

	
3GPP TSG-SA5 Meeting #155	S5-242616
Jeju, Korea (Republic Of), 27th May 2024 - 31st May 2024
	CR-Form-v12.3

	CHANGE REQUEST

	

	
	28.623
	CR
	0359
	rev
	-
	Current version:
	18.6.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	
	Radio Access Network
	X
	Core Network
	X

	

	Title:	
	Rel-18 CR 28.623 YANG Corrections

	
	

	Source to WG:
	Ericsson Hungary Ltd

	Source to TSG:
	S5

	
	

	Work item code:
	TEI18
	
	Date:
	2024-05-16

	
	
	
	
	

	Category:
	F
	
	Release:
	Rel-18

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier 													release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)
Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-8	(Release 8)
Rel-9	(Release 9)
Rel-10	(Release 10)
Rel-11	(Release 11)
…
Rel-17	(Release 17)
Rel-18	(Release 18)
Rel-19	(Release 19)
Rel-20	(Release 20)

	
	

	Reason for change:
	YANG SS is not matching the approved stage 2.

	
	

	Summary of change:
	Update YANG code to match existing stage 2.

	
	

	Consequences if not approved:
	Stage 2 and Stage 3 mismatch; interoperability problems.

	
	

	Clauses affected:
	Forge only

	
	

	
	Y
	N
	
	

	Other specs
	
	X
	 Other core specifications	
	TS/TR ... CR ...

	affected:
	
	X
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	X
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	Forge MR link: https://forge.3gpp.org/rep/sa5/MnS/-/merge_requests/1111 at commit 3762928758caa4b1cfc7d833a03261a4058ba7a1

	
	

	This CR's revision history:
	

Forge MR link: https://forge.3gpp.org/rep/sa5/MnS/-/merge_requests/1111 at commit 3762928758caa4b1cfc7d833a03261a4058ba7a1

*** START OF CHANGE 1 ***
*** yang-models/_3gpp-common-measurements.yang ***
<CODE BEGINS>
module _3gpp-common-measurements {
 yang-version 1.1;
 namespace "urn:3gpp:sa5:_3gpp-common-measurements";
 prefix "meas3gpp";

 import _3gpp-common-top { prefix top3gpp; }
 import _3gpp-common-yang-types { prefix types3gpp; }
 import _3gpp-common-yang-extensions { prefix yext3gpp; }
 import _3gpp-common-files { prefix files3gpp; }

 organization "3GPP SA5";
 contact "https://www.3gpp.org/DynaReport/TSG-WG--S5--officials.htm?Itemid=464";

 description "Defines Measurement and KPI related groupings
 Any list/class intending to use this should include 2 or 3 uses statements
 controlled by a feature:

 A)
+++ feature MeasurementsUnderMyClass {
+++ description 'Indicates whether measurements and/or KPIs are supported
+++ for this class.';
+++ }

 B) include the attribute measurementsList and/or kPIsList indicating the
 supported measurment and KPI types and GPs. Note that for classes
 inheriting from ManagedFunction, EP_RP or SubNetwork these attributes are
 already inherited, so there is no need to include them once more. E.g.

+++ grouping MyClassGrp {
+++ uses meas3gpp:SupportedPerfMetricGroup;
+++ }

 C) include the class PerfmetricJob to control the measurements/KPIs. E.g.

 list MyClass {
 container attributes {
 uses MyClassGrp;
 }
+++ uses meas3gpp:MeasurementSubtree {
+++ if-feature MeasurementsUnderMyClass ;
+++ }
 }

 Measurements can be contained under ManagedElement, SubNetwork, or
 any list representing a class inheriting from Subnetwork or
 ManagedFunction. Note: KPIs will only be supported under SubNetwork
 Copyright 2024, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TSDSI,
 TTA, TTC). All rights reserved.";
 reference "3GPP TS 28.623
 Generic Network Resource Model (NRM)
 Integration Reference Point (IRP);
 Solution Set (SS) definitions

 3GPP TS 28.622
 Generic Network Resource Model (NRM)
 Integration Reference Point (IRP);
 Information Service (IS)";

 revision 2024-05-06 { reference CR-xxxx; }
 revision 2024-02-24 { reference CR-0346; }
 revision 2023-11-18 { reference "CR-0299 CR-0305"; }
 revision 2023-09-18 { reference CR-0271; }
 revision 2023-04-26 { reference CR-0250; }
 revision 2023-02-18 { reference "CR-0240"; }
 revision 2023-02-14 { reference "CR-0234"; }
 revision 2022-11-04 { reference "CR-0212 CR-0194"; }
 revision 2022-10-24 { reference CR-0196; }
 revision 2022-09-30 { reference CR-0191; }
 revision 2021-07-22 { reference "CR-0137"; }
 revision 2020-11-06 { reference "CR-0118"; }
 revision 2020-09-04 { reference "CR-000107"; }
 revision 2020-06-08 { reference "CR-0092"; }
 revision 2020-05-31 { reference "CR-0084"; }
 revision 2020-03-11 { reference "S5-201581, SP-200229"; }
 revision 2019-11-21 { reference "S5-197275, S5-197735"; }
 revision 2019-10-28 { reference "S5-193516"; }
 revision 2019-06-17 { reference " "; }

 feature FilesUnderPerfMetricJob {
 description "Files shall be contained under PerfMetricJob";
 }

 grouping ThresholdInfoGrp {
 description "Defines a single threshold level.";

 leaf-list performanceMetrics {
 type string;
 min-elements 1;
 description "List of performance metrics.
 Performance metrics include measurements defined in TS 28.552 and KPIs
 defined in TS 28.554 [28]. Performance metrics can also be specified
 by other SDOs, or be vendor specific. Performance metrics are
 identified with their names.

 For measurements defined in TS 28.552 the name is constructed as follows:
 - 'family.measurementName.subcounter' for measurement types with
 subcounters
 - 'family.measurementName' for measurement types without subcounters
 `- 'family' for measurement families
 For KPIs defined in TS 28.554 [28] the name is defined in the KPI
 definitions template as the component designated with e).

 A name can also identify a vendor specific performance metric or a
 group of vendor specific performance metrics.";
 }

 leaf thresholdLevel {
 type uint64;
 mandatory true;
 description "Number (key) for a single threshold in the threshold list
 applicable to the monitored performance metric.";
 }

 leaf thresholdDirection {
 type enumeration {
 enum UP;
 enum DOWN;
 enum UP_AND_DOWN;
 }
 must '. = "UP_AND_DOWN" or not(../hysteresis)' {
 error-message "In case a threshold with hysteresis is configured, the "
 +"threshold direction attribute shall be set to 'UP_AND_DOWN'.";
 }
 mandatory true;
 description "Direction of a threshold indicating the direction for which
 a threshold crossing triggers a threshold.

 When the threshold direction is configured to 'UP', the associated
 treshold is triggered only when the performance metric value is going
 up upon reaching or crossing the threshold value. The treshold is not
 triggered, when the performance metric is going down upon reaching or
 crossing the threshold value.

 Vice versa, when the threshold direction is configured to 'DOWN', the
 associated treshold is triggered only when the performance metric is
 going down upon reaching or crossing the threshold value. The treshold
 is not triggered, when the performance metric is going up upon reaching
 or crossing the threshold value.

 When the threshold direction is set to 'UP_AND_DOWN' the treshold is
 active in both direcions.

 In case a threshold with hysteresis is configured, the threshold
 direction attribute shall be set to 'UP_AND_DOWN'.";
 }

 leaf thresholdValue {
 type union {
 type int64;
 type decimal64 {
 fraction-digits 2;
 }
 }
 mandatory true;
 description "Value against which the monitored performance metric is
 compared at a threshold level in case the hysteresis is zero";
 }

 leaf hysteresis {
 type union {
 type uint64;
 type decimal64 {
 fraction-digits 2;
 range "0..max";
 }
 }
 must '. >= 0';
 description "Hysteresis of a threshold. If this attribute is present
 the monitored performance metric is not compared against the
 threshold value as specified by the thresholdValue attribute but
 against a high and low threshold value given by

 threshold-high = thresholdValue + hysteresis
 threshold-low = thresholdValue - hysteresis

 When going up, the threshold is triggered when the performance metric
 reaches or crosses the high threshold value. When going down, the
 hreshold is triggered when the performance metric reaches or crosses
 the low threshold value.

 A hysteresis may be present only when the monitored performance
 metric is not of type counter that can go up only. If present
 for a performance metric of type counter, it shall be ignored.";
 }
 }

 grouping SupportedPerfMetricGroupGrp {
 list SupportedPerfMetricGroups {
 config false;
 description "Captures a group of supported performance metrics and
 associated parameters related to their production and reporting.
 A SupportedPerfMetricGroup attribute which is part of an MOI may
 define performanceMetrics for any MOI under the subtree contained
 under that MOI, e.g. SupportedPerfMetricGroup on a ManagedElement
 can specify supported metrics for contained ManagedFunctions
 like a GNBDUFunction.";

 leaf-list performanceMetrics {
 type string;
 min-elements 1;
 description "Performance metrics include measurements defined in
 TS 28.552 and KPIs defined in TS 28.554.

 Measurements are identified by name.

 For measurements defined in TS 28.552 the name is constructed as
 follows:
 - 'family.measurementName.subcounter' for measurement types with
 subcounters
 - 'family.measurementName' for measurement types without subcounters
 - 'family' for measurement families

 For KPIs defined in TS 28.554 the name is defined in the KPI
 definitions template as the component designated with e).

 For non-3GPP specified measurements the name is defined
 elsewhere.";
 }

 leaf-list granularityPeriods {
 type uint32 {
 range 1..max ;
 }
 units seconds;
 description "Granularity periods supported for the associated
 measurement types. The period is defined in seconds.";
 }

 leaf-list reportingMethods {
 type enumeration {
 enum FILE_BASED_LOC_SET_BY_PRODUCER;
 enum FILE_BASED_LOC_SET_BY_CONSUMER;
 enum STREAM_BASED;
 }
 min-elements 1;
 }

 leaf-list reportingPeriods {
 type uint32 {
 range 1..max ;
 }
 units seconds;
 description "Reporting periods supported for the associated
 measurement types. The period is defined in seconds.";
 }
 }
 }

 grouping PerfMetricJobGrp {
 description "Represents the attributtes of the IOC PerfMetricJob";

 leaf administrativeState {
 default UNLOCKED;
 type types3gpp:BasicAdministrativeState ;
 description "Enable or disables production of the metrics";
 }

 leaf operationalState {
 config false;
 mandatory true;
 type types3gpp:OperationalState ;
 description "Indicates whether the PerfMetricJob is working.";
 }

 leaf jobId {
 type string;
 description "Id for a PerfMetricJob job.";
 yext3gpp:inVariant;
 }

 leaf-list performanceMetrics {
 type string;
 min-elements 1;
 description "Performance metrics include measurements defined in
 TS 28.552 and KPIs defined in TS 28.554. Performance metrics can
 also be those specified by other SDOs or vendor specific metrics.
 Performance metrics are identfied with their names. A name can also
 identify a vendor specific group of performance metrics.

 For measurements defined in TS 28.552 the name is constructed as
 follows:
 - 'family.measurementName.subcounter' for measurement types with
 subcounters
 - 'family.measurementName' for measurement types without subcounters
 - 'family' for measurement families

 For KPIs defined in TS 28.554 the name is defined in the KPI
 definitions template as the component designated with e).";
 }

 leaf granularityPeriod {
 type uint32 {
 range 1..max ;
 }
 units seconds;
 mandatory true;
 description "Granularity period used to produce measurements. The value
 must be one of the supported granularity periods for the metric.";
 }

 leaf-list objectInstances {
 type types3gpp:DistinguishedName;
 }

 leaf-list rootObjectInstances {
 type types3gpp:DistinguishedName;
 description "Each object instance designates the root of a subtree that
 contains the root object and all descendant objects.";
 }

 uses types3gpp:ReportingCtrl {
 refine "reportingCtrl/file-based-reporting/fileReportingPeriod" {
 must '(number(.)*"60") mod number(../granularityPeriod) = "0"' {
 error-message
 "The time-period must be a multiple of the granularityPeriod.";
 }
 }
 }

 leaf _linkToFiles {
 type string ;
 config false;
 mandatory true;
 yext3gpp:notNotifyable ;
 description "Link to a 'Files' object.";
 yext3gpp:inVariant;
 }

 choice conditiona-or-schedule {
 leaf schedulerRef {
 type types3gpp:DistinguishedName;
 description "Pointer to a Scheduler object.";
 }
 leaf conditionMonitorRef {
 type types3gpp:DistinguishedName;
 description "Pointer to a ConditionMonitor object.";
 }
 }
 }

 grouping ThresholdMonitorGrp {
 description "A threshold monitor that is created by the consumer for
 the monitored entities whose measurements are required by consumer
 to monitor.";

 leaf administrativeState {
 default UNLOCKED;
 type types3gpp:BasicAdministrativeState ;
 description "Enables or disables the ThresholdMonitor.";
 }

 leaf operationalState {
 config false;
 mandatory true;
 type types3gpp:OperationalState ;
 description "Indicates whether the ThresholdMonitor is working.";
 }

 list thresholdInfoList {
 key idx;
 min-elements 1;
 leaf idx { type uint32 ; }
 uses ThresholdInfoGrp;
 description "List of threshold info.";
 }

 leaf monitorGranularityPeriod {
 type uint32 {
 range "1..max";
 }
 units second;
 mandatory true;
 description " Granularity period used to monitor measurements for
 threshold crossings. ";
 }

 leaf-list objectInstances {
 type types3gpp:DistinguishedName;
 yext3gpp:notNotifyable;
 }

 leaf-list rootObjectInstances {
 type types3gpp:DistinguishedName;
 description "Each object instance designates the root of a subtree that
 contains the root object and all descendant objects.";
 yext3gpp:notNotifyable;
 }
 }

 grouping MeasurementSubtree {
 description "Contains classes that define measurements.
 Should be used in all classes (or classes inheriting from)
 - SubNnetwork
 - ManagedElement
 - ManagedFunction

 If a YANG module wants to augment these classes/list/groupings they must
 augment all user classes!

 If a class uses this grouping in its list it shall also use the
 grouping SupportedPerfMetricGroupGrp to add SupportedPerfMetricGroup as
 an attribute to its grouping";

 list PerfMetricJob {
 description "This IOC represents a performance metric production job. It
 can be name-contained by SubNetwork, ManagedElement, or ManagedFunction.

 To activate the production of the specified performance metrics, a MnS
 consumer needs to create a PerfMetricJob instance on the MnS producer.
 For ultimate deactivation of metric production, the MnS consumer should
 delete the job to free up resources on the MnS producer.

 For temporary suspension of metric production, the MnS consumer can
 manipulate the value of the administrative state attribute. The MnS
 producer may disable metric production as well, for example in overload
 situations. This situation is indicated by the MnS producer with setting
 the operational state attribute to disabled. When production is resumed
 the operational state is set back to enabled.

 The jobId attribute can be used to associate metrics from multiple
 PerfMetricJob instances. The jobId can be included when reporting
 performance metrics to allow a MnS consumer to associate received
 metrics for the same purpose. For example, it is possible to configure
 the same jobId value for multiple PerfMetricJob instances required to
 produce the measurements for a specific KPI.

 The attribute performanceMetrics defines the performance metrics to be
 produced and the attribute granularityPeriod defines the granularity
 period to be applied.

 All object instances below and including the instance name-containing
 the PerfMetricJob (base object instance) are scoped for performance
 metric production. Performance metrics are produced only on those object
 instances whose object class matches the object class associated to the
 performance metrics to be produced.

 The attributes objectInstances and rootObjectInstances allow to restrict
 the scope. When the attribute objectInstances is present, only the object
 instances identified by this attribute are scoped. When the attribute
 rootObjectInstances is present, then the subtrees whose root objects are
 identified by this attribute are scoped. Both attributes may be present
 at the same time meaning the total scope is equal to the sum of both
 scopes. Object instances may be scoped by both the objectInstances and
 rootObjectInstances attributes. This shall not be considered as an error
 by the MnS producer.

 When the performance metric requires performance metric production on
 multiple managed objects, which is for example the case for KPIs, the
 MnS consumer needs to ensure all required objects are scoped. Otherwise
 a PerfMetricJob creation request shall fail.

 The attribute reportingCtrl specifies the method and associated control
 parameters for reporting the produced measurements to MnS consumers.
 Three methods are available: file-based reporting with selection of the
 file location by the MnS producer, file-based reporting with selection
 of the file location by the MnS consumer and stream-based reporting.

 For file-based reporting, all performance metrics that are produced
 related to a 'PerfMetricJob' instance for a reporting period shall be
 stored in a single reporting file.

 When the administrative state is set to 'UNLOCKED' after the creation
 of a 'PerfMetricJob' the first granularity period shall start. When
 the administrative state is set to 'LOCKED' or the operational state
 to 'DISABLED', the ongoing reporting period shall be aborted, for
 streaming the ongoing granularity period. When the administrative
 state is set back to 'UNLOCKED' or the operational state to 'ENABLED'
 a new reporting period period shall start, in case of streaming a new
 granularity period.

 Changes of all other configurable attributes shall take effect only at
 the beginning of the next reporting period, for streaming at the
 beginning of the next granularity period.

 When the 'PerfMetricJob' is deleted, the ongoing reporting period shall
 be aborted, for streaming the ongoing granularity period.

 A PerfMetricJob creation request shall fail, when the requested
 performance metrics, the requested granularity period, the requested
 repoting method, or the requested combination thereof is not supported
 by the MnS producer.

 Creation and deletion of PerfMetricJob instances by MnS consumers is
 optional; when not supported, PerfMetricJob instances may be created and
 deleted by the system or be pre-installed.";

 key id;
 uses top3gpp:Top_Grp ;
 container attributes {
 uses PerfMetricJobGrp ;
 }
 uses files3gpp:FilesSubtree {
 if-feature FilesUnderPerfMetricJob;
 }
 }

 list ThresholdMonitor {
 key id;
 description "Represents a threshold monitor for performance metrics.
 It can be contained by SubNetwork, ManagedElement, or ManagedFunction.
 A threshold monitor checks for threshold crossings of performance metric
 values and generates a notification when that happens.

 The ThresholdMonitor shall be used only when NRM based threshold
 monitoring is supported.

 To activate threshold monitoring, a MnS consumer needs to create a
 ThresholdMonitor instance on the MnS producer. For ultimate deactivation
 of threshold monitoring, the MnS consumer should delete the monitor to
 free up resources on the MnS producer.

 For temporary suspension of threshold monitoring, the MnS consumer can
 manipulate the value of the administrative state attribute. The MnS
 producer may disable threshold monitoring as well, for example in
 overload situations. This situation is indicated by the MnS producer with
 setting the operational state attribute to disabled. When monitoring is
 resumed the operational state is set again to enabled.

 All object instances below and including the instance containing the
 ThresholdMonitor (base object instance) are scoped for performance
 metric production. Performance metrics are monitored only on those
 object instances whose object class matches the object class associated
 to the performance metrics to be monitored.

 The optional attributes objectInstances and rootObjectInstances allow to
 restrict the scope. When the attribute objectInstances is present, only
 the object instances identified by this attribute are scoped. When the
 attribute rootObjectInstances is present, then the subtrees whose root
 objects are identified by this attribute are scoped. Both attributes may
 be present at the same time meaning the total scope is equal to the sum
 of both scopes. Object instances may be scoped by both the objectInstances
 and rootObjectInstances attributes. This shall not be considered as an
 error by the MnS producer.

 Multiple thresholds can be defined for multiple performance metric sets
 in a single monitor using thresholdInfoList. The attribute
 monitorGranularityPeriod defines the granularity period to be applied.
 The value is a supported GP for the measurements being monitored.
 Threshold crossing behaviour is as defined in [54], Annex F.

