.300) of an object. It contains a sequence of one or more name components. The “initial sub-sequence” (note 1) of a DN is also a DN of an object.

Note 1: Suppose an object’s DN is composed of a sequence of 4 name components, i.e. 1st, 2nd, 3rd and 4th components. The “initial sub-sequence” of this DN is composed of the 1st, 2nd and 3rd components.

	External
	This data type is defined by another organization.

	Real
	This data type is defined by Real type of ITU-T X.680 [2].
Single-precision floating—point number. It has 4-byte size and 7-digit precision. In IEEE 754, it corresponds to binary32.
See NOTE 1.

	Float
	Double-precision floating—point number. It has 8-byte size and 15-digit precision. In IEEE 754, it corresponds to binary64.
See NOTE 1.

	NOTE 1: <describe here the proof/need of keeping both data types>.

This solution proposes to update clause 5.2 in 3GPP TS 28.622 [3], by making the following changes:
· In the clause 5.2 description, clarify that data types captured in Table 5.2-1 specifies new data types (add-on data types) that aim to complement FMC model repertoire data types (baseline data types). Clarify that add-on data types (“type name” column) represent specialization of baseline data types (“type definition” column).
· In Table 5.2.1, for the float and real data type, use “description” column to emphasize on their noteworthy difference, as marked in yellow below. .
	Type Name
	Type Definition
	Description

	Float
	Real
	Float is a number with format sufficient for precision <=7 decimal digits. Real is a number with format sufficient for precision >7 decimal digits.
The type is Real with format "float" as defined in OpenAPI Specification [63]
Editor Note: format for YANG may need further study

4	Detailed proposal
The group is asked to:
· Agree on the problem statementobservations reported in clause 3.2.3.
· Endorse potential solution in clause 3.3#1.
· Submit a CR to SA5#157 to implement solution endorsed. and next steps described therein.