 Each threshold is identified with a number (key) called thresholdLevel.
 A threshold is defined using the attributes thresholdValue ,
 thresholdDirection and hysteresis.

 When hysteresis is absent or carries no information, a threshold is
 triggered when the thresholdValue is reached or crossed. When hysteresis
 is present, two threshold values are specified for the threshold as
 follows: A high treshold value equal to the threshold value plus the
 hysteresis value, and a low threshold value equal to the threshold value
 minus the hysteresis value. When the monitored performance metric
 increases, the threshold is triggered when the high threshold value is
 reached or crossed. When the monitored performance metric decreases, the
 threshold is triggered when the low threshold value is reached or crossed.
 The hsyteresis ensures that the performance metric value can oscillate
 around a comparison value without triggering each time the threshold when
 the threshold value is crossed.

 Using the thresholdDirection attribute a threshold can be configured in
 such a manner that it is triggered only when the monitored performance
 metric is going up or down upon reaching or crossing the threshold.

 A ThresholdMonitor creation request shall be rejected, if the performance
 metrics requested to be monitored, the requested granularity period, or
 the requested combination thereof is not supported by the MnS producer.
 A creation request may fail, when the performance metrics requested to be
 monitored are not produced by a PerfMetricJob.

 Creation and deletion of ThresholdMonitor instances by MnS consumers is
 optional; when not supported, ThresholdMonitor instances may be created
 and deleted by the system or be pre-installed.";

 uses top3gpp:Top_Grp ;
 container attributes {
 uses ThresholdMonitorGrp ;
 }
 }
 }
}
<CODE ENDS>
*** END OF CHANGE 1 ***
*** START OF CHANGE 2 ***
*** yang-models/_3gpp-common-subscription-control.yang ***
<CODE BEGINS>
module _3gpp-common-subscription-control {
 yang-version 1.1;
 namespace "urn:3gpp:sa5:_3gpp-common-subscription-control";
 prefix "subscr3gpp";

 import _3gpp-common-top { prefix top3gpp; }
 import _3gpp-common-yang-extensions { prefix yext3gpp; }

 organization "3GPP SA5";
 contact "https://www.3gpp.org/DynaReport/TSG-WG--S5--officials.htm?Itemid=464";

 description "Defines IOCs for subscription and heartbeat control.
 Copyright 2024, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TSDSI,
 TTA, TTC). All rights reserved.";
 reference "3GPP TS 28.623
 Generic Network Resource Model (NRM)
 Integration Reference Point (IRP);
 Solution Set (SS) definitions
 3GPP TS 28.623";

 revision 2024-01-18 { reference "CR-0309 CR-0329" ; }
 revision 2023-09-18 { reference CR-0271 ; }
 revision 2023-08-10 { reference "CR0257 CR0260"; }
 revision 2022-10-20 { reference CR-0196; }
 revision 2021-01-16 { reference "CR-0120"; }
 revision 2020-08-26 { reference "CR-0106"; }
 revision 2019-11-29 { reference "S5-197648 S5-197647 S5-197829 S5-197828"; }

 grouping ScopeGrp {
 description "This <<dataType>> allows to select data nodes in an object
 tree whose root is identified by the so called base managed object
 instance. The identification of the base object instance is not part of
 this <<dataType>> and needs to be specified by other means. The base
 managed object instance is typically a managed object instance in an
 object tree.

 The 'scopeType' and the 'scopeLevel' attributes allow to select managed
 object instances. Attributes, attribute fields and attribute elements
 cannot be selected.
 grouping NtfSubscriptionControlGrp {
 description "Attributes of a specific notification subscription";

 leaf notificationRecipientAddress {
 type string;
 mandatory true;
 }

 leaf-list notificationTypes {
 type string;
 description "Defines the types of notifications that are candidates
 for being forwarded to the notification recipient.
 If the notificationTypes attribute is not supported or not present
 all candidate notifications types are forwarded to the notification;
 discriminated by notificationFilter attribute.";
 }

 The 'dataNodeSelector' attribute allows to select managed object
 instances, attributes, attribute fields, attribute elements, or
 attribute field elements. Its value contains a solution set specific
 expression for specifying the data nodes to be selected.";
 choice scope {
 description "Describes which object instances are selected with
 respect to a base object instance.";

 case type-level {
 leaf scopeType {
 type enumeration {
 enum BASE_ONLY;
 enum BASE_ALL;
 enum BASE_NTH_LEVEL;
 enum BASE_SUBTREE;
 }
 mandatory true;
 description "If the optional scopeLevel parameter is not supported
 or absent, allowed values of scopeType are BASE_ONLY and BASE_ALL.

 The value BASE_ONLY indicates only the base object is selected.
 The value BASE_ALL indicates the base object and all of its
 subordinate objects (incl. the leaf objects) are selected.

 If the scopeLevel parameter is supported and present, allowed
 values of scopeType are BASE_ALL, BASE_ONLY, BASE_NTH_LEVEL
 and BASE_SUBTREE.

 The value BASE_NTH_LEVEL indicates all objects on the level,
 which is specified by the scopeLevel parameter, below the base
 object are selected. The base object is at scopeLevel zero.
 The value BASE_SUBTREE indicates the base object and all of its
 subordinate objects down to and including the objects on the level,
 which is specified by the scopeLevel parameter, are selected.
 The base object is at scopeLevel zero.";
 }

 leaf scopeLevel {
 when '../scopeType = "BASE_NTH_LEVEL" or ../scopeType = "BASE_SUBTREE"';
 type uint16;
 mandatory true;
 description "See description of scopeType.";
 }
 }
 case dataNodeSelector {
 leaf dataNodeSelector {
 type string;
 description "The value shall follow the rules of RFC 8641
 filter-spec";
 reference "RFC 8641 section 5.";
 }
 }
 }
 }

 grouping NtfSubscriptionControlGrp {
 description "Attributes of a specific notification subscription";

 leaf notificationRecipientAddress {
 type string;
 mandatory true;
 }

 leaf-list notificationTypes {
 type string;
 description "Defines the types of notifications that are candidates
 for being forwarded to the notification recipient.
 If the notificationTypes attribute is not supported or not present
 all candidate notifications types are forwarded to the notification;
 discriminated by notificationFilter attribute.";
 }

 list scope {
 description "Scopes (selects) data nodes in an object tree.";
 key idx;
 max-elements 8;
 leaf idx { type string; }
 uses ScopeGrp;
 }

 leaf notificationFilter {
 type string;
 description "Defines a filter to be applied to candidate notifications
 identified by the notificationTypes attribute.
 If notificationFilter is present, only notifications that pass the
 filter criteria are forwarded to the notification recipient; all other
 notifications are discarded.
 The filter can be applied to any field of a notification.

 The format of the string shall confrm to a
 JSON expressions (Jex) 'JexConditionsExpr'";
 reference "3GPP TS 32.161";
 }
 }

 grouping HeartbeatControlGrp {
 description "Attributes of HeartbeatControl.";

 leaf heartbeatNtfPeriod {
 type uint32;
 mandatory true;
 units seconds;
 description "Specifies the periodicity of heartbeat notification emission.
 The value of zero has the special meaning of stopping the heartbeat
 notification emission.";
 }

 leaf triggerHeartbeatNtf {
 type boolean;
 default false;
 description "Setting this attribute to 'true' triggers an immediate
 additional heartbeat notification emission. Setting the value to
 'false' has no observable result.

 The periodicity of notifyHeartbeat emission is not changed.

 After triggering the heartbeat the system SHALL set the value
 back to false.";
 yext3gpp:notNotifyable;
 }
 }

 grouping SubscriptionControlSubtree {
 description "Contains notification subscription related classes.
 Should be used in all classes (or classes inheriting from)
 - SubNetwork
 - ManagedElement

 If some YAM wants to augment these classes/list/groupings they must
 augment all user classes!";

 list NtfSubscriptionControl {
 description "NtfSubscriptionControl represents a notification
 subscription of a notification recipient.

 The scope attribute is used to select managed object instances included
 in the subscription. The base object instance of the scope is the
 object instance name-containing the NtfSubscriptionControl instance.
 When the scope attribute is absent, all objects below and including
 the base object are scoped. The notifications related to the selected
 managed object instances are candidates to be sent to the address
 specified by the notificationRecipientAddress attribute.

 The notificationTypes attribute and notificationFilter attribute
 allow MnS consumers to control which candidate notifications are
 sent to the notificationRecipientAddress.

 If the notificationTypes attribute is present, its value identifies
 the notification types that are candidates to be sent to the
 notificationRecipientAddress. If the notificationTypes attribute is
 absent, notifications of all types are candidates to be sent to
 notificationRecipientAddress. Notification types supported in the
 NtfSubscriptionControl.notificationTypes attribute are the ones
 listed in the attribute SupportedNotifications.notificationTypes.

 If supported, the notificationFilter attribute defines a filter that
 is applied to the set of candidate notifications. The filter is
 applicable to all parameters of a notification. Only candidate
 notifications that pass the filter criteria are sent to the
 notificationRecipientAddress. If the notificationFilter attribute is
 absent, all candidate notificatios are sent to the
 notificationRecipientAddress.

 To receive notifications, a MnS consumer has to create a
 NtfSubscriptionControl instance on the MnS producer. A MnS consumer
 can create a subscription for another MnS consumer since it is not
 required the notificationRecipientAddress be his own address.

 When a MnS consumer does not wish to receive notifications any more
 the MnS consumer shall delete the corresponding NtfSubscriptionControl
 instance.

 When a subscription is created and the notification scope inludes
 the created subscription object and the subscribed notification types
 include notifications reporting object creation (notifyMOICreation
 or notifyMOIChanges), the first notification sent related to the
 new subscription shall report the creation of the
 NtfSubscriptionControl instance. Likewise, when a subscription is
 deleted and the notification scope inludes the deleted subscription
 object and the subscribed notification types include notifications
 reporting object deletion (notifyMOIDeletion or notifyMOIChanges),
 the last notification sent related to the subscription shall report
 the deletion of the NtfSubscriptionControl instance.

 Creation and deletion of NtfSubscriptionControl instances by MnS
 consumers is optional; when not supported, the NtfSubscriptionControl
 instances may be created and deleted by the system or be
 pre-installed.";

 key id;
 uses top3gpp:Top_Grp;
 container attributes {
 uses NtfSubscriptionControlGrp;
 }

 list HeartbeatControl {
 description "MnS consumers (i.e. notification recipients) use heartbeat
 notifications to monitor the communication channels between themselves
 and MnS producers configured to emit notifications.

 A HeartbeatControl instance allows controlling the emission of
 heartbeat notifications by MnS producers. The recipients of heartbeat
 notifications are specified by the notificationRecipientAddress
 attribute of the NtfSubscriptionControl instance containing the
 HeartbeatControl instance.

 Note that the MnS consumer managing the HeartbeatControl instance
 and the MnS consumer receiving the heartbeat notifications may not be
 the same.

 As a pre-condition for the emission of heartbeat notifications, a
 HeartbeatControl instance needs to be created. Creation of an instance
 with an initial non-zero value of the heartbeatNtfPeriod attribute
 triggers an immediate heartbeat notification emission. Creation of an
 instance with an initial zero value of the heartbeatPeriod attribute
 does not trigger an emission of a heartbeat notification. Deletion of
 an instance does not trigger an emission of a heartbeat notification.

 Once the instance is created, heartbeat notifications are emitted with
 a periodicity defined by the value of the heartbeatNtfPeriod
 attribute. No heartbeat notifications are emitted if the value is
 equal to zero. Setting a zero value to a non zero value, or a non zero
 value to a different non zero value, triggers an immediate heartbeat
 notification, that is the base for the new heartbeat period. Setting a
 non zero value to a zero value stops emitting heartbeats immediately;
 no final heartbeat notification is sent.

 Creation and deletion of HeartbeatControl instances by MnS Consumers
 is optional; when not supported, the HeartbeatControl instances may be
 created and deleted by the system or be pre-installed.

 Whether and when to emit heartbeat notifications is controlled by
 HeartbeatControl. Subscription for heartbeat is not supported via the
 NtfSubscriptionControl.";

 max-elements 1;
 key id;
 uses top3gpp:Top_Grp;

 container attributes {
 uses HeartbeatControlGrp;
 }
 }
 }
 }

 grouping SupportedNotificationsGrp {
 description "Attributes of SupportedNotifications.";

 leaf-list notificationTypes {
 type string;
 config false;
 description "List of notification types supported by the MnS producer";
 }

 leaf-list notificationProtocols {
 type enumeration {
 enum HTTP;
 enum HTTP_VES_ENCAPS;
 }
 config false;
 min-elements 1;
 description "List of protocols supported for notifications.";
 reference "3GPP TS 28.532";
 }
 }

 grouping SupportedNotificationsSubtree {
 description "Contains SupportedNotifications.";

 list SupportedNotifications {
 description "SupportedNotifications represents the notification related
 capabilities of a MnS producer.

 The notificationTypes attribute lists notificationTypes supported
 by the MnSProducer. Specific IOCs can be the source of a specific
 but not necessary every supported notificationType.

 The notificationProtocols attribute identifies the notification
 transport protocols supported by a MnS producer.";

 key id;
 uses top3gpp:Top_Grp;
 container attributes {
 uses SupportedNotificationsGrp;
 }
 }
 }
}
<CODE ENDS>
*** END OF CHANGE 2 ***
*** START OF CHANGE 3 ***
*** yang-models/_3gpp-common-trace.yang ***
<CODE BEGINS>
module _3gpp-common-trace {
 yang-version 1.1;
 namespace "urn:3gpp:sa5:_3gpp-common-trace";
 prefix "trace3gpp";

 import _3gpp-common-top { prefix top3gpp; }
 import _3gpp-common-yang-types {prefix types3gpp; }
 import _3gpp-common-yang-extensions {prefix yext3gpp; }
 import ietf-inet-types { prefix inet; }
 import _3gpp-common-files { prefix files3gpp; }

 organization "3GPP SA5";
 contact "https://www.3gpp.org/DynaReport/TSG-WG--S5--officials.htm?Itemid=464";

 description "Trace handling
 Copyright 2024, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TSDSI,
 TTA, TTC). All rights reserved.";
 reference "3GPP TS 28.623
 Generic Network Resource Model (NRM)
 Integration Reference Point (IRP);
 Solution Set (SS) definitions

 3GPP TS 28.622
 Generic Network Resource Model (NRM)
 Integration Reference Point (IRP);
 Information Service (IS)" ;

 revision 2024-05-06 { reference CR-xxxx; }
 revision 2024-04-06 { reference "CR-0342"; }
 revision 2024-01-29 { reference "CR-0316"; }
 revision 2023-11-06 { reference "CR-0290 CR-0294"; }
 revision 2023-11-03 { reference CR-0302 ; }
 revision 2023-09-18 { reference CR-0271 ; }
 revision 2023-08-10 { reference CR-0261; }
 revision 2023-04-26 { reference CR-0250; }
 revision 2023-02-18 { reference "CR-0234"; }
 revision 2023-02-16 { reference "CR-0233"; }
 revision 2022-09-30 { reference CR-0191 ; }
 revision 2022-04-27 { reference "CR-0159"; }
 revision 2021-10-18 { reference "CR-0139"; }
 revision 2021-07-22 { reference "CR-0137"; }
 revision 2021-01-25 { reference "CR-0122"; }
 revision 2020-11-16 { reference "CR-0117"; }
 revision 2020-08-06 { reference "CR-0102"; }

 feature FilesUnderTraceJob {
 description "Files shall be contained under TraceJob";
 }

 grouping FreqInfoGrp {
 description "Represents the FreqInfo dataType.
 This <<dataType>> defines the RF reference frequency and the frequency
 operating bands used in a cell for a given direction (UL or DL) in FDD
 or for both UL and DL directions in TDD";

 leaf arfcn {
 type uint32 {
 range 0..3279165;
 }
 mandatory true;
 description "RF Reference Frequency as defined in TS 38.104,
 clause 5.4.2.1. The frequency provided identifies the absolute
 frequency position of the reference resource block (Common RB 0)
 of the carrier. Its lowest subcarrier is also known as Point A.";
 }

 leaf-list freqBands {
 type uint32 {
 range 1..1024;
 }
 min-elements 1;
 description "List of NR frequency operating bands. Primary NR
 Operating Band as defined in TS 38.104, clause 5.4.2.3.
 The value 1 corresponds to n1, value 2 corresponds to NR operating
 band n2, etc.";
 }
 }

 grouping AreaConfigGrp {
 description "Represents the AreaConfig dataType.
 This <<dataType>> defines the area for which measurement logging should
 be performed. It is described by a list of cells and a list of
 frequencies.";

 list freqInfo {
 key arfcn;
 min-elements 1;
 max-elements 32;
 description "It specifies the carrier frequency and bands used in
 a cell.";

 uses FreqInfoGrp ;
 }

 leaf-list pciList {
 type uint32 {
 range 0..1007;
 }
 min-elements 1;
 max-elements 32;
 description "List of neighbour cells subject for MDT scope.";
 }
 }

 grouping AreaScopeGrp {
 description "Represents the AreaScope dataType.
 This <<dataType>> defines the area scope of MDT.
 The Area Scope parameter in LTE and NR is either:
 - list of Cells, identified by E-UTRAN-CGI or NG-RAN CGI.
 Maximum 32 CGI can be defined.
 - list of Tracking Area, identified by TAC.
 Maximum of 8 TAC can be defined.
 - list of Tracking Area Identity, identified by TAC with
 associated plmn-Identity perTAC-List containing the
 PLMN identity for each TAC. Maximum of 8 TAI can be defined.
 The Area Scope parameter in NR can also contain:
 - list of NPN-IDs in NR. It is either a list of PNI-NPNs
 identified by CAG ID with associated plmn-Identity or a
 list of SNPNs identified by Network ID with associated
 plmn-Identity .";

 choice AreaScopeChoice {
 leaf-list eutraCellIdList {
 type string;
 min-elements 1;
 max-elements 32;
 description "List of E-UTRAN cells identified by E-UTRAN-CGI";
 }

 leaf-list utraCellIdList {
 type string;
 min-elements 1;
 max-elements 32;
 description "List of UTRAN cells identified by UTRAN CGI";
 }

 leaf-list tacList {
 type types3gpp:Tac;
 min-elements 1;
 max-elements 8;
 description "Tracking Area Code list";
 }

 list taiList {
 description "Tracking Area Identity list";
 key idx;
 min-elements 1;
 max-elements 8;
 leaf idx { type string; }
 uses types3gpp:TaiGrp;
 }
 }

 list nPNIdentityList {
 description "list of NPN IDs of in NR. It is either a list of PNI-NPNs
 identified by CAG ID with associated plmn-Identity or a list of SNPN
 identified by Network ID with associated plmn-Identity";
 key idx;
 min-elements 1;
 uses NpnIdGrp;
 leaf idx { type string; }
 }
 }

 grouping NpnIdGrp {
 description "Represents the NpnId dataType.";

 list plmnId {
 key "mcc mnc";
 description "It specifies the PLMN Id of the NPN network.";
 uses types3gpp:PLMNId;
 max-elements 1;
 }

 list cAGIdList {
 key idx;
 max-elements 256;
 description "It specifies the PNI-NPN identified by CAG ID ";
 leaf idx { type string; }
 }

 list nIDList {
 key idx;
 max-elements 16;
 description "It specifies the SNPN identified by Network ID";
 leaf idx { type string; }
 }
 }

 grouping ExcessPacketDelayThresholdsGrp {
 description "Represents the ExcessPacketDelayThresholds dataType.
 This <<dataType>> defines a excess packet delay threshold information
 to enable the calculation of the PDCP Excess Packet Delay in the
 uplink in case of M6 uplink measurements are requested. The excess
 packet delay threshold information is specified with the 5QI value
 and excess packet delay threshold value.";

 leaf fiveQIValue {
 type uint8;
 mandatory true;
 description "It indicates 5QI value.";
 }

 leaf excessPacketDelayThresholdValue {
 type decimal64 {
 fraction-digits 2;
 range 0.25|0.5|1|2|4|5|10|20|30|40|50|60|70|80|90|100|150|300|500 ;
 }
 mandatory true;
 units milliseconds;
 description "Value of excess packet delay threshold
 for M6 UL measurement in milliseconds.";
 }
 }

 grouping TraceReferenceGrp {
 description "Represents the TraceReference dataType.
 This <<dataType>> defines a globally unique identifier, which uniquely
 identifies the Trace Session that is created by the TraceJob. It is
 composed of the MCC, MNC (resulting in PLMN identifier) and the
 trace identifier.";

 uses types3gpp:PLMNId; // mcc+mnc

 leaf traceId {
 type string;
 mandatory true;
 description "An identifier, which identifies the Trace
 (together with MCC and MNC). This is a 3 byte Octet String.";
 }
 }

 grouping MbsfnAreaGrp {
 description "Represents the MbsfnArea dataType.
 This <<dataType>> defines a MBSFN area. It is composed of the MBSFN Area
 identifier and the carrier frequency (EARFCN).";

 leaf mbsfnAreaId {
 type uint32 {
 range 1..max;
 }
 mandatory true;
 description "MBSFN Area Identifier";
 }

 leaf earfcn{
 type uint32 {
 range 1..max;
 }
 mandatory true;
 description "Carrier Frequency";
 }

 list nPNIdentityList {
 description "list of NPN IDs of in NR. It is either a list of PNI-NPNs
 identified by CAG ID with associated plmn-Identity or a list of SNPN
 identified by Network ID with associated plmn-Identity";
 key idx;
 min-elements 1;
 uses NpnIdGrp;
 leaf idx { type string; }
 }
 }

 grouping TraceConfigGrp {

 description "Defines the configuration parameters of TraceJob
 which are specific for Trace or combined Trace and Immediate MDT.
 The attribute listOfNeTypes specifies the network elements to be
 traced. The optional attribute listOfInterfaces allows to specify
 the individual interfaces of the network elements to be recorded.
 The attribute traceDepth allows to configure the level of detail
 of the information which shall be recorded. For trace the reporting
 is event based, where the triggering event is configured with
 attribute triggeringEvent. For each triggering event the first and
 last message (start/stop triggering event) to record are specified.";

 list listOfInterfaces {
 description "Defines the configuration parameters of TraceJob
 which are specific for Trace or combined Trace and Immediate MDT.
 The attribute listOfNeTypes specifies the network elements to be
 traced. The optional attribute listOfInterfaces allows to specify
 the individual interfaces of the network elements to be recorded.
 The attribute traceDepth allows to configure the level of detail
 of the information which shall be recorded. For trace the reporting
 is event based, where the triggering event is configured with
 attribute triggeringEvent. For each triggering event the first and
 last message (start/stop triggering event) to record are specified.";

 list listOfInterfaces {
 key idx;

 description "Specifies the interfaces that need to be traced in the given
 ManagedEntityFunction.The attribute is applicable only for Trace. In
 case this attribute is not used, it carries a null semantic.";
 reference "Clause 5.5 of 3GPP TS 32.422 for additional details on the
 allowed values.";

 leaf idx { type uint32 ; }

 leaf-list MSCServerInterfaces {
 type enumeration {
 enum A ;
 enum Iu-CS ;
 enum Mc ;
 enum MAP-G ;
 enum MAP-B ;
 enum MAP-E ;
 enum MAP-F ;
 enum MAP-D ;
 enum MAP-C ;
 enum CAP ;
 }
 }
 leaf-list MGWInterfaces {
 type enumeration {
 enum Mc ;
 enum Nb-UP ;
 enum Iu-UP ;
 }
 }
 leaf-list RNCInterfaces {
 type enumeration {
 enum Iu-CS ;
 enum Iu-PS ;
 enum Iur ;
 enum Iub ;
 enum Uu ;
 }
 }
 leaf-list SGSNInterfaces {
 type enumeration {
 enum Gb ;
 enum Iu-PS ;
 enum Gn ;
 enum MAP-Gr ;
 enum MAP-Gd ;
 enum MAP-Gf ;
 enum Ge ;
 enum Gs ;
 enum S6d ;
 enum S4 ;
 enum S3 ;
 enum S13 ;
 }
 }
 leaf-list GGSNInterfaces {
 type enumeration {
 enum Gn ;
 enum Gi ;
 enum Gmb ;
 }
 }
 leaf-list S-CSCFInterfaces {
 type enumeration {
 enum Mw ;
 enum Mg ;
 enum Mr ;
 enum Mi ;
 }
 }
 leaf-list P-CSCFInterfaces {
 type enumeration {
 enum Gm ;
 enum Mw ;
 }
 }
 leaf-list I-CSCFInterfaces {
 type enumeration {
 enum Cx ;
 enum Dx ;
 enum Mg ;
 enum Mw ;
 }
 }
 leaf-list MRFCInterfaces {
 type enumeration {
 enum Mp ;
 enum Mr ;
 }
 }
 leaf-list MGCFInterfaces {
 type enumeration {
 enum Mg ;
 enum Mj ;
 enum Mn ;
 }
 }
 leaf-list IBCFInterfaces {
 type enumeration {
 enum Ix ;
 enum Mx ;
 }
 }
 leaf-list E-CSCFInterfaces {
 type enumeration {
 enum Mw ;
 enum Ml ;
 enum Mm ;
 enum Mi-Mg ;
 }
 }
 leaf-list BGCFInterfaces {
 type enumeration {
 enum Mi ;
 enum Mj ;
 enum Mk ;
 }
 }
 leaf-list ASInterfaces {
 type enumeration {
 enum Dh ;
 enum Sh ;
 enum ISC ;
 enum Ut ;
 }
 }
 leaf-list HSSInterfaces {
 type enumeration {
 enum MAP-C ;
 enum MAP-D ;
 enum Gc ;
 enum Gr ;
 enum Cx ;
 enum S6d ;
 enum S6a ;
 enum Sh ;
 }
 }
 leaf-list EIRInterfaces {
 type enumeration {
 enum MAP-F ;
 enum S13 ;
 enum MAP-Gf ;
 }
 }
 leaf-list BM-SCInterfaces {
 type enumeration {
 enum Gmb ;
 }
 }
 leaf-list MMEInterfaces {
 type enumeration {
 enum S1-MME ;
 enum S3 ;
 enum S6a ;
 enum S10 ;
 enum S11 ;
 enum S13 ;
 }
 }
 leaf-list SGWInterfaces {
 type enumeration {
 enum S4 ;
 enum S5 ;
 enum S8 ;
 enum S11 ;
 enum Gxc ;
 }
 }
 leaf-list PDN_GWInterfaces {
 type enumeration {
 enum S2a ;
 enum S2b ;
 enum S2c ;
 enum S5 ;
 enum S6b ;
 enum Gx ;
 enum S8 ;
 enum SGi ;
 }
 }
 leaf-list eNBInterfaces {
 type enumeration {
 enum S1-MME ;
 enum X2 ;
 }
 }
 leaf-list en-gNBInterfaces {
 type enumeration {
 enum S1-MME ;
 enum X2 ;
 enum Uu ;
 enum F1-C ;
 enum E1 ;
 }
 }
 leaf-list AMFInterfaces {
 type enumeration {
 enum N1 ;
 enum N2 ;
 enum N8 ;
 enum N11 ;
 enum N12 ;
 enum N14 ;
 enum N15 ;
 enum N20 ;
 enum N22 ;
 enum N26 ;
 }
 }
 leaf-list AUSFInterfaces {
 type enumeration {
 enum N12 ;
 enum N13 ;
 }
 }
 leaf-list NEFInterfaces {
 type enumeration {
 enum N29 ;
 enum N30 ;
 enum N33 ;
 }
 }
 leaf-list NRFInterfaces {
 type enumeration {
 enum N27 ;
 }
 }
 leaf-list NSSFInterfaces {
 type enumeration {
 enum N22 ;
 enum N31 ;
 }
 }
 leaf-list PCFInterfaces {
 type enumeration {
 enum N5 ;
 enum N7 ;
 enum N15 ;
 }
 }
 leaf-list SMFInterfaces {
 type enumeration {
 enum N4 ;
 enum N7 ;
 enum N10 ;
 enum N11 ;
 enum S5-C ;
 enum N38 ;
 enum N16 ;
 enum N16a ;
 }
 }
 leaf-list SMSFInterfaces {
 type enumeration {
 enum N20 ;
 enum N21 ;
 }
 }
 leaf-list UDMInterfaces {
 type enumeration {
 enum N8 ;
 enum N10 ;
 enum N13 ;
 enum N21 ;
 }
 }
 leaf-list UPFInterfaces {
 type enumeration {
 enum N4 ;
 }
 }
 leaf-list ng-eNBInterfaces {
 type enumeration {
 enum NG-C ;
 enum Xn-C ;
 enum Uu ;
 }
 }
 leaf-list gNB-CU-CPInterfaces {
 type enumeration {
 enum NG-C ;
 enum Xn-C ;
 enum Uu ;
 enum F1-C ;
 enum E1 ;
 enum X2-C ;
 }
 }
 leaf-list gNB-CU-UPInterfaces {
 type enumeration {
 enum E1 ;
 }
 }
 leaf-list gNB-DUInterfaces {
 type enumeration {
 enum F1-C ;
 }
 }
 }

 leaf-list listOfNETypes {
 type enumeration {
 enum MSC_SERVER;
 enum SGSN;
 enum MGW;
 enum GGSN;
 enum RNC;
 enum BM_SC;
 enum MME;
 enum SGW;
 enum PGW;
 enum ENB;
 enum EN_GNB;
 enum GNB_CU_CP;
 enum GNB_CU_UP;
 enum GNB_DU;
 }
 description "Specifies in which type of ManagedFunction the trace should
 be activated. The attribute is applicable only for Trace with
 Signalling Based Trace activation. In case this attribute is not used,
 it carries a null semantic";
 reference "Clause 5.4 of 3GPP TS 32.422 for additional details on the
 allowed values";
 }

 leaf traceDepth {
 when '../../jobType = "TRACE_ONLY"'
 + ' or ../../jobType = "IMMEDIATE_MDT_AND_TRACE"';
 type enumeration {
 enum MINIMUM;
 enum MEDIUM;
 enum MAXIMUM;
 enum VENDORMINIMUM;
 enum VENDORMEDIUM;
 enum VENDORMAXIMUM;
 }
 default MAXIMUM;
 description "Specifies how detailed information should be recorded in the
 Network Element. The Trace Depth is a paremeter for Trace Session level,
 i.e., the Trace Depth is the same for all of the NEs to be traced in
 the same Trace Session.
 The attribute is applicable only for Trace, otherwise it carries a null
 semantic.";
 reference "Clause 5.3 of 3GPP TS 32.422";
 }

 leaf triggeringEvents {
 type enumeration {
 enum MO_MT_CALLS;
 enum MO_MT_SMS;
 enum LU_IMSIattach_IMSIdetach;
 enum HANDOVER;
 enum SS;
 enum PDPcontext;
 enum RAU_GPRSattach_GPRSdetach;
 enum MBMScontext;
 enum CONTEXT;
 enum SIPsession_StandaloneTransaction;
 enum MBMSactivation;
 enum UEinitiatedPDNconnectivityRequest;
 enum ServiceRequest;
 enum InitialAttach_TAU_Detach;
 enum UEinitiatedPDNdisconnection;
 enum BearerActivationModificationDeletion;
 enum Handover;
 enum PDNconnectionCreation;
 enum PDNconnectionTermination;
 enum Registration;
 enum UEderegistration;
 enum NetworkDeregistration;
 enum UEMobilityFromEPC;
 enum UEMobilityToEPC;
 enum PDUsessionEstablishment;
 enum PDUsessionModification;
 enum PDUsessionRelease;
 enum PDUsessionUPactivationDeactivation;
 enum MobilityBtw3gppAndN3gppTo5GC;
 enum MobilityFromEpc;
 enum AMpolicy;
 enum SMpolicy;
 enum Authorization;
 enum BDTpolicy;
 enum N4Session;
 enum UEauthentication;
 enum EventExposure;
 enum PFDmanagement;
 enum ParameterProvision;
 enum Trigger;
 enum NFmanagement;
 enum NFdiscovery;
 enum NSSelection;
 enum NSSAI;
 enum SMservice;
 enum UEcontext;
 enum SubscriberData;
 }
 description "It specifies the triggering event parameter of the trace
 session. The attribute is applicable only for Trace. In case this
 attribute is not used, it carries a null semantic.

 See the clause 5.1 of 3GPP TS 32.422 for additional details on the
 allowed values.";
 }
 }

 grouping ImmediateMdtConfigGrp {
 description "Represents the ImmediateMdtConfig dataType.
 This <<dataType>> defines the configuration parameters of
 IOC TraceJob which are specific for Immediate MDT or combine
 Trace and Immediate MDT.

 The optional attribute positioningMethod allows to specify
 the positioning methods to use.

 The following attributes are conditional available based on the
 measurements configured in listOfMeasurements:
 -reportInterval: conditional for M1 in LTE or NR and M1/M2 in UMTS,
 -reportAmount: conditional for M1 in LTE or NR and M1/M2 in UMTS,
 -reportingTrigger: conditional for M1 in LTE or NR and M1/M2 in UMTS,
 -eventThreshold: conditional for A2 event reporting or A2 event
 triggered periodic reporting,
 -collectionPeriodRrmNR: conditional for M4 and M5 in NR,
 -collectionPeriodM6NR: conditional for M6 in NR,
 -collectionPeriodM7NR: conditional for M7 in NR,
 -collectionPeriodRrmLte (conditional for M3 in LTE),
 -measurementPeriodLTE (conditional for M4 and M5 in LTE),
 -collectionPeriodM6Lte (conditional for M6 in LTE),
 -collectionPeriodM7Lte (conditional for M7 in LTE),
 -collectionPeriodRrmUmts (conditional for M4 and M5 in UMTS),
 -measurementPeriodUmts (conditional for M6 and M7 in UMTS),
 -measurementQuantity (conditional for 1F event reporting),
 -beamLevelMeasurement (conditional for M1 in NR),
 -excessPacketDelayThresholds (conditional for M6 UL measurement in NR).

 For immediate MDT, the measurement reporting is dependent on the
 configured measurements:

 - For measurement M1 in LTE or NR, it is possible to select between
 periodical, event triggered, event triggered periodic reporting or
 reporting according to all configured RRM event triggers. For M1 and M2
 measurement in UMTS, it is possible to select between periodical, event
 triggered reporting or reporting according to all configured RRM event
 triggers. Parameter reportingTrigger determines which of the reporting
 methods is selected and in case of event triggered or event-triggered
 periodic, which is the decisive event type. For periodical reporting,
 parameters reportInterval and reportAmount determine the interval between
 two successive reports and the number of reports. This means the
 periodical reporting terminates after reportAmount reports have been
 sent as long as reportAmount is configured with a value different from
 infinity. For event-triggered periodic reporting, these two parameters
 apply in addition to parameter eventThreshold which determines the
 threshold of the event. In this case up to reportAmount reports are
 sent with a periodicity of reportInterval after the entering condition
 is fulfilled. The reporting is stopped, if the leaving condition is
 fulfulled and is restarted if the configured event reoccurs. For event
 based reporting, there is only one report sent after the event occurs.
 The parameters to configure are reportingTrigger and eventThreshold.
 In case of UMTS and 1f event reporting, additionally parameter
 measurementQuantity is necessary in order to determine for which
 measurement(s) the event threshold is applicable. Parameter
 beamLevelMeasurement determines whether beam level measurements shall
 be included in case of NR.

 - For measurement M2 in LTE or NR, reporting is according to RRM
 configuration, see TS 38.321, TS 36.321 and TS 38.331, TS 36.331.
 For measurement M4 in UMTS, reporting is either according to RRM
 configuration, see TS 25.321 and TS 25.331 or periodic or event
 triggered periodic using parameter collectionPeriodRrmUmts and
 eventThresholdUphUmts.

 - For measurement M3 in UMTS, the reporting is done upon
 availability, see TS 37.320.

 - For measurements M4, M5, M6 and M7 in NR, for measurements
 M3, M4, M5, M6 and M7 in LTE and for measurements M5, M6 and M7
 in UMTS periodical reporting is applied. The configurable parameter
 is the interval between two measurements (collectionPeriodRrmNr,
 collectionPeriodM6NR, collectionPeriodM7Nr, collectionPeriodRrmLte,
 measurementPeriodLte, collectionPeriodM6Lte, collectionPeriodM7Lte,
 collectionPeriodRrmUmts, measurementPeriodUmts). If no collection
 period is configured for M5 in UMTS, all available measurements are
 logged according to RRM configuration.";

 leaf listOfMeasurements {
 when '../../../jobType = "IMMEDIATE_MDT_ONLY"';
 when 'jobType = "IMMEDIATE_MDT_ONLY"';
 type enumeration {
 enum M1;
 enum M2;
 enum M3;
 enum M4;
 enum M5;
 enum M6_DL;
 enum M6_UL;
 enum M7_DL;
 enum M7_UL;
 enum M1_EVENT_TRIGGERED;
 enum M6;
 enum M7;
 enum M8;
 enum M9;
 }
 description "It specifies the UE measurements that shall be collected in
 an Immediate MDT job. The attribute is applicable only for Immediate MDT.
 In case this attribute is not used, it carries a null semantic.";
 reference "3GPP TS 32.422 clause 5.10.3";
 }

 leaf reportingTrigger {
 when '../../../jobType = "IMMEDIATE_MDT_ONLY"';
 when 'jobType = "IMMEDIATE_MDT_ONLY"';
 type enumeration {
 enum PERIODICAL;
 enum A2_FOR_LTE;
 enum 1F_FOR_UMTS;
 enum 1I_FOR_UMTS_MCPS_TDD;
 enum A2_TRIGGERED_PERIODIC_FOR_LTE;
 enum ALL_CONFIGURED_RRM_FOR_LTE;
 enum ALL_CONFIGURED_RRM_FOR_UMTS;
 }
 description "It specifies whether periodic or event based measurements
 should be collected.
 The attribute is applicable only for Immediate MDT and when the
 listOfMeasurements is configured for M1 (for both UMTS and LTE)
 or M2 (only for UMTS). In case this attribute is not used, it carries
 a null semantic.";
 reference "Clause 5.10.4 of 3GPP TS 32.422";
 }

 leaf reportInterval {
 when '../../../jobType = "IMMEDIATE_MDT_ONLY"'
 when 'jobType = "IMMEDIATE_MDT_ONLY"'
 + ' and ../reportingTrigger = "PERIODICAL"';
 type uint32 {
 range "120|240|250|480|500|640|1000|1024|2000|2048|3000|4000|"
 +"5120|6000|8000|10240|12000|16000|20000|"
 +"20480|24000|28000|32000|40960|60000|64000|"
 +"360000|720000|1800000|3600000";
 }
 units milliseconds;
 description "It specifies the interval between the periodical measurements
 that shall be taken when the UE is in connected mode.
 The attribute is applicable only for Immediate MDT and when
 reportingTrigger is configured for periodical measurements. In case
 this attribute is not used, it carries a null semantic.";
 reference "5.10.5 of 3GPP TS 32.422";
 }

 leaf reportAmount {
 when '../../../jobType = "IMMEDIATE_MDT_ONLY"'
 when 'jobType = "IMMEDIATE_MDT_ONLY"'
 + ' and ../reportingTrigger = "PERIODICAL"';
 type union {
 type uint32 {
 range "1|4|8|16|32|64" ;
 }
 type enumeration {
 enum INFINITY;
 }
 }
 description "It specifies the number of measurement reports that shall be
 taken for periodic reporting while the UE is in connected.
 The attribute is applicable only for Immediate MDT and when
 reportingTrigger is configured for periodical measurements. In
 case this attribute is not used, it carries a null semantic.";
 reference "Clause 5.10.6 of 3GPP TS 32.422";
 }

 leaf eventThreshold {
 when '../../../jobType = "IMMEDIATE_MDT_ONLY"';
 when 'jobType = "IMMEDIATE_MDT_ONLY"';
 type int64;
 description "Specifies the threshold which should trigger the reporting
 in case A2 event reporting in LTE or 1F/1l event in UMTS. The attribute
 is applicable only for Immediate MDT and when reportingTrigger is
 configured for A2 event in LTE or 1F event or 1l event in UMTS. In
 case this attribute is not used, it carries a null semantic.";
 reference "Clauses 5.10.7 and 5.10.7a of 3GPP TS 32.422";
 }

 leaf collectionPeriodRrmNr {
 when '../../../jobType = "IMMEDIATE_MDT_ONLY"'
 + ' or ../../../jobType = "IMMEDIATE_MDT_AND_TRACE"';
 leaf collectionPeriodRRMNR {
 when 'jobType = "IMMEDIATE_MDT_ONLY"'
 + ' or jobType = "IMMEDIATE_MDT_AND_TRACE"';
 type uint32 {
 range "1024|2048|5120|10240|60000";
 }
 units milliseconds;
 description "Specifies the collection period for collecting RRM
 configured measurement samples for M4, M5 in NR. The attribute is
 applicable only for Immediate MDT. In case this attribute is not
 used, it carries a null semantic.";
 reference "Clause 5.10.30 of 3GPP TS 32.422";
 }

 leaf collectionPeriodM6Nr {
 when '../../../jobType = "IMMEDIATE_MDT_ONLY"'
 + ' or ../../../jobType = "IMMEDIATE_MDT_AND_TRACE"';
 leaf collectionPeriodRRMLTE {
 when 'jobType = "IMMEDIATE_MDT_ONLY"'
 + ' or jobType = "IMMEDIATE_MDT_AND_TRACE"';
 type uint32 {
 range "250|500|1000|2000|3000|4000|6000|8000|12000|16000|20000|"
 +"24000|28000|32000|64000";
 }
 units milliseconds;
 description "Specifies the collection period for collecting RRM configured
 measurement samples for M2, M3 in LTE. The attribute is applicable only
 for Immediate MDT. In case this attribute is not used, it carries a
 null semantic.";
 reference "Clause 5.10.20 of 3GPP TS 32.422";
 }

 leaf collectionPeriodM6NR {
 when 'jobType = "IMMEDIATE_MDT_ONLY"'
 + ' or jobType = "IMMEDIATE_MDT_AND_TRACE"';
 type enumeration {
 enum 120ms;
 enum 240ms;
 enum 480ms;
 enum 640ms;
 enum 1024ms;
 enum 2048ms;
 enum 5120ms;
 enum 10240ms;
 enum 20480ms;
 enum 40960ms;
 enum 1min;
 enum 6min;
 enum 12min;
 enum 30min;
 }
 description "It specifies the collection period for the Packet Delay
 measurement (M6) for NR MDT taken by the gNB. The attribute is
 applicable only for Immediate MDT. In case this attribute is not used,
 it carries a null semantic.";
 reference "clause 5.10.34 of TS 32.422";
 }

 leaf collectionPeriodM7Nr {
 when '../../../jobType = "IMMEDIATE_MDT_ONLY"'
 + ' or ../../../jobType = "IMMEDIATE_MDT_AND_TRACE"';
 leaf collectionPeriodM7NR {
 when 'jobType = "IMMEDIATE_MDT_ONLY"'
 + ' or jobType = "IMMEDIATE_MDT_AND_TRACE"';
 type uint32 {
 range "1..60";
 }
 description "It specifies the collection period for the Packet Loss Rate
 measurement (M7) for NR MDT taken by the gNB. The attribute is
 applicable only for Immediate MDT. In case this attribute is not used,
 it carries a null semantic.";
 reference "clause 5.10.35 of TS 32.422";
 }

 leaf collectionPeriodRrmLte {
 when '../../../jobType = "IMMEDIATE_MDT_ONLY"'
 + ' or ../../../jobType = "IMMEDIATE_MDT_AND_TRACE"';
 type uint32 {
 range "250|500|1000|2000|3000|4000|6000|8000|12000|16000|20000|"
 +"24000|28000|32000|64000";
 }
 units milliseconds;
 description "Specifies the collection period for collecting RRM configured
 measurement samples for M2, M3 in LTE. The attribute is applicable only
 for Immediate MDT. In case this attribute is not used, it carries a
 null semantic.";
 reference "Clause 5.10.20 of 3GPP TS 32.422";
 }

 leaf measurementPeriodLTE {
 when '../../../jobType = "IMMEDIATE_MDT_ONLY"'
 + ' or ../../../jobType = "IMMEDIATE_MDT_AND_TRACE"';
 type uint32 {
 range "1024|1280|2048|2560|5120|"
 +"10240|60000";
 }
 units milliseconds;
 mandatory true;
 description "It specifies the measurement period for the Data Volume and
 Scheduled IP throughput measurements for MDT taken by the eNB.
 The attribute is applicable only for Immediate MDT. In case this
 attribute is not used, it carries a null semantic.";
 reference "Clause 5.10.23 of 3GPP TS 32.422";
 }

 leaf collectionPeriodM6Lte {
 when '../../../jobType = "IMMEDIATE_MDT_ONLY"'
 + ' or ../../../jobType = "IMMEDIATE_MDT_AND_TRACE"';
 leaf collectionPeriodM6LTE {
 when 'jobType = "IMMEDIATE_MDT_ONLY"'
 + ' or jobType = "IMMEDIATE_MDT_AND_TRACE"';
 type uint32 {
 range "1024|2048|5120|10240";
 }
 units milliseconds;
 description "Specifies the collection period for the Packet Delay
 measurement (M6) for MDT taken by the eNB. The attribute is applicable
 only for Immediate MDT. In case this attribute is not used,
 it carries a null semantic.";
 reference "Clause 5.10.32 of TS 32.422 ";
 }

 leaf collectionPeriodM7Lte {
 when '../../../jobType = "IMMEDIATE_MDT_ONLY"'
 + ' or ../../../jobType = "IMMEDIATE_MDT_AND_TRACE"';
 leaf collectionPeriodM7LTE {
 when 'jobType = "IMMEDIATE_MDT_ONLY"'
 + ' or jobType = "IMMEDIATE_MDT_AND_TRACE"';
 type uint16 {
 range 1..60 ;
 }
 description "It specifies the collection period for the Packet Loss Rate
 measurement (M7) for LTE MDT taken by the eNB. The attribute is
 applicable only for Immediate MDT. In case this attribute
 is not used, it carries a null semantic.";
 reference "Clause 5.10.33 of TS 32.422 .";
 }

 leaf eventThresholdUphUmts {
 when '../../../jobType = "IMMEDIATE_MDT_ONLY"'
 + ' or ../../../jobType = "IMMEDIATE_MDT_AND_TRACE"';
 leaf eventThresholdUphUMTS {
 when 'jobType = "IMMEDIATE_MDT_ONLY"'
 + ' or jobType = "IMMEDIATE_MDT_AND_TRACE"';
 type uint16 {
 range 0..31 ;
 }
 description "It specifies the threshold which should trigger
 the reporting in case of event-triggered periodic reporting for M4
 (UE power headroom measurement) in UMTS. In case this attribute is
 not used, it carries a null semantic.";
 reference "5.10.39 of TS 32.422";
 }

 leaf collectionPeriodRrmUmts {
 when '../../../jobType = "IMMEDIATE_MDT_ONLY"'
 + ' or ../../../jobType = "IMMEDIATE_MDT_AND_TRACE"';
 leaf collectionPeriodRRMUMTS {
 when 'jobType = "IMMEDIATE_MDT_ONLY"'
 + ' or jobType = "IMMEDIATE_MDT_AND_TRACE"';
 type uint32 {
 range "1024|1280|2048|2560|5120|"
 +"10240|60000";
 }
 units milliseconds;
 description "Specifies the collection period for collecting RRM configured
 measurement samples for M3, M4, M5 in UMTS. The attribute is applicable
 only for Immediate MDT. In case this attribute is not used, it carries
 a null semantic";
 reference "Clause 5.10.21 of 3GPP TS 32.422";
 }

 leaf measurementPeriodUmts {
 when '../../../jobType = "IMMEDIATE_MDT_ONLY"'
 + 'or ../../../jobType = "IMMEDIATE_MDT_AND_TRACE"';
 leaf measurementPeriodLTE {
 when 'jobType = "IMMEDIATE_MDT_ONLY"'
 + ' or jobType = "IMMEDIATE_MDT_AND_TRACE"';
 type uint32 {
 range "1024|1280|2048|2560|5120|"
 +"10240|60000";
 }
 units milliseconds;
 mandatory true;
 description "It specifies the measurement period for the Data Volume and
 Scheduled IP throughput measurements for MDT taken by the eNB.
 The attribute is applicable only for Immediate MDT. In case this
 attribute is not used, it carries a null semantic.";
 reference "Clause 5.10.23 of 3GPP TS 32.422";
 }

 leaf measurementPeriodUMTS {
 when 'jobType = "IMMEDIATE_MDT_ONLY"'
 + 'or jobType = "IMMEDIATE_MDT_AND_TRACE"';
 type uint32 {
 range "250|500|1000|2000|3000|4000|6000|8000|12000|16000|20000|"
 +"24000|28000|32000|64000";
 }
 units milliseconds;
 mandatory true;
 description "It specifies the measurement period for the Data Volume and
 Throughput measurements for MDT taken by RNC.
 The attribute is applicable only for Immediate MDT. In case this
 attribute is not used, it carries a null semantic.";
 reference "Clause 5.10.22 of 3GPP TS 32.422";
 }

 leaf measurementQuantity {
 when '../../../jobType = "IMMEDIATE_MDT_ONLY"'
 + ' or ../../../jobType = "IMMEDIATE_MDT_AND_TRACE"';
 when 'jobType = "IMMEDIATE_MDT_ONLY"'
 + ' or jobType = "IMMEDIATE_MDT_AND_TRACE"';
 type enumeration {
 enum CPICH_ECNO;
 enum CPICH_RSCP;
 enum PATHLOSS;
 }
 description "It specifies the measurements that are collected in an MDT
 job for a UMTS MDT configured for event triggered reporting.";
 reference "Clause 5.10.15 of 3GPP TS 32.422";
 }

 leaf beamLevelMeasurement {
 when '../../../jobType = "IMMEDIATE_MDT_ONLY"'
 + ' or ../../../jobType = "IMMEDIATE_MDT_AND_TRACE"';
 when 'jobType = "IMMEDIATE_MDT_ONLY"'
 + ' or jobType = "IMMEDIATE_MDT_AND_TRACE"';
 type boolean;
 default false;
 description "Indicates whether the NR M1 beam level measurements shall
 be included or not.";
 reference "Clause 5.10.40 of TS 32.422";
 }

 leaf positioningMethod {
 when '../../../jobType = "IMMEDIATE_MDT_ONLY"'
 + ' or ../../../jobType = "IMMEDIATE_MDT_AND_TRACE"';
 when 'jobType = "IMMEDIATE_MDT_ONLY"'
 + ' or jobType = "IMMEDIATE_MDT_AND_TRACE"';
 type enumeration {
 enum GNSS;
 enum E_CELL_ID;
 }
 description "It specifies what positioning method should be used in the
 MDT job.";
 reference "Clause 5.10.19 of 3GPP TS 32.422";
 }

 list excessPacketDelayThresholds {
 description "Excess packet delay thresholds info for M6 UL measurement.";
 min-elements 1;
 key idx;
 leaf idx { type string; }
 uses ExcessPacketDelayThresholdsGrp;
 }

 leaf reportAmountM1LTE {
 type enumeration {
 enum 1;
 enum 2;
 enum 4;
 enum 8;
 enum 16;
 enum 32;
 enum 64;
 enum INFINITY;
 }
 description "It specifies the number of measurement reports that shall be
 taken for periodic reporting while the UE is in connected mode.
 The attribute is applicable only for Immediate MDT and combined Trace
 and Immediate MDT and when reportingTrigger is configured for periodical
 measurements and applicable only for LTE. In case this attribute is not
 used, it carries a null semantic.
 See the clause 5.10.6 of TS 32.422 for additional details on the
 allowed values.";
 }

 leaf reportAmountM4LTE {
 type enumeration {
 enum 1;
 enum 2;
 enum 4;
 enum 8;
 enum 16;
 enum 32;
 enum 64;
 enum INFINITY;
 }
 description "It specifies the number of measurement reports that shall be
 taken for periodic reporting while the UE is in connected mode.
 The attribute is applicable only for Immediate MDT and combined Trace
 and Immediate MDT and when reportingTrigger is configured for periodical
 measurements and applicable only for LTE. In case this attribute is not
 used, it carries a null semantic.
 See the clause 5.10.6 of TS 32.422 for additional details on the
 allowed values.";
 }

 leaf reportAmountM5LTE {
 type enumeration {
 enum 1;
 enum 2;
 enum 4;
 enum 8;
 enum 16;
 enum 32;
 enum 64;
 enum INFINITY;
 }
 description "It specifies the number of measurement reports that shall be
 taken for periodic reporting while the UE is in connected mode.
 The attribute is applicable only for Immediate MDT and combined Trace
 and Immediate MDT and when reportingTrigger is configured for periodical
 measurements and applicable only for LTE. In case this attribute is not
 used, it carries a null semantic.
 See the clause 5.10.6 of TS 32.422 for additional details on the
 allowed values.";
 }

 leaf reportAmountM6LTE {
 type enumeration {
 enum 1;
 enum 2;
 enum 4;
 enum 8;
 enum 16;
 enum 32;
 enum 64;
 enum INFINITY;
 }
 description "It specifies the number of measurement reports that shall be
 taken for periodic reporting while the UE is in connected mode.
 The attribute is applicable only for Immediate MDT and combined Trace
 and Immediate MDT and when reportingTrigger is configured for periodical
 measurements and applicable only for LTE. In case this attribute is not
 used, it carries a null semantic.
 See the clause 5.10.6 of TS 32.422 for additional details on the
 allowed values.";
 }

 leaf reportAmountM7LTE {
 type enumeration {
 enum 1;
 enum 2;
 enum 4;
 enum 8;
 enum 16;
 enum 32;
 enum 64;
 enum INFINITY;
 }
 description "It specifies the number of measurement reports that shall be
 taken for periodic reporting while the UE is in connected mode.
 The attribute is applicable only for Immediate MDT and combined Trace
 and Immediate MDT and when reportingTrigger is configured for periodical
 measurements and applicable only for LTE. In case this attribute is not
 used, it carries a null semantic.
 See the clause 5.10.6 of TS 32.422 for additional details on the
 allowed values.";
 }

 leaf reportAmountM1NR {
 type enumeration {
 enum 1;
 enum 2;
 enum 4;
 enum 8;
 enum 16;
 enum 32;
 enum 64;
 enum INFINITY;
 }
 description "It specifies the number of measurement reports that shall be
 taken for periodic reporting while the UE is in connected mode.
 The attribute is applicable only for Immediate MDT and combined Trace
 and Immediate MDT and when reportingTrigger is configured for periodical
 measurements and applicable only for NR. In case this attribute is not
 used, it carries a null semantic.
 See the clause 5.10.6 of TS 32.422 for additional details on the
 allowed values.";
 }

 leaf reportAmountM4NR {
 type enumeration {
 enum 1;
 enum 2;
 enum 4;
 enum 8;
 enum 16;
 enum 32;
 enum 64;
 enum INFINITY;
 }
 description "It specifies the number of measurement reports that shall be
 taken for periodic reporting while the UE is in connected mode.
 The attribute is applicable only for Immediate MDT and combined Trace
 and Immediate MDT and when reportingTrigger is configured for periodical
 measurements and applicable only for NR. In case this attribute is not
 used, it carries a null semantic.
 See the clause 5.10.6 of TS 32.422 for additional details on the
 allowed values.";
 }

 leaf reportAmountM5NR {
 type enumeration {
 enum 1;
 enum 2;
 enum 4;
 enum 8;
 enum 16;
 enum 32;
 enum 64;
 enum INFINITY;
 }
 description "It specifies the number of measurement reports that shall be
 taken for periodic reporting while the UE is in connected mode.
 The attribute is applicable only for Immediate MDT and combined Trace
 and Immediate MDT and when reportingTrigger is configured for periodical
 measurements and applicable only for NR. In case this attribute is not
 used, it carries a null semantic.
 See the clause 5.10.6 of TS 32.422 for additional details on the
 allowed values.";
 }

 leaf reportAmountM6NR {
 type enumeration {
 enum 1;
 enum 2;
 enum 4;
 enum 8;
 enum 16;
 enum 32;
 enum 64;
 enum INFINITY;
 }
 description "It specifies the number of measurement reports that shall be
 taken for periodic reporting while the UE is in connected mode.
 The attribute is applicable only for Immediate MDT and combined Trace
 and Immediate MDT and when reportingTrigger is configured for periodical
 measurements and applicable only for NR. In case this attribute is not
 used, it carries a null semantic.
 See the clause 5.10.6 of TS 32.422 for additional details on the
 allowed values.";
 }

 leaf reportAmountM7NR {
 type enumeration {
 enum 1;
 enum 2;
 enum 4;
 enum 8;
 enum 16;
 enum 32;
 enum 64;
 enum INFINITY;
 }
 description "It specifies the number of measurement reports that shall be
 taken for periodic reporting while the UE is in connected mode.
 The attribute is applicable only for Immediate MDT and combined Trace
 and Immediate MDT and when reportingTrigger is configured for periodical
 measurements and applicable only for NR. In case this attribute is not
 used, it carries a null semantic.
 See the clause 5.10.6 of TS 32.422 for additional details on the
 allowed values.";
 }
 }

 grouping LoggedMdtConfigGrp {
 grouping LoggedMdtGrp {
 description "This <<dataType>> defines the configuration parameters of
 IOC TraceJob which are specific for Logged MDT or Logged MBSFN MDT.
 The optional attribute plmnList allows to specify the PLMNs where
 measurement collection, status indication and log reporting is allowed,
 the optional attribute areaConfigurationForNeighCell allows to specify
 the area for which UE is requested to perform measurements logging for
 neighbour cells which have list of frequencies. For logged MDT in UMTS
 and LTE, the reporting is periodical. Parameter loggingInterval determines
 the interval between the reports and parameter loggingDuration determines
 how long the configuration is valid meaning after this duration has passed
 no further reports are sent. In NR, the reporting can be periodical or event
 based, determined by parameter reportType. For periodical reporting the
 same parameters as in LTE and UMTS apply. For event based reporting,
 parameter eventListForEventTriggeredMeasurement configures the event type,
 namely 'out of coverage' or 'L1 event'. In case 'L1 event' is selected as
 event type, the logging is performed according to parameter loggingInterval
 at regular intervals only when the conditions indicated by eventThresholdL1,
 hysteresisL1, timeToTriggerL1 (defining the thresholds, hysteresis and time
 to trigger) are met and if UE is 'camped normally' state (TS 38.331,
 TS 38.304). In case 'out of coverage' is selected as event type, the
 logging is performed according to parameter loggingInterval at regular
 intervals only when the UE is in 'any cell selection' state.
 Furthermore, logging is performed immediately upon transition from the
 'any cell selection' state to the 'camped normally' state (TS 38.331,
 TS 38.304).";

 leaf traceCollectionEntityId {
 type int64;
 description "It specifies the TCE Id which is sent to the UE in
 Logged MDT. See the clause 5.10.11 of 3GPP TS 32.422 for additional
 details on the allowed values.";
 leaf traceCollectionEntityIPAddress {
 when '../traceReportingFormat = "FILE_BASED" or '
 +'jobType = "LOGGED_MDT_ONLY" or jobType = "LOGGED_MBSFN_MDT"';
 type union {
 type inet:uri;
 type inet:ip-address;
 }
 description "Specifies the address of the Trace Collection Entity when
 the attribute traceReportingFormat is configured for the file-based
 reporting. The attribute is applicable for both Trace and MDT.";
 reference "Clause 5.9 of 3GPP TS 32.422";
 }

 leaf loggingDuration {
 when '../../../jobType = "LOGGED_MDT_ONLY" or'
 + ' ../../../jobType = "LOGGED_MBSFN_MDT"';
 when 'jobType = "LOGGED_MDT_ONLY" or'
 + ' jobType = "LOGGED_MBSFN_MDT"';
 type uint32 {
 range "600|1200|2400|3600|5400|7200";
 }
 units seconds;
 description "Specifies how long the MDT configuration is valid at the
 UE in case of Logged MDT. The attribute is applicable only for
 Logged MDT and Logged MBSFN MDT. In case this attribute is not used, it
 carries a null semantic.";
 reference "5.10.9 of 3GPP TS 32.422";
 }

 leaf loggingInterval {
 when '../../../jobType = "LOGGED_MDT_ONLY" or'
 + ' ../../../jobType = "LOGGED_MBSFN_MDT"';
 when 'jobType = "LOGGED_MDT_ONLY" or'
 + ' jobType = "LOGGED_MBSFN_MDT"';
 type uint32 {
 range "0|320|640|1280|2560|5120|10240|20480|"
 +"30720|40960|61440";
 }
 units milliseconds;
 description "Specifies the periodicty for Logged MDT. The attribute is
 applicable only for Logged MDT and Logged MBSFN MDT. In case this
 attribute is not used, it carries a null semantic.
 The value 0 indicates Infinity for NR.";
 reference "5.10.8 of 3GPP TS 32.422";
 }

 leaf reportType {
 when '../../../jobType = "IMMEDIATE_MDT_ONLY"';
 when 'jobType = "IMMEDIATE_MDT_ONLY"';
 type enumeration {
 enum PERIODICAL;
 enum EVENT_TRIGGERED;
 }
 description "It specifies report type for logged NR MDT";
 reference "Clause 5.10.27 of 3GPP TS 32.422";
 }

 leaf eventListForEventTriggeredMeasurement {
 when '../../../jobType = "LOGGED_MDT_ONLY"';
 when 'jobType = "LOGGED_MDT_ONLY"';
 type enumeration {
 enum OUT_OF_COVERAGE ;
 enum A2_EVENT ;
 }
 description "Specifies event types for event triggered measurement in the
 case of logged NR MDT. Each trace session may configure at most one
 event. The UE shall perform logging of measurements only upon certain
 condition being fulfilled:
 - Out of coverage.
 - A2 event.";
 reference "Clause 5.10.28 of 3GPP TS 32.422";
 }

 leaf eventThresholdL1 {
 when '../../../jobType = "LOGGED_MDT_ONLY" or'
 + ' ../../../jobType = "LOGGED_MBSFN_MDT"';
 when 'jobType = "LOGGED_MDT_ONLY" or'
 + ' jobType = "LOGGED_MBSFN_MDT"';
 type uint32 {
 range "0..127";
 }
 description "It specifies the threshold which should trigger
 the reporting in case of event based reporting of logged NR MDT.
 The attribute is applicable only for Logged MDT and when reportType
 is configured for event triggered reporting and when
 eventListForEventTriggeredMeasurement is configured for L1 event.
 In case this attribute is not used, it carries a null semantic.";
 reference "clause 5.10.36 of TS 32.422";
 }

 leaf hysteresisL1 {
 when '../../../jobType = "LOGGED_MDT_ONLY" or '
 + '../../../jobType = "LOGGED_MBSFN_MDT"';
 when 'jobType = "LOGGED_MDT_ONLY" or '
 + 'jobType = "LOGGED_MBSFN_MDT"';
 type uint32 {
 range "0..30";
 }
 description "It specifies the hysteresis used within the entry and leave
 condition of the L1 event based reporting of logged NR MDT.
 The attribute is applicable only for Logged MDT, when reportType
 is configured for event triggered reporting and when
 eventListForEventTriggeredMeasurement is configured for L1 event.
 In case this attribute is not used, it carries a null semantic.";
 reference "clause 5.10.37 of TS 32.422";
 }

 leaf timeToTriggerL1 {
 when '../../../jobType = "LOGGED_MDT_ONLY" or '
 + '../../../jobType = "LOGGED_MBSFN_MDT"';
 leaf timeToTriggerL1 {
 when 'jobType = "LOGGED_MDT_ONLY" or '
 + 'jobType = "LOGGED_MBSFN_MDT"';
 type int32 {
 range 0|40|64|80|100|128|160|256|320|480|512|640|1024|1280|2560|5120;
 }
 units milliseconds;
 description "It specifies the threshold which should trigger
 the reporting in case of event based reporting of logged NR MDT.
 The attribute is applicable only for Logged MDT, when reportType
 is configured for event triggered reporting and when
 eventListForEventTriggeredMeasurement is configured for L1 event.
 In case this attribute is not used, it carries a null semantic.";
 reference "clauses 5.10.38 of TS 32.422";
 }

 list pLMNList {
 when '../../../jobType = "LOGGED_MDT_ONLY"';
 when 'jobType = "LOGGED_MDT_ONLY"';
 key "mcc mnc";
 uses types3gpp:PLMNId;
 max-elements 16;
 description "It indicates the PLMNs where measurement collection, status
 indication and log reporting is allowed.";
 reference "Clause 5.10.24 of 3GPP TS 32.422";
 }

 list areaConfigurationForNeighCells {
 when '../../../jobType = "LOGGED_MDT_ONLY"';
 list areaConfigurationForNeighCell {
 when 'jobType = "LOGGED_MDT_ONLY"';
 key "idx";
 leaf idx { type uint32 ; }
 description "It specifies the area for which UE is requested to perform
 measurement logging for neighbour cells which have list of frequencies.
 If it is not configured, the UE shall perform measurement logging for
 all the neighbour cells.

 Applicable only to NR Logged MDT.";
 reference "3GPP TS 32.422 clause 5.10.26.";

 uses AreaConfigGrp;
 }

 list mbsfnAreaList {
 when '../../../jobType = "LOGGED_MBSFN_MDT"';
 list mBSFNAreaList {
 when 'jobType = "LOGGED_MBSFN_MDT"';
 key "mbsfnAreaId earfcn";
 max-elements 8;
 description "The MBSFN Area consists of a MBSFN Area ID and Carrier
 Frequency (EARFCN). The target MBSFN area List can have up to 8 entries.
 This parameter is applicable only if the job type is Logged MBSFN MDT.";
 reference "5.10.25 of 3GPP TS 32.422";

 uses MbsfnAreaGrp;
 }

 list nPNIdentityList {
 description "It defines which NPNs that can be served by the NR cell,
 and which CAG IDs or NIDs can be supported by the NR cell for
 corresponding PNI-NPN or SNPN.";
 key idx;
 max-elements 1;
 uses NpnIdGrp;
 leaf idx { type string;}
 }
 }

 grouping MdtConfigGrp {
 description "Defines the configuration parameters of IOC
 TraceJob which are specific for MDT. The attribute
 anonymizationOfMdtData specifies the level of anonymization
 of MDT data. The optional attribute areaScope allows to
 specify the area in terms of cells or Tracking Area/Routing
 Area/Location area where the MDT data collection shall take
 place. In case of RLF_REPORT_ONLY and RCEF_REPORT_ONLY the
 optional attribute areaScope allows to specify the eNB or list
 of eNBs or gNB or list of gNBs where the reports should be
 collected. The optional attribute sensorInformation allows to
 specify the sensor information to include. Based on the value
 configured for attribute jobType in IOC TraceJob, the attributes
 immediateMdtConfig or loggedMdtConfig are available: In case of
 IMMEDIATE_MDT_ONLY or IMMEDIATE_MDT_AND_TRACE the attribute
 immediateMdtConfig is applicable. In case of LOGGED_MDT_ONLY or
 LOGGED_MBSFN_MDT the attribute loggedMdtConfig is applicable.";

 leaf anonymizationOfMDTData {
 when ../areaScope ;
 type enumeration {
 enum NO_IDENTITY;
 enum TAC_OF_IMEI;
 }
 default NO_IDENTITY;
 description "Specifies level of MDT anonymization.";
 reference "3GPP TS 32.422 clause 5.10.12.";
 }

 list areaScope {
 key "idx";
 leaf idx { type uint32 ; }
 description "It specifies the area where data shall be collected.
 List of eNB/list of gNB/eNB/gNB for RLF or RCEF.

 List of cells/TA/LA/RA for signaling based MDT or management
 based Logged MDT.

 List of cells for management based Immediate MDT.

 List of NPN IDs for management based MDT.

 Cell, TA, LA, RA are mutually exclusive.

 This attribute shall be present if MDT is supported.";
 reference "Clause 5.10.2 of 3GPP TS 32.422";

 uses AreaScopeGrp;
 }

 leaf-list sensorInformation {
 type enumeration {
 enum BAROMETRIC_PRESSURE;
 enum UE_SPEED;
 enum UE_ORIENTATION;
 }
 description "It specifies which sensor information shall be included in
 logged NR MDT and immediate NR MDT measurement if they are available.
 The following sensor measurement can be included or excluded for
 the UE.";
 reference "Clause 5.10.29 of 3GPP TS 32.422";
 }

 list immediateMdtConfig {
 description "The set of parameters specific for Immediate MDT
 configuration.
 This attribute shall be present only if MDT is supported and the jobType
 attribute is set to Immediate MDT or combined Trace and Immediate MDT";
 key idx;
 max-elements 1;
 leaf idx { type string; }
 uses ImmediateMdtConfigGrp;
 }

 list loggedMdtConfig {
 description "The set of parameters specific for Logged MDT and Logged
 MBSFN MDT configuration.
 This attribute shall be present only if MDT is supported and the
 jobType attribute is set to Logged MDT or Logged MBSFN MDT.";
 key idx;
 max-elements 1;
 leaf idx { type string; }
 uses LoggedMdtConfigGrp;
 }
 }

 grouping UEMeasConfigGrp {
 description "Represents the UEMeasConfig dataType.
 This <<dataType>> defines the aconfiguration parameters of IOC TraceJob
 which are specific for UE level measurements collection.";

 leaf-list ueMeasurements {
 type string;
 description "It specifies the List of UE level measurements.";
 }

 leaf ueMeasGranularityPeriod {
 type uint32;
 description "It specifies the Granularity period used to produce UE level
 measurements. The period is defined in milliseconds (ms).";
 }

 leaf-list nfTypeToMeasure {
 type string;
 description "It specifies the NF types to measure.";
 }

 leaf-list objectInstances {
 type string;
 description "List of object instances.";
 }

 leaf-list rootObjectInstances {
 type string;
 description "List of root object instances.";
 }
 }

 grouping TraceJobGrp {

 leaf jobType {
 type enumeration {
 enum IMMEDIATE_MDT_ONLY;
 enum LOGGED_MDT_ONLY;
 enum TRACE_ONLY;
 enum IMMEDIATE_MDT_AND_TRACE;
 enum RLF_REPORT_ONLY;
 enum RCEF_REPORT_ONLY;
 enum LOGGED_MBSFN_MDT;
 enum 5GC_UE_LEVEL_MEASUREMENTS_ONLY;
 enum TRACE_AND_5GC_UE_LEVEL_MEASUREMENTS;
 enum IMMEDIATE_MDT_AND_5GC_UE_LEVEL_MEASUREMENTS;
 enum TRACE_AND_IMMEDIATE_MDT_AND_5GC_UE_LEVEL_MEASUREMENTS;
 }
 default TRACE_ONLY;
 description "Specifies the MDT mode and it specifies also whether the
 TraceJob represents only MDT, Logged MBSFN MDT, Trace, or 5GC UE
 level measurement collection, or any combination
 of Trace, immediate MDT and 5GC UE level measurement collection.
 The attribute is applicable for Trace, MDT, RCEF and
 RLF reporting, and 5GC UE level measurement collection.";
 reference "Clause 5.9a of 3GPP TS 32.422 for additional details on the
 allowed values.";
 }

 list pLMNTarget {
 key "mcc mnc";
 description "Specifies which PLMN that the subscriber of the session to
 be recorded uses as selected PLMN. PLMN Target might differ from the
 PLMN specified in the Trace Reference";
 reference "Clause 5.9b of 3GPP TS 32.422";

 uses types3gpp:PLMNId;
 }

 leaf traceCollectionEntityIPAddress {
 type inet:ip-address;
 description "It specifies the address of the Trace Collection Entity
 when the attribute traceReportingFormat is configured for the
 file-based reporting. The attribute is applicable for both Trace and
 MDT.
 See the clause 5.9 of TS 32.422 for additional details on the allowed
 values.";
 leaf-list listOfTraceMetrics {
 when '../jobType = "TRACE_ONLY"'
 + ' or ../jobType = "IMMEDIATE_MDT_AND_TRACE"';
 type string;
 description "Specifies the messages to be reported.";
 reference "Clause 10 of 3GPP TS 32.422";
 }

 leaf traceReportingConsumerUri {
 when '../traceReportingFormat = "STREAMING"';
 type inet:uri;
 description "URI of the Streaming Trace data reporting MnS consumer
 (a.k.a. streaming target).";
 (a.k.a. streaming target).
 This attribute shall be present if file based trace data reporting is
 supported and traceReportingFormat set to 'file based' or when
 jobType is set to Logged MDT or Logged MBSFN MDT.";
 reference "Clause 5.9 of 3GPP TS 32.422";
 }

 list traceReference {
 leaf traceCollectionEntityId {
 when '../jobType = "LOGGED_MDT_ONLY" or '
 + '../jobType = "LOGGED_MBSFN_MDT"';
 type uint32;
 description "It specifies the TCE Id which is sent to the UE in
 Logged MDT.";
 reference "Clause 5.10.11 of 3GPP TS 32.422";
 }

 list traceReference {
 key "idx";
 min-elements 1;
 max-elements 1;
 description "A globally unique identifier, which uniquely identifies the
 Trace Session that is created by the TraceJob.
 In case of shared network, it is the MCC and MNC of the Participating
 Operator that request the trace session that shall be provided.
 The attribute is applicable for both Trace and MDT.";
 reference "Clause 5.6 of 3GPP TS 32.422";

 leaf idx { type uint32 ; }
 uses trace3gpp:TraceReferenceGrp ;
 }

 leaf jobId {
 type string;
 yext3gpp:inVariant;
 description "Identifier of a TraceJob";
 yext3gpp:inVariant;
 }

 leaf traceReportingFormat {
 type enumeration {
 enum FILE_BASED;
 enum STREAMING;
 }
 default FILE_BASED;
 description "Specifies the trace reporting format - streaming trace
 reporting or file-based trace reporting";
 reference "3GPP TS 32.422 clause 5.11";
 }

 list traceTarget {
 key "targetIdType targetIdValue";
 max-elements 1;

 leaf targetIdType {
 type enumeration {
 enum IMSI;
 enum IMEI;
 enum IMEISV;
 enum PUBLIC_ID;
 enum UTRAN_CELL;
 enum E_UTRAN_CELL;
 enum NG_RAN_CELL;
 enum ENB;
 enum RNC;
 enum GNB;
 enum SUPI;
 }
 }

 leaf targetIdValue {
 type string;
 }

 description "Specifies the target object of the Trace and MDT. The
 attribute is applicable for both Trace and MDT. This attribute
 includes the ID type of the target as an enumeration and the ID value.

 The traceTarget shall be public ID in case of a Management Based
 Activation is done to an ScscfFunction. The traceTarget shall be
 cell only in case of the UTRAN cell traffic trace function.

 The traceTarget shall be E-UtranCell only in case of E-UTRAN cell
 traffic trace function.The traceTarget shall be either IMSI or
 IMEI(SV) if the Trace Session is activated to any of the following
 ManagedEntity(ies):
 - HssFunction
 - MscServerFunction
 - SgsnFunction
 - GgsnFunction
 - BmscFunction
 - RncFunction
 - MmeFunction

 The traceTarget shall be IMSI if the Trace Session is activated to a
 ManagedEntity playing a role of ServinGWFunction.

 In case of signaling based Trace/MDT, the traceTarget attribute shall
 be able to carry (IMSI or IMEI(SV)or SUPI), the mDTAreaScope attribute
 shall be able to carry a list of (cell or E-UtranCell or NRCellDU or
 TA/LA/RA).

 In case of management based Immediate MDT, the traceTarget attribute
 shall be null value, the mDTAreaScope attribute shall carry a list of
 (Utrancell or E-UtranCell or NRCellDU).

 In case of management based Logged MDT, the traceTarget attribute
 shall carry an eBs or a RNC or gNBs. The Logged MDT should be initiated
 on the specified eNB or RNC or gNB in traceTarget. The mDTAreaScope
 attribute shall carry a list of (Utrancell or E-UtranCell or NRCellDU or
 TA/LA/RA).

 In case of RLF reporting, or RCEF reporting, the traceTarget
 attribute shall be null value, the mDTAreaScope attribute shall carry
 one or list of eNBs/gNBs";
 reference "3GPP TS 32.422";
 }

 list traceConfig {
 when '../jobType = "TRACE_ONLY"'
 + ' or ../jobType = "IMMEDIATE_MDT_AND_TRACE"'
 + ' or ../jobType = "TRACE_AND_5GC_UE_LEVEL_MEASUREMENTS"'
 + ' or ../jobType =
 "TRACE_AND_IMMEDIATE_MDT_AND_5GC_UE_LEVEL_MEASUREMENTS"';
 key idx;
 description "Trace config";
 max-elements 1;
 uses TraceConfigGrp;
 leaf idx { type string; }
 list traceConfig {
 when '../jobType = "TRACE_ONLY"'
 + ' or ../jobType = "IMMEDIATE_MDT_AND_TRACE"'
 + ' or ../jobType = "TRACE_AND_5GC_UE_LEVEL_MEASUREMENTS"'
 + ' or ../jobType =
 "TRACE_AND_IMMEDIATE_MDT_AND_5GC_UE_LEVEL_MEASUREMENTS"';
 key idx;
 description "Trace config";
 max-elements 1;
 uses TraceConfigGrp;
 leaf idx { type string; }
 }

 list mdtConfig {
 when '../jobType = "IMMEDIATE_MDT_ONLY"'
 list mdtConfig {
 when '../jobType = "IMMEDIATE_MDT_ONLY"'
 + ' or ../jobType = "IMMEDIATE_MDT_AND_TRACE"'
 + ' or ../jobType = "RLF_REPORT_ONLY"'
 + ' or ../jobType = "RCEF_REPORT_ONLY"'
 + ' or ../jobType = "LOGGED_MBSFN_MDT"'
 + ' or ../jobType = "IMMEDIATE_MDT_AND_5GC_UE_LEVEL_MEASUREMENTS"'
 + ' or ../jobType =
 "TRACE_AND_IMMEDIATE_MDT_AND_5GC_UE_LEVEL_MEASUREMENTS"';
 key idx;
 description "MDT config";
 max-elements 1;
 uses MdtConfigGrp;
 leaf idx { type string; }
 }

 list ueMeasConfig {
 when '../jobType = "5GC_UE_LEVEL_MEASUREMENTS_ONLY"'
 + ' or ../jobType = "TRACE_AND_5GC_UE_LEVEL_MEASUREMENTS"'
 + ' or ../jobType = "IMMEDIATE_MDT_AND_5GC_UE_LEVEL_MEASUREMENTS"'
 + ' or ../jobType =
 "TRACE_AND_IMMEDIATE_MDT_AND_5GC_UE_LEVEL_MEASUREMENTS"';
 key idx;
 description "5GC UE level measurements config";
 max-elements 1;
 uses UEMeasConfigGrp;
 leaf idx { type string; }
 key idx;
 description "MDT config";
 max-elements 1;
 uses MdtConfigGrp;
 leaf idx { type string; }
 }

 list ueMeasConfig {
 when '../jobType = "5GC_UE_LEVEL_MEASUREMENTS_ONLY"'
 + ' or ../jobType = "TRACE_AND_5GC_UE_LEVEL_MEASUREMENTS"'
 + ' or ../jobType = "IMMEDIATE_MDT_AND_5GC_UE_LEVEL_MEASUREMENTS"'
 + ' or ../jobType =
 "TRACE_AND_IMMEDIATE_MDT_AND_5GC_UE_LEVEL_MEASUREMENTS"';
 key idx;
 description "5GC UE level measurements config";
 max-elements 1;
 uses UEMeasConfigGrp;
 leaf idx { type string; }
 }

 list nPNTarget {
 description "applicable only for NR and shall be present in case of NPN
 either a PNI-NPN or a SNPN) and for management-based activation when
 several NPNs are supported in the RAN.";
 key idx;
 max-elements 1;
 uses NpnIdGrp;
 leaf idx { type string;}
 }
 }

 grouping TraceSubtree {
 description "Contains classes that manage Tracing.
 Should be used in all classes (or classes inheriting from)
 - SubNnetwork
 - ManagedElement
 - ManagedFunction

 If a YANG module wants to augment these classes/list/groupings they must
 augment all user classes!";

 list TraceJob {
 description "A TraceJob instance represents the Trace Control and
 Configuration parameters of a particular Trace Job (see TS 32.421 and
 TS 32.422 for details). It can be name-contained by SubNetwork,
 ManagedElement, ManagedFunction.

 To activate Trace Jobs, a MnS consumer has to create TraceJob object
 instances on the MnS producer. A MnS consumer can activate a Trace Job
 for another MnS consumer since it is not required the value of
 traceCollectionEntityIPAddress or traceReportingConsumerUri to be
 his own.

 For the details of Trace Job activation see clauses 4.1.1.1.2 and
 4.1.2.1.2 of TS 32.422.

 When a MnS consumer wishes to deactivate a Trace Job, the MnS consumer
 shall delete the corresponding TraceJob instance.

 For details of management Trace Job activation/deactivation see clause
 4.1.1.1.2 of TS 32.422.

 The attribute traceReference specifies a globally unique ID and
 identifies a Trace session. One Trace Session may be activated to
 multiple Network Elements. The traceReference is populated by the
 consumer that makes the request for a Trace Session.

 The jobId attribute presents the job identifier of a TraceJob instance.
 The jobId can be used to associate multiple TraceJob instances.
 For example, it is possible to configure the same jobId value for
 multiple TraceJob instances required to produce the data (e.g. RSRP
 values of M1 and RLF reports) for a specific network analysis.

 The attribute traceReportingFormat defines the method for reporting
 the produced measurements. The selectable options are file-based or
 stream-based reporting. In case of file-based reporting the attribute
 traceCollectionEntityIPAddress is used to specify the IP address to
 which the trace records shall be transferred, while in case of
 stream-based reporting the attribute traceReportingConsumerUri
 specifies the streaming target.

 The mandatory attribute traceTarget determines the target object of
 the TraceJob. Dependent on the network element to which the Trace
 Session is activated different types of the target object are possible.
 The attribute pLMNTarget defines the PLMN for which sessions shall be
 selected in the Trace Session in case of management based activation
 when several PLMNs are supported in the RAN.

 The attribute jobType specifies the kind of data to collect. In case of
 Trace only, the configuration parameters of attribute traceConfig shall
 be applied. In case of Immediate MDT only, Logged MDT only, RLF reports
 only, RCEF reports only and Logged MBSFN MDT, the configuration
 parameters of attribute mdtConfig or a subset of these shall be
 applied. In case of UE measurements only, the configuration parameters
 of attribute ueMeasConfig shall be applied. In case of any combination
 of Trace, Immediate MDT, Trace and UE measurements, the configuration
 parameters of the corresponding attributes traceConfig, mdtConfig and
 ueMeasConfig are applicable.

 Creation and deletion of TraceJob instances by MnS consumers is
 optional; when not supported, the TraceJob instances may be created
 and deleted by the system or be pre-installed.";

 key id;
 uses top3gpp:Top_Grp ;
 container attributes {
 uses TraceJobGrp ;
 }
 uses files3gpp:FilesSubtree {
 if-feature FilesUnderTraceJob;
 }
 }
 }
}
<CODE ENDS>
*** END OF CHANGE 3 ***
*** START OF CHANGE 4 ***
*** yang-models/_3gpp-common-util.yang ***
<CODE BEGINS>
module _3gpp-common-util {
 yang-version 1.1;
 namespace urn:3gpp:sa5:_3gpp-common-util;
 prefix "util3gpp";

 import _3gpp-common-top { prefix top3gpp; }
 import _3gpp-common-yang-types { prefix types3gpp ; }
 import _3gpp-common-managed-element { prefix me3gpp ; }
 import _3gpp-common-subnetwork { prefix subnet3gpp ; }

 organization "3GPP SA5";
 contact "https://www.3gpp.org/DynaReport/TSG-WG--S5--officials.htm?Itemid=464";

 description "Defines Utility IOCs: ConditionMonitor, Scheduler
 Copyright 2024, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TSDSI,
 TTA, TTC). All rights reserved.";
 reference "3GPP TS 28.623";

 revision 2024-05-06 { reference CR-xxxx; }

 feature SchedulerUnderManagedElement {
 description "Scheduler shall be contained under ManagedElement.";
 }

 feature SchedulerUnderSubNetwork {
 description "Scheduler shall be contained under SubNetwork.";
 }

 grouping TimeIntervalGrp {
 description "This data type defines a time interval within one day.
 If the whole day shall be selected, intervalStart shall be set to
 00:00:00 and intervalEnd shall be set to 23:59:59.";

 leaf intervalStart {
 type types3gpp:FullTime;
 mandatory true;
 description "It indicates the time (in 'full-time' format) when the
 service shall be started.
 Data type 'FullTime' defines the time as specified by 'full-time'
 in RFC3339.";
 }

 leaf intervalEnd {
 type types3gpp:FullTime;
 mandatory true;
 description "It indicates the time (in 'full-time' format) when the
 service shall be stopped.
 'FullTime' defines the time as specified by 'full-time' in RFC3339.
 intervalEnd should use the same timezone as intervalStart and shall
 be later then intervalStart";
 }
 }

 grouping SchedulingTimeGrp {
 description "This <<choice>> defines the scheduling time and allows to
 configure one of four possible scheduling methods:

 - One time interval: The attribute timeWindow presents the active
 scheduling time. A duration more than one day may be configured.
 - Daily periodicity: Several active intervals per day can be configured
 in attribute timeIntervals. The active scheduling times recur each day.
 - Weekly periodicity: Several active intervals for one day can be
 configured in attribute timeIntervals. The active scheduling times recur
 on the days of the weeks configured by attribute daysOfWeek
 - Monthly periodicity: Several active intervals for one day can be
 configured in attribute timeIntervals. The active scheduling times
 recur on the days of the months configured by attribute daysOfMonth.";
 choice SchedulingTime {
 mandatory true;
 case One-time-interval {
 uses types3gpp:TimeWindowGrp;
 }
 case periodic {
 list timeIntervals {
 description "List of intervals within one day for which the service
 shall be active.";
 key "intervalStart intervalEnd";
 min-elements 1;
 uses TimeIntervalGrp;
 }
 leaf daysOfWeek {
 must 'not(../daysOfMonth)';
 description "Shall be present in case of Weekly periodicity,
 otherwise not";
 type types3gpp:DayOfWeek;
 }
 leaf daysOfMonth {
 must 'not(../daysOfWeek)';
 description "Shall be present in case of Monthly periodicity,
 otherwise not";
 type types3gpp:DaysOfMonth;
 }
 }
 }
 }

 grouping SchedulerGrp {
 description "Represents the Scheduler IOC.";

 list schedulingTimes {
 description "It defines the active scheduling times.";
 min-elements 1;
 key idx;
 leaf idx { type uint32; }
 uses SchedulingTimeGrp;
 }

 leaf schedulerStatus {
 type boolean;
 mandatory true;
 config false;
 description "Switches between TRUE and FALSE depending upon whether the
 configured time constraints are fulfilled or not.";
 }
 }

 grouping SchedulerSubtree {
 list Scheduler {
 description "This IOC defines a time scheduler.
 It can be name-contained by SubNetwork or ManagedElement.

 The attribute schedulingTimes allows to configure one or several
 active time intervals. The active intervals can be configured to occur
 once or recurring periodically.

 The boolean attribute schedulerStatus switches between TRUE and FALSE
 depending upon whether the configured time constraints are fulfilled
 or not. This attribute makes the internal Scheduler status observable.";
 key id;
 uses top3gpp:Top_Grp;
 container attributes {
 uses SchedulerGrp;
 }
 }
 }

 augment /me3gpp:ManagedElement {
 if-feature SchedulerUnderManagedElement;
 uses SchedulerSubtree;
 }
 augment /subnet3gpp:SubNetwork {
 if-feature SchedulerUnderSubNetwork;
 uses SchedulerSubtree;
 }

///

 feature ConditionMonitorUnderManagedElement {
 description "ConditionMonitor shall be contained under ManagedElement.";
 }

 feature ConditionMonitorUnderSubNetwork {
 description "ConditionMonitor shall be contained under SubNetwork.";
 }

 grouping ConditionMonitorGrp {
 description "Represents the Scheduler IOC.";

 leaf condition {
 type string {
 length 1..max;
 }
 mandatory true;
 description "Logical expression of one or several condition(s).

 The actual syntax and capabilities of condition is SS specific.
 However, each SS should support condition consisting of one or several
 assertions that may be grouped using the logical operators AND, OR
 and NOT. Only if the whole expression of condition evaluates TRUE,
 the attribute conditionsSatisfied will be TRUE.

 Each assertion is a pointer to a Boolean parameter or a logical
 expression of attribute existence or attribute value comparison
 ('equal to X, less than Y' etc.).

 An empty string is not allowed.";
 }

 leaf conditionStatus {
 type boolean;
 mandatory true;
 config false;
 description "Switches between TRUE and FALSE depending upon whether the
 configured constraints are fulfilled or not.";
 }
 }

 grouping ConditionMonitorSubtree {
 list ConditionMonitor {
 description "This IOC defines one or several conditions and monitors
 whether these conditions are satisfied. It can be name-contained by
 SubNetwork or ManagedElement.

 The attribute condition allows to configure one or several conditions.
 Possible conditions include but are not limited to scheduling
 requirements or parameter settings e.g. evaluation if a configuration
 parameter is above a certain threshold or has a certain values.

 The boolean attribute conditionStatus switches between TRUE and FALSE
 depending upon whether the configured conditions are fulfilled or not.
 This attribute makes the internal ConditionMonitor status observable.";
 key id;
 uses top3gpp:Top_Grp;
 container attributes {
 uses ConditionMonitorGrp;
 }
 }
 }

 augment /me3gpp:ManagedElement {
 if-feature ConditionMonitorUnderManagedElement;
 uses ConditionMonitorSubtree;
 }
 augment /subnet3gpp:SubNetwork {
 if-feature ConditionMonitorUnderSubNetwork;
 uses ConditionMonitorSubtree;
 }
}

<CODE ENDS>
*** END OF CHANGE 4 ***
*** START OF CHANGE 5 ***
*** yang-models/_3gpp-common-yang-types.yang ***
<CODE BEGINS>
module _3gpp-common-yang-types {
 yang-version 1.1;
 namespace "urn:3gpp:sa5:_3gpp-common-yang-types";
 prefix "types3gpp";

 import ietf-inet-types { prefix inet; }
 import ietf-yang-types { prefix yang; }
 import _3gpp-common-yang-extensions { prefix yext3gpp; }

 organization "3GPP SA5";
 contact "https://www.3gpp.org/DynaReport/TSG-WG--S5--officials.htm?Itemid=464";
 description "The model defines a YANG mapping of the top level
 information classes used for management of 5G networks and
 network slicing.
 Copyright 2024, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TSDSI,
 TTA, TTC). All rights reserved.";
 reference "3GPP TS 28.623";

 revision 2024-04-12 { reference CR-0346; }
 revision 2023-11-06 { reference CR-0305; }
 revision 2023-09-18 { reference CR-0271 ; }
 revision 2023-08-09 { reference CR-0266; }
 revision 2023-05-10 { reference CR-0250; }
 revision 2023-02-14 { reference CR-0234; }
 revision 2022-11-04 { reference "CR-0194"; }
 revision 2022-10-24 { reference CR-0196; }
 revision 2022-07-26 { reference "CR-0180" ; }
 revision 2022-02-09 { reference "CR-0144"; }
 revision 2021-11-01 { reference "CR-0141"; }

 revision 2021-09-30 {
 description "Added Longitude, Latitude, TenthOfDegrees, OnOff.";
 reference "CR-0138";
 }

 revision 2020-11-06 {
 description "Removed incorrect S-NSSAI definitions.";
 reference "CR-0118";
 }

 revision 2020-03-10 {
 description "Removed faulty when statements.";
 reference "SP-200229";
 }

 revision 2019-10-25 {
 description "Added ManagedNFProfile.";
 reference "S5-194457";
 }

 revision 2019-10-16 {
 description "Added SAP and usageState.";
 reference "S5-193518";
 }

 revision 2019-06-23 {
 reference "Initial version.";
 }

 typedef EnabledDisabled {
 type enumeration {
 enum DISABLED ;
 enum ENABLED ;
 }
 }

 grouping nameValuePair {
 leaf name { type string; }
 leaf value { type string; }
 }

 typedef DayOfWeekT {
 type enumeration {
 enum Monday;
 enum Tuesday;
 enum Wednesday;
 enum Thursday;
 enum Friday;
 enum Saturday;
 enum Sunday;
 }
 }

 typedef DayOfWeek {
 type enumeration {
 enum MONDAY;
 enum TUESDAY;
 enum WEDNESDAY;
 enum THURSADY;
 enum FRIDAY;
 enum SATURDAY;
 enum SUNDAY;
 }
 }

 typedef DaysOfMonth {
 type uint8 {
 range 0..31;
 }
 }

 typedef FullTime {
 type yang:time-with-zone-offset;
 }

 grouping TimeWindowGrp {
 leaf startTime {
 type yang:date-and-time;
 yext3gpp:inVariant;
 }
 leaf endTime {
 type yang:date-and-time;
 yext3gpp:inVariant;
 }
 }

 grouping ProcessMonitorGrp {
 description "Provides attributes to monitor the progress of processes
 with specific purpose and limited lifetime running on MnS producers.
 It may be used as data type for dedicated progress monitor attributes
 when specifying the management representation of these processes.
 The attributes in this clause are defined in a generic way.
 For some attributes specialisations may be provided when specifying a
 concrete process representation.

 If a management operation on some IOCs triggers an associated
 asynchronous process (whose progress shall be monitored), this should
 also result in creating an attribute named 'processMonitor' (of type
 'ProcessMonitor') in these IOC(s). The processMonitor attribute may be
 accompanied by use-case specific additional data items.

 The progress of the process is described by the 'status' and
 'progressPercentage' attributes. Additional textual qualifications for
 the 'status' attribute may be provided by the 'progressStateInfo' and
 'resultStateInfo' attributes.

 When the process is instantiated, the 'status' is set to 'NOT_RUNNING'
 and the 'progressPercentage' to '0'. The MnS producer decides when to
 start executing the process and to transition into the 'RUNNING' state.
 This time is captured in the 'startTime' attribute. Alternatively, the
 process may start to execute directly upon its instantiation. One
 alternative must be selected when using this data type.

 During the 'RUNNING' state the 'progressPercentage' attribute may be
 repeatedly updated. The exact semantic of this attribute is subject to
 further specialisation. The 'progressInfo' attribute may be used to
 provide additional textual information in the 'NOT_RUNNING', 'CANCELLING'
 and 'RUNNING' states. Further specialisation of
 'progressStateInfo' may be provided where this data type is
 used.

 Upon successful completion of the process, the 'status' attribute is set
 to 'FINISHED', the 'progressPercentage' to 100%. The time is captured in
 the 'endTime' attribute. Additional textual information may be provided
 in the 'resultStateInfo' attribute. The type of
 'resultStateInfo' in this data type definition is 'String'.
 Further specialisation of 'resultStateInfo' may be provided
 where this data type is used.

 In case the process fails to complete successfully, the 'status'
 attribute is set to 'FAILED' or 'PARTIALLY_FAILED', the current value of
 'progressPercentage' is frozen, and the time captured in 'endTime'. The
 'resultStateInfo' specifies the reason for the failure.
 Specific failure reasons may be specified where the data type defined in
 this clause is used. The exact semantic of failure may be subject for
 further specialisation as well.

 In case the process is cancelled, the 'status' attribute is first set to
 'CANCELLING' and when the process is really cancelled then to 'CANCELLED'.
 The transition to 'CANCELLED' is captured in the 'endTime' attribute.
 The value of 'progressPercentage' is frozen. Additional textual
 information may be provided in the 'resultStateInfo' attribute.

 The 'resultStateInfo' attribute is provided only for additional textual
 qualification of the states 'FINISHED', 'FAILED', 'PARTIALLY_FAILED' or
 'CANCELLED'. It shall not be used for making the outcome, that the
 process may produce in case of success, available.

 The process may have to be completed within a certain time after its
 creation, for example because required data may not be available any
 more after a certain time, or the process outcome is needed until a
 certain time and when not provided by this time is not needed any more.
 The time until the MnS producer automatically cancels the process is
 indicated by the 'timer' attribute.";

 leaf id {
 type string;
 mandatory true;
 description "Id of the process. It is unique within a single
 multivalue attribute of type ProcessMonitor.";
 }

 leaf status {
 type enumeration {
 enum NOT_STARTED ;
 enum RUNNING ;
 enum CANCELLING ;
 enum FINISHED ;
 enum FAILED ;
 enum PARTIALLY_FAILED ;
 enum CANCELLED ;
 }
 config false;
 default RUNNING;
 description "Represents the status of the associated process,
 whether it fails, succeeds etc.
 It does not represent the returned values of a successfully finished
 process. ";
 }

 leaf progressPercentage {
 type uint8 {
 range 0..100;
 }
 config false;
 description "Progress of the associated process as percentage";
 }

 leaf-list progressStateInfo {
 type string;
 config false;
 description "Additional textual qualification of the states
 'NOT_STARTED', 'CANCELLING' and 'RUNNING'.

 For specific processes, specific well-defined strings (e.g. string
 patterns or enums) may be defined as a specialisation.";
 }

 leaf resultStateInfo {
 type string;
 config false;
 description "Additional textual qualification of the states
 'FINISHED', 'FAILED', 'PARTIALLY_FAILED and 'CANCELLED'.
 For example, in the 'FAILED' or 'PARTIALLY_FAILED' state this
 attribute may be used to provide error reasons.

 This attribute shall not be used to make the outcome of the process
 available for retrieval, if any. For this purpose, dedicated
 attributes shall be specified when specifying the representation of
 a specific process.

 For specific processes, specific well-defined strings (e.g. string
 patterns or enums) may be defined as a specialisation.";
 }

 leaf startTime {
 type yang:date-and-time;
 config false;
 description "Start time of the associated process, i.e. the time when the
 status changed from 'NOT_STARTED' to 'RUNNING'.";
 }

 leaf endTime {
 type yang:date-and-time;
 config false;
 description "Date and time when status changed to 'SUCCESS', 'CANCELLED',
 'FAILED' or 'PARTIALLY_FAILED'.

 If the time is in the future, it is the estimated time
 the process will end.";
 }

 leaf timer {
 type uint32;
 units minutes;
 description "Time until the associated process is automatically cancelled.
 If set, the system decreases the timer with time. When it reaches zero
 the cancellation of the associated process is initiated by the
 MnS_Producer.
 If not set, there is no time limit for the process.

 Once the timer is set, the consumer can not change it anymore.
 If the consumer has not set the timer the MnS Producer may set it.";
 yext3gpp:notNotifyable;
 }
 }

 typedef TenthOfDegrees {
 type uint16 {
 range 0..3600;
 }
 units "0.1 degrees";
 description "A single integral value corresponding to an angle in degrees
 between 0 and 360 with a resolution of 0.1 degrees.";
 }

 typedef Latitude {
 type decimal64 {
 fraction-digits 4;
 range "-90.0000..+90.0000";
 }
 description "Latitude values";
 }

 typedef Longitude {
 type decimal64 {
 fraction-digits 4;
 range "-180.0000..+180.0000";
 }
 description "Longitude values";
 }

 typedef Altitude {
 type decimal64 {
 fraction-digits 6;
 }
 units "meters";
 description
 "Height from a reference 0 value.";
 }

 grouping GeographicalCoordinates {
 description "This datatype represents the geographical coordinates";
 reference "#GPP TS 28.558 clause 6.3.8";

 leaf latitude {
 type Latitude;
 mandatory true;
 }

 leaf longitude {
 type Longitude;
 mandatory true;
 }

 leaf altitude {
 type Altitude;
 }

 }

 typedef OnOff {
 type enumeration {
 enum ON;
 enum OFF;
 }
 }

 // grouping ManagedNFProfile will be removed as it is
 // being moved to _3gpp-5gc-nrm-nfprofile
 grouping ManagedNFProfile {
 description "Defines profile for managed NF";
 reference "3GPP TS 23.501";

 leaf idx { type uint32 ; }

 leaf nfInstanceID {
 config false;
 mandatory true;
 type yang:uuid ;
 description "This parameter defines profile for managed NF.
 The format of the NF Instance ID shall be a
 Universally Unique Identifier (UUID) version 4,
 as described in IETF RFC 4122 " ;
 yext3gpp:inVariant;
 }

 leaf-list nfType {
 config false;
 min-elements 1;
 type NfType;
 description "Type of the Network Function" ;
 }

 leaf hostAddr {
 mandatory true;
 type inet:host ;
 description "Host address of a NF";
 }

 leaf authzInfo {
 type string ;
 description "This parameter defines NF Specific Service authorization
 information. It shall include the NF type (s) and NF realms/origins
 allowed to consume NF Service(s) of NF Service Producer.";
 reference "See TS 23.501" ;
 }

 leaf location {
 type string ;
 description "Information about the location of the NF instance
 (e.g. geographic location, data center) defined by operator";
 reference "TS 29.510" ;
 }

 leaf capacity {
 mandatory true;
 type uint16 ;
 description "This parameter defines static capacity information
 in the range of 0-65535, expressed as a weight relative to other
 NF instances of the same type; if capacity is also present in the
 nfServiceList parameters, those will have precedence over this value.";
 reference "TS 29.510" ;
 }

 leaf nFSrvGroupId {
 type string ;
 description "This parameter defines identity of the group that is
 served by the NF instance.
 May be config false or true depending on the ManagedFunction.
 Config=true for Udrinfo. Config=false for UdmInfo and AusfInfo.
 Shall be present if ../nfType = UDM or AUSF or UDR. ";
 reference "TS 29.510" ;
 }

 leaf-list supportedDataSetIds {
 type enumeration {
 enum SUBSCRIPTION;
 enum POLICY;
 enum EXPOSURE;
 enum APPLICATION;
 }
 description "List of supported data sets in the UDR instance.
 May be present if ../nfType = UDR";
 reference "TS 29.510" ;
 }

 leaf-list smfServingAreas {
 type string ;
 description "Defines the SMF service area(s) the UPF can serve.
 Shall be present if ../nfType = UPF";
 reference "TS 29.510" ;
 }

 leaf priority {
 type uint16;
 description "This parameter defines Priority (relative to other NFs
 of the same type) in the range of 0-65535, to be used for NF selection;
 lower values indicate a higher priority. If priority is also present
 in the nfServiceList parameters, those will have precedence over
 this value. Shall be present if ../nfType = AMF ";
 reference "TS 29.510" ;
 }
 }

 typedef usageState {
 type enumeration {
 enum IDLE;
 enum ACTIVE;
 enum BUSY;
 }
 description "It describes whether or not the resource is actively in
 use at a specific instant, and if so, whether or not it has spare
 capacity for additional users at that instant. The value is READ-ONLY.";
 reference "ITU T Recommendation X.731";
 }

 grouping SAPGrp {
 leaf host {
 type inet:host;
 mandatory true;
 }
 leaf port {
 type inet:port-number;
 mandatory true;
 }
 description "Service access point.";
 reference "TS 28.622";
 }

 typedef Mcc {
 description "The mobile country code consists of three decimal digits,
 The first digit of the mobile country code identifies the geographic
 region (the digits 1 and 8 are not used):";
 type string {
 pattern '[02-79][0-9][0-9]';
 }
 reference "3GPP TS 23.003 subclause 2.2 and 12.1";
 }

 typedef Mnc {
 description "The mobile network code consists of two or three
 decimal digits (for example: MNC of 001 is not the same as MNC of 01)";
 type string {
 pattern '[0-9][0-9][0-9]|[0-9][0-9]';
 }
 reference "3GPP TS 23.003 subclause 2.2 and 12.1";
 }

 grouping PLMNId {
 leaf mcc {
 mandatory true;
 type Mcc;
 }
 leaf mnc {
 mandatory true;
 type Mnc;
 }
 reference "TS 38.413 clause 9.3.3.5";
 }

 typedef Nci {
 description "NR Cell Identity. The NCI shall be of fixed length of 36 bits
 and shall be coded using full hexadecimal representation.
 The exact coding of the NCI is the responsibility of each PLMN operator";
 reference "TS 23.003";
 type union {
 type string {
 length 36;
 pattern '[01]+';
 }
 type string {
 length 9;
 pattern '[a-fA-F0-9]*';
 }
 }
 }

 typedef OperationalState {
 reference "3GPP TS 28.625 and ITU-T X.731";
 type enumeration {
 enum DISABLED {
 value 0;
 description "The resource is totally inoperable.";
 }

 enum ENABLED {
 value 1;
 description "The resource is partially or fully operable.";
 }

 }
 }

 typedef BasicAdministrativeState {
 reference "3GPP TS 28.625 and ITU-T X.731";
 type enumeration {
 enum LOCKED {
 value 0;
 description "The resource is administratively prohibited from performing
 services for its users.";
 }

 enum UNLOCKED {
 value 1;
 description "The resource is administratively permitted to perform
 services for its users. This is independent of its inherent
 operability.";
 }
 }
 }

 typedef AdministrativeState {
 reference "3GPP TS 28.625 and ITU-T X.731";
 type enumeration {
 enum LOCKED {
 value 0;
 description "The resource is administratively prohibited from performing
 services for its users.";
 }

 enum UNLOCKED {
 value 1;
 description "The resource is administratively permitted to perform
 services for its users. This is independent of its inherent
 operability.";
 }

 enum SHUTTINGDOWN {
 value 2;
 description "Use of the resource is administratively permitted to
 existing instances of use only. While the system remains in
 the shutting down state the manager or the managed element
 may at any time cause the resource to transition to the
 locked state.";
 }
 }
 }

 typedef AvailabilityStatus {
 type enumeration {
 enum IN_TEST;
 enum FAILED;
 enum POWER_OFF;
 enum OFF_LINE;
 enum OFF_DUTY;
 enum DEPENDENCY;
 enum DEGRADED;
 enum NOT_INSTALLED;
 enum LOG_FULL;
 }
 }

 typedef CellState {
 type enumeration {
 enum IDLE;
 enum INACTIVE;
 enum ACTIVE;
 }
 }

 typedef Nrpci {
 type uint32;
 description "Physical Cell Identity (PCI) of the NR cell.";
 reference "TS 36.211 subclause 6.11";
 }

 typedef Tac {
 type int32 {
 range 0..16777215 ;
 }
 description "Tracking Area Code";
 reference "TS 23.003 clause 19.4.2.3";
 }

 grouping TaiGrp {
 description "This <<dataType>> defines a Tracking Area Identity (TAI)
 as specified in clause 28.6 of TS 23.003, clause 8.2 of TS 38.300
 and clause 9.3.3.11 of TS 38.413. It is composed of the PLMN
 identifier (PLMN-Id, which is composed of the MCC and MNC) and
 the Tracking Area Code (TAC). ";
 list plmnId {
 description "PLMN Identity.";
 min-elements 1;
 max-elements 1;
 key "mcc mnc";
 uses types3gpp:PLMNId;
 }

 leaf tac { type Tac; }
 }

 grouping GeoCoordinateGrp {
 description "Geographical location on earth";
 leaf latitude {
 type decimal64 {
 fraction-digits 4;
 range -90..90 ;
 }
 mandatory true;
 description "Latitude based on World Geodetic System (1984 version)
 global reference frame (WGS 84). Positive values correspond to the
 northern hemisphere.";
 }

 leaf longitude {
 type decimal64 {
 fraction-digits 4;
 range -180..180 ;
 }
 mandatory true;
 description "Longitude based on World Geodetic System (1984 version)
 global reference frame (WGS 84). Positive values correspond to
 degrees east of 0 degrees longitude.";
 }
 }

 grouping GeoAreaGrp {
 description "This data type defines a geographical area.
 The geo-area is defined using a convex polygon in the attribute
 'convexGeoPolygon'.";

 list convexGeoPolygon {
 description "Specifies the geographical area with a convex polygon.
 The convex polygon is specified by its corners.";
 key "latitude longitude";
 min-elements 3;
 ordered-by user;

 uses GeoCoordinateGrp;
 }
 }

 typedef AmfRegionId {
 type union {
 type uint8 ;
 type string {
 length 8;
 pattern '[01]*';
 }
 }
 reference "clause 2.10.1 of 3GPP TS 23.003";
 }

 typedef AmfSetId {
 type union {
 type uint16 {
 range '0..1023';
 }
 type string {
 length 8;
 pattern '[01]*';
 }
 }
 reference "clause 2.10.1 of 3GPP TS 23.003";
 }

 typedef AmfPointer {
 type union {
 type uint8 {
 range '0..63';
 }
 type string {
 length 6;
 pattern '[01]*';
 }
 }
 reference "clause 2.10.1 of 3GPP TS 23.003";
 }

 grouping AmfIdentifier {
 leaf amfRegionId {
 type AmfRegionId;
 }
 leaf amfSetId {
 type AmfSetId;
 }
 leaf amfPointer {
 type AmfPointer;
 }
 description "The AMFI is constructed from an AMF Region ID,
 an AMF Set ID and an AMF Pointer.
 The AMF Region ID identifies the region,
 the AMF Set ID uniquely identifies the AMF Set within the AMF Region, and
 the AMF Pointer uniquely identifies the AMF within the AMF Set. ";
 }

// type definitions especially for core NFs

 typedef NfType {
 type enumeration {
 enum NRF;
 enum UDM;
 enum AMF;
 enum SMF;
 enum AUSF;
 enum NEF;
 enum PCF;
 enum SMSF;
 enum NSSF;
 enum UDR;
 enum LMF;
 enum GMLC;
 enum 5G_EIR;
 enum SEPP;
 enum UPF;
 enum N3IWF;
 enum AF;
 enum UDSF;
 enum BSF;
 enum CHF;
 }
 }

 typedef NotificationType {
 type enumeration {
 enum N1_MESSAGES;
 enum N2_INFORMATION;
 enum LOCATION_NOTIFICATION;
 }
 }

 typedef Load {
 description "Latest known load information of the NF, percentage ";
 type uint8 {
 range 0..100;
 }
 }

 typedef N1MessageClass {
 type enumeration {
 enum 5GMM;
 enum SM;
 enum LPP;
 enum SMS;
 }
 }

 typedef N2InformationClass {
 type enumeration {
 enum SM;
 enum NRPPA;
 enum PWS;
 enum PWS_BCAL;
 enum PWS_RF;
 }
 }

 grouping DefaultNotificationSubscription {

 leaf notificationType {
 type NotificationType;
 }

 leaf callbackUri {
 type inet:uri;
 }

 leaf n1MessageClass {
 type N1MessageClass;
 }

 leaf n2InformationClass {
 type N2InformationClass;
 }
 }

 grouping Ipv4AddressRange {
 leaf start {
 type inet:ipv4-address;
 }
 leaf end {
 type inet:ipv4-address;
 }
 }

 grouping Ipv6PrefixRange {
 leaf start {
 type inet:ipv6-prefix;
 }
 leaf end {
 type inet:ipv6-prefix;
 }
 }

 typedef NsiId {
 type string;
 }

 typedef UeMobilityLevel {
 type enumeration {
 enum STATIONARY;
 enum NOMADIC;
 enum RESTRICTED_MOBILITY;
 enum FULLY_MOBILITY;
 }
 }

 typedef ResourceSharingLevel {
 type enumeration {
 enum SHARED;
 enum NOT_SHARED;
 }
 }

 typedef TxDirection {
 type enumeration {
 enum DL;
 enum UL;
 enum DL_AND_UL;
 }
 }

 grouping AddressWithVlan {
 leaf ipAddress {
 type inet:ip-address;
 }
 leaf vlanId {
 type uint16;
 }
 }

 /* DistinguishedName pattern is built up based on the
 EBNF in 32.300 clause 7.3 EBNF of DN String Representation

 leaf DN { type string { // Same pattern as LocalDN
 pattern '[A-Z][^,=+<>#;\\"\r\n*.]*=([^,=+<>#;\\"\r\n*]|(\\[a-fA-F0-9]{2}))(([^,=+<>#;\\"\r\n*]|(\\[a-fA-F0-9]{2}))*([^,=+<>#;\\"\r\n*]|(\\[a-fA-F0-9]{2})))?(,[A-Z][^,=+<>#;\\"\r\n*.]*=([^,=+<>#;\\"\r\n*]|(\\[a-fA-F0-9]{2}))(([^,=+<>#;\\"\r\n*]|(\\[a-fA-F0-9]{2}))*([^,=+<>#;\\"\r\n*]|(\\[a-fA-F0-9]{2})))?)*';
 } }

 leaf fullLocalDN { type string { // LocalRDN , { RDNSeparator , LocalRDN } RDNSeparator is a single , no space or \R allowed Me.mykey=1 allowed
 // (fullLocalRDN)(,(fullLocalRDN))*
 pattern '(([A-Z][^,=+<>#;\\"\r\n*.]*|([A-Z][^,=+<>#;\\"\r\n*.]*\.[a-z][^,=+<>#;\\"\r\n*.]*))=(([^,=+<>#;\\"\r\n*]|(\\[a-fA-F0-9]{2}))(([^,=+<>#;\\"\r\n*]|(\\[a-fA-F0-9]{2}))*([^,=+<>#;\\"\r\n*]|(\\[a-fA-F0-9]{2})))?))(,(([A-Z][^,=+<>#;\\"\r\n*.]*|([A-Z][^,=+<>#;\\"\r\n*.]*\.[a-z][^,=+<>#;\\"\r\n*.]*))=(([^,=+<>#;\\"\r\n*]|(\\[a-fA-F0-9]{2}))(([^,=+<>#;\\"\r\n*]|(\\[a-fA-F0-9]{2}))*([^,=+<>#;\\"\r\n*]|(\\[a-fA-F0-9]{2})))?)))*';
 } }

 leaf LocalDN { type string { // LocalRDN , { RDNSeparator , LocalRDN } RDNSeparator is a single , no space or \R allowed
 // LocalRDN(,LocalRDN)*
 pattern '[A-Z][^,=+<>#;\\"\r\n*.]*=([^,=+<>#;\\"\r\n*]|(\\[a-fA-F0-9]{2}))(([^,=+<>#;\\"\r\n*]|(\\[a-fA-F0-9]{2}))*([^,=+<>#;\\"\r\n*]|(\\[a-fA-F0-9]{2})))?(,[A-Z][^,=+<>#;\\"\r\n*.]*=([^,=+<>#;\\"\r\n*]|(\\[a-fA-F0-9]{2}))(([^,=+<>#;\\"\r\n*]|(\\[a-fA-F0-9]{2}))*([^,=+<>#;\\"\r\n*]|(\\[a-fA-F0-9]{2})))?)*';
 } }

 leaf fullLocalRDN { type string { // same as fullLocalDNAttributeTypeAndValue
 pattern '([A-Z][^,=+<>#;\\"\r\n*.]*|([A-Z][^,=+<>#;\\"\r\n*.]*\.[a-z][^,=+<>#;\\"\r\n*.]*))=(([^,=+<>#;\\"\r\n*]|(\\[a-fA-F0-9]{2}))(([^,=+<>#;\\"\r\n*]|(\\[a-fA-F0-9]{2}))*([^,=+<>#;\\"\r\n*]|(\\[a-fA-F0-9]{2})))?)';
 } }

 leaf LocalRDN { type string { // same as LocalDNAttributeTypeAndValue
 pattern '[A-Z][^,=+<>#;\\"\r\n*.]*=([^,=+<>#;\\"\r\n*]|(\\[a-fA-F0-9]{2}))(([^,=+<>#;\\"\r\n*]|(\\[a-fA-F0-9]{2}))*([^,=+<>#;\\"\r\n*]|(\\[a-fA-F0-9]{2})))?';
 } }

 leaf fullLocalDNAttributeTypeAndValue { type string { // LocalDNAttributeType , AttributeTypeAndValueSeparator , RegularAttributeValue
 // pattern LocalDNAttributeType=RegularAttributeValue
 pattern '([A-Z][^,=+<>#;\\"\r\n*.]*|([A-Z][^,=+<>#;\\"\r\n*.]*\.[a-z][^,=+<>#;\\"\r\n*.]*))=(([^,=+<>#;\\"\r\n*]|(\\[a-fA-F0-9]{2}))(([^,=+<>#;\\"\r\n*]|(\\[a-fA-F0-9]{2}))*([^,=+<>#;\\"\r\n*]|(\\[a-fA-F0-9]{2})))?)';
 } }

 // limitation: NamesOfClassAndNamingAttributenot supported Me.mykey=1
 leaf LocalDNAttributeTypeAndValue { type string {
 // ebnf1 LocalDNAttributeType , AttributeTypeAndValueSeparator , RegularAttributeValue
 // ebnf2-limited NameOfClassWithIdAttribute , AttributeTypeAndValueSeparator , RegularAttributeValue
 // pattern NameOfClassWithIdAttribute=RegularAttributeValue
 pattern '[A-Z][^,=+<>#;\\"\r\n*.]*=([^,=+<>#;\\"\r\n*]|(\\[a-fA-F0-9]{2}))(([^,=+<>#;\\"\r\n*]|(\\[a-fA-F0-9]{2}))*([^,=+<>#;\\"\r\n*]|(\\[a-fA-F0-9]{2})))?';
 } }

 leaf LocalDNAttributeType { type string { // NameOfClassWithIdAttribute | NamesOfClassAndNamingAttribute RDNSeparator is a single , no space or \R allowed
 // NameOfClassWithIdAttribute|NamesOfClassAndNamingAttribute
 pattern '[A-Z][^,=+<>#;\\"\r\n*.]*|([A-Z][^,=+<>#;\\"\r\n*.]*\.[a-z][^,=+<>#;\\"\r\n*.]*)';
 } }

 leaf RegularAttributeValue { type string { // (AttributeValueChar - SpaceChar) , [{ AttributeValueChar } , (AttributeValueChar - SpaceChar)]
 pattern '([^,=+<>#;\\"\r\n*]|(\\[a-fA-F0-9]{2}))(([^,=+<>#;\\"\r\n*]|(\\[a-fA-F0-9]{2}))*([^,=+<>#;\\"\r\n*]|(\\[a-fA-F0-9]{2})))?' ;
 } }

 leaf NamesOfClassAndNamingAttribute { type string { // ClassName , ClassNamingAttributeSeparator , NamingAttributeName
 // pattern: ClassName\.NamingAttributeName
 pattern '[A-Z][^,=+<>#;\\"\r\n*.]*\.[a-z][^,=+<>#;\\"\r\n*.]*' ;
 } }

 leaf restrictiveClassName { type string { //
 pattern '[a-zA-Z][a-zA-Z0-9-_]*' ;
 } }

 leaf ClassName { type string { // CapitalLetterChar , { LocalDNAttributeTypeChar }
 pattern '[A-Z][^,=+<>#;\\"\r\n*.]*' ;
 } }

 leaf NamingAttributeName { type string { // SmallLetterChar , { LocalDNAttributeTypeChar }
 pattern '[a-z][^,=+<>#;\\"\r\n*.]*' ;
 } }

 */
 typedef DistinguishedName {
 type string {
 pattern '[A-Z][^,=+<>#;\\"\r\n*.]*=([^,=+<>#;\\"\r\n*]|'
 + '(\\[a-fA-F0-9]{2}))(([^,=+<>#;\\"\r\n*]|(\\[a-fA-F0-9]{2}))*'
 + '([^,=+<>#;\\"\r\n*]|(\\[a-fA-F0-9]{2})))?'
 + '(,[A-Z][^,=+<>#;\\"\r\n*.]*=([^,=+<>#;\\"\r\n*]|(\\[a-fA-F0-9]{2}))'
 + '(([^,=+<>#;\\"\r\n*]|(\\[a-fA-F0-9]{2}))*'
 + '([^,=+<>#;\\"\r\n*]|(\\[a-fA-F0-9]{2})))?)*';
 }
 description "Represents the 3GPP standard for DistinguishedName.

 Limitations:
 - RDNSeparator: don't allow SpaceChar or CarriageReturnChar
 - NullDN: Disallow nullDN that is the same as not providing a DN
 - NamesOfClassAndNamingAttribute format not allowed
 (eg. ManagedElement.mykey=345436)";
 reference "3GPP TS 32.300";
 }

 typedef QOffsetRange {
 type int8 {
 range "-24 | -22 | -20 | -18 | -16 | -14 | -12 | -10 | -8 | -6 | " +
 " -5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 8 | 10 | " +
 " 12 | 14 | 16 | 18 | 20 | 22 | 24";
 }
 units dB;
 }

 grouping ReportingCtrl {
 choice reportingCtrl {
 mandatory true;
 description "
 This choice defines the method for reporting collected performance
 metrics to MnS consumers as well as the parameters for configuring the
 reporting function. It is a choice between the control parameter
 required for the reporting methods, whose presence selects the
 reporting method as follows:

 - When only the fileReportingPeriod attribute is present, the MnS
 producer shall store files on the MnS producer at a location selected
 by the MnS producer and, on condition that an appropriate subscription
 is in place, inform the MnS consumer about the availability of new
 files and the file location using the notifyFileReady notification.
 In case the preparation of a file fails, 'notifyFilePreparationError'
 shall be sent instead.

 - When the 'fileReportingPeriod' and 'notificationRecipientAddress'
 attributes are present, then the MnS producer shall behave like
 described for the case that only the 'fileReportingPeriod' is present.
 In addition, the MnS producer shall create on behalf of the MnS
 consumer a subscription, using 'NtfSubscriptionControl', for the
 notification types 'notifyMOICreation' and 'notifyMOIDeletion' related
 to the 'File' instances that will be produced later. In case an existing
 subscription does already include the 'File' instances to be produced,
 no new subscription shall be created. The
 'notificationRecipientAddress' attribute in the created
 'NtfSubscriptionControl' instance shall be set to the value of the
 'notificationRecipientAddress' in the related 'PerfMetricJob'. This
 feature is called implicit notification subscription, as opposed to the
 case where the MnS consumer creates the subscription (explicit
 notification subscription). When the related 'PerfMetricJob' is
 deleted, the 'NtfSubscriptionControl' instance created due to the
 request for implicit subscription shall be deleted as well.

 - When only the fileReportingPeriod and fileLocation attributes are
 present, the MnS producer shall store the files on a MnS consumer, that
 can be any entity such as a file server, at the location specified by
 fileLocation. No notification is emitted by the MnS producer.

 - When only the streamTarget attribute is present, the MnS producer
 shall stream the data to the location specified by streamTarget.

 For the file-based reporting methods the fileReportingPeriod attribute
 specifies the time window during which collected measurements are
 stored into the same file before the file is closed and a new file is
 opened.";

 case file-based-reporting {
 leaf fileReportingPeriod {
 type uint32 {
 range 1..max;
 }
 units minutes;
 mandatory true;
 description "For the file-based reporting method this is the time
 window during which collected measurements are stored into the same
 file before the file is closed and a new file is opened.
 The time-period must be a multiple of the granularityPeriod.

 Applicable when the file-based reporting method is supported.";
 }
 choice reporting-target {
 case file-target {
 leaf fileLocation {
 type string ;
 description "Applicable and must be present when the file-based
 reporting method is supported, and the files are stored on the MnS
 consumer.";
 }
 }
 case notification-target {
 leaf notificationRecipientAddress {
 type string;
 description "Must be present when the notification-based reporting
 method is supported, and the the files are available as
 notifications for the MnS consumer to subscribe to.";
 }
 }
 description "When netiher fileLocation or notificationRecipientAddress
 are present, the files are stored and available to the MnS consumer
 if the MnS subscribes to the notifyFileReady notification.";
 }
 }

 case stream-based-reporting {
 leaf streamTarget {
 type string;
 mandatory true;
 description "Applicable when stream-based reporting method is
 supported.";
 }
 }
 }
 }
}
<CODE ENDS>
*** END OF CHANGE 5 ***
*** START OF CHANGE 6 ***
*** yang-models/external-yams/ietf-inet-types.yang ***
<CODE BEGINS>
module ietf-inet-types {

 namespace "urn:ietf:params:xml:ns:yang:ietf-inet-types";
 prefix "inet";
 yang-version 1;

 organization
 "IETF Network Modeling (NETMOD) Working Group";
 namespace
 "urn:ietf:params:xml:ns:yang:ietf-inet-types";

 contact
 "WG Web: <https://datatracker.ietf.org/wg/netmod/>
 prefix inet;

 organization
 "IETF NETMOD (NETCONF Data Modeling Language) Working Group";

 contact
 "WG Web: <http://tools.ietf.org/wg/netmod/>
 WG List: <mailto:netmod@ietf.org>

 WG Chair: David Kessens
 <mailto:david.kessens@nsn.com>

 WG Chair: Juergen Schoenwaelder
 <mailto:j.schoenwaelder@jacobs-university.de>

 Editor: Juergen Schoenwaelder
 <mailto:jschoenwaelder@constructor.university>";
 <mailto:j.schoenwaelder@jacobs-university.de>";

 description
 "This module contains a collection of generally useful derived
 description
 "This module contains a collection of generally useful derived
 YANG data types for Internet addresses and related things.

 The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', 'SHALL
 NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED', 'NOT RECOMMENDED',
 'MAY', and 'OPTIONAL' in this document are to be interpreted as
 described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,
 they appear in all capitals, as shown here.

 Copyright (c) 2022 IETF Trust and the persons identified as
 Copyright (c) 2013 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Revised BSD License
 to the license terms contained in, the Simplified BSD License
 set forth in Section 4.c of the IETF Trust's Legal Provisions
 Relating to IETF Documents
 (https://trustee.ietf.org/license-info).
 (http://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX;
 see the RFC itself for full legal notices.";
 This version of this YANG module is part of RFC 6991; see
 the RFC itself for full legal notices.";

 revision 2023-01-23 {
 description
 "This revision adds the following new data types:
 - inet:ip-address-and-prefix
 - inet:ipv4-address-and-prefix
 - inet:ipv6-address-and-prefix
 - inet:protocol-number
 - inet:host-name
 - inet:email-address
 - inet:ip-address-link-local
 - inet:ipv4-address-link-local
 - inet:ipv6-address-link-local
 The inet:host union was changed to use inet:host-name instead
 of inet:domain-name. Several pattern statements have been
 improved.";
 reference
 "RFC XXXX: Common YANG Data Types";
 }

 revision 2013-07-15 {
 description
 "This revision adds the following new data types:
 - inet:ip-address-no-zone
 - inet:ipv4-address-no-zone
 - inet:ipv6-address-no-zone";
 reference
 "RFC 6991: Common YANG Data Types";
 }

 revision 2010-09-24 {
 description
 "Initial revision.";
 reference
 "RFC 6021: Common YANG Data Types";
 }

 /*** collection of types related to protocol fields ***/

 typedef ip-version {
 type enumeration {
 enum unknown {
 value "0";
 description
 "An unknown or unspecified version of the Internet
 revision "2013-07-15" {
 description
 "This revision adds the following new data types:
 - ip-address-no-zone
 - ipv4-address-no-zone
 - ipv6-address-no-zone";
 reference
 "RFC 6991: Common YANG Data Types";

 }

 revision "2010-09-24" {
 description "Initial revision.";
 reference
 "RFC 6021: Common YANG Data Types";

 }

 typedef ip-version {
 type enumeration {
 enum "unknown" {
 value 0;
 description
 "An unknown or unspecified version of the Internet
 protocol.";
 }
 enum "ipv4" {
 value 1;
 description
 "The IPv4 protocol as defined in RFC 791.";
 }
 enum "ipv6" {
 value 2;
 description
 "The IPv6 protocol as defined in RFC 2460.";
 }
 }
 enum ipv4 {
 value "1";
 description
 "The IPv4 protocol as defined in RFC 791.";
 }
 enum ipv6 {
 value "2";
 description
 "The IPv6 protocol as defined in RFC 8200.";
 }
 }
 description
 "This value represents the version of the IP protocol.
 description
 "This value represents the version of the IP protocol.

 In the value set and its semantics, this type is equivalent
 to the InetVersion textual convention of the SMIv2.";
 reference
 "RFC 791: Internet Protocol
 RFC 8200: Internet Protocol, Version 6 (IPv6) Specification
 RFC 4001: Textual Conventions for Internet Network Addresses";
 }

 typedef dscp {
 type uint8 {
 range "0..63";
 reference
 "RFC 791: Internet Protocol
 RFC 2460: Internet Protocol, Version 6 (IPv6) Specification
 RFC 4001: Textual Conventions for Internet Network Addresses";

 }
 description
 "The dscp type represents a Differentiated Services Code Point

 typedef dscp {
 type uint8 {
 range "0..63";
 }
 description
 "The dscp type represents a Differentiated Services Code Point
 that may be used for marking packets in a traffic stream.

 In the value set and its semantics, this type is equivalent
 to the Dscp textual convention of the SMIv2.";
 reference
 "RFC 3289: Management Information Base for the Differentiated
 Services Architecture
 RFC 2474: Definition of the Differentiated Services Field
 (DS Field) in the IPv4 and IPv6 Headers
 RFC 2780: IANA Allocation Guidelines For Values In
 the Internet Protocol and Related Headers";
 }

 typedef ipv6-flow-label {
 type uint32 {
 range "0..1048575";
 reference
 "RFC 3289: Management Information Base for the Differentiated
 	 Services Architecture
 RFC 2474: Definition of the Differentiated Services Field
 	 (DS Field) in the IPv4 and IPv6 Headers
 RFC 2780: IANA Allocation Guidelines For Values In
 	 the Internet Protocol and Related Headers";

 }
 description
 "The ipv6-flow-label type represents the flow identifier or
 Flow Label in an IPv6 packet header that may be used to

 typedef ipv6-flow-label {
 type uint32 {
 range "0..1048575";
 }
 description
 "The ipv6-flow-label type represents the flow identifier or Flow
 Label in an IPv6 packet header that may be used to
 discriminate traffic flows.

 In the value set and its semantics, this type is equivalent
 to the IPv6FlowLabel textual convention of the SMIv2.";
 reference
 "RFC 3595: Textual Conventions for IPv6 Flow Label
 RFC 8200: Internet Protocol, Version 6 (IPv6) Specification";
 }

 typedef port-number {
 type uint16 {
 range "0..65535";
 reference
 "RFC 3595: Textual Conventions for IPv6 Flow Label
 RFC 2460: Internet Protocol, Version 6 (IPv6) Specification";

 }
 description
 "The port-number type represents a 16-bit port number of an

 typedef port-number {
 type uint16 {
 range "0..65535";
 }
 description
 "The port-number type represents a 16-bit port number of an
 Internet transport-layer protocol such as UDP, TCP, DCCP, or
 SCTP.

 Port numbers are assigned by IANA. The current list of
 all assignments is available from <https://www.iana.org/>.
 SCTP. Port numbers are assigned by IANA. A current list of
 all assignments is available from <http://www.iana.org/>.

 Note that the port number value zero is reserved by IANA. In
 situations where the value zero does not make sense, it can
 be excluded by subtyping the port-number type.

 In the value set and its semantics, this type is equivalent
 to the InetPortNumber textual convention of the SMIv2.";
 reference
 "RFC 768: User Datagram Protocol
 RFC 9293: Transmission Control Protocol (TCP)
 RFC 9260: Stream Control Transmission Protocol
 RFC 4340: Datagram Congestion Control Protocol (DCCP)
 RFC 4001: Textual Conventions for Internet Network Addresses";
 }

 typedef protocol-number {
 type uint8;
 description
 "The protocol-number type represents an 8-bit Internet
 protocol number, carried in the 'protocol' field of the
 IPv4 header or in the 'next header' field of the IPv6
 header. If IPv6 extension headers are present, then the
 protocol number type represents the upper layer protocol
 number, i.e., the number of the last next header' field
 of the IPv6 extension headers.

 Protocol numbers are assigned by IANA. The current list of
 all assignments is available from <https://www.iana.org/>.";
 reference
 "RFC 791: Internet Protocol
 RFC 8200: Internet Protocol, Version 6 (IPv6) Specification";
 }

 /*** collection of types related to autonomous systems ***/

 typedef as-number {
 type uint32;
 description
 "The as-number type represents autonomous system numbers
 reference
 "RFC 768: User Datagram Protocol
 RFC 793: Transmission Control Protocol
 RFC 4960: Stream Control Transmission Protocol
 RFC 4340: Datagram Congestion Control Protocol (DCCP)
 RFC 4001: Textual Conventions for Internet Network Addresses";

 }

 typedef as-number {
 type uint32;
 description
 "The as-number type represents autonomous system numbers
 which identify an Autonomous System (AS). An AS is a set
 of routers under a single technical administration, using
 an interior gateway protocol and common metrics to route
 packets within the AS, and using an exterior gateway
 protocol to route packets to other ASes. IANA maintains
 the AS number space and has delegated large parts to the
 regional registries.

 Autonomous system numbers were originally limited to 16
 bits. BGP extensions have enlarged the autonomous system
 number space to 32 bits. This type therefore uses an uint32
 base type without a range restriction in order to support
 a larger autonomous system number space.

 In the value set and its semantics, this type is equivalent
 to the InetAutonomousSystemNumber textual convention of
 the SMIv2.";
 reference
 "RFC 1930: Guidelines for creation, selection, and registration
 of an Autonomous System (AS)
 RFC 4271: A Border Gateway Protocol 4 (BGP-4)
 RFC 4001: Textual Conventions for Internet Network Addresses
 RFC 6793: BGP Support for Four-Octet Autonomous System (AS)
 Number Space";
 }

 /*** collection of types related to IP addresses and hostnames ***/

 typedef ip-address {
 type union {
 type inet:ipv4-address;
 type inet:ipv6-address;
 reference
 "RFC 1930: Guidelines for creation, selection, and registration
 	 of an Autonomous System (AS)
 RFC 4271: A Border Gateway Protocol 4 (BGP-4)
 RFC 4001: Textual Conventions for Internet Network Addresses
 RFC 6793: BGP Support for Four-Octet Autonomous System (AS)
 	 Number Space";

 }
 description
 "The ip-address type represents an IP address and is IP

 typedef ip-address {
 type union {
 type ipv4-address;
 type ipv6-address;
 }
 description
 "The ip-address type represents an IP address and is IP
 version neutral. The format of the textual representation
 implies the IP version. This type supports scoped addresses
 by allowing zone identifiers in the address format.";
 reference
 "RFC 4007: IPv6 Scoped Address Architecture";
 }

 typedef ipv4-address {
 type string {
 pattern
 '(([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])\.){3}'
 + '([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])'
 + '(%[A-Za-z0-9][A-Za-z0-9\-\._~/]*)?';
 reference
 "RFC 4007: IPv6 Scoped Address Architecture";

 }
 description
 "The ipv4-address type represents an IPv4 address in

 typedef ipv4-address {
 type string {
 pattern
 '(([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])\.){3}'
 + '([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])'
 + '(%[\p{N}\p{L}]+)?';
 }
 description
 "The ipv4-address type represents an IPv4 address in
 dotted-quad notation. The IPv4 address may include a zone
 index, separated by a % sign.

 The zone index is used to disambiguate identical address
 values. For link-local addresses, the zone index will
 typically be the interface index number or the name of an
 interface. If the zone index is not present, the default
 zone of the device will be used.

 The canonical format for the zone index is the numerical
 format";
 }
 }

 typedef ipv6-address {
 type string {
 pattern '((:|[0-9a-fA-F]{0,4}):)([0-9a-fA-F]{0,4}:){0,5}'
 typedef ipv6-address {
 type string {
 pattern
 '((:|[0-9a-fA-F]{0,4}):)([0-9a-fA-F]{0,4}:){0,5}'
 + '((([0-9a-fA-F]{0,4}:)?(:|[0-9a-fA-F]{0,4}))|'
 + '(((25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])\.){3}'
 + '(25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])))'
 + '(%[A-Za-z0-9][A-Za-z0-9\-\._~/]*)?';
 pattern '(([^:]+:){6}(([^:]+:[^:]+)|(.*\..*)))|'
 + '(%[\p{N}\p{L}]+)?';
 pattern
 '(([^:]+:){6}(([^:]+:[^:]+)|(.*\..*)))|'
 + '((([^:]+:)*[^:]+)?::(([^:]+:)*[^:]+)?)'
 + '(%.+)?';
 }
 description
 "The ipv6-address type represents an IPv6 address in full,
 }
 description
 "The ipv6-address type represents an IPv6 address in full,
 mixed, shortened, and shortened-mixed notation. The IPv6
 address may include a zone index, separated by a % sign.

 The zone index is used to disambiguate identical address
 values. For link-local addresses, the zone index will
 typically be the interface index number or the name of an
 interface. If the zone index is not present, the default
 zone of the device will be used.

 The canonical format of IPv6 addresses uses the textual
 representation defined in Section 4 of RFC 5952. The
 canonical format for the zone index is the numerical
 format as described in Section 11.2 of RFC 4007.";
 reference
 "RFC 4291: IP Version 6 Addressing Architecture
 RFC 4007: IPv6 Scoped Address Architecture
 RFC 5952: A Recommendation for IPv6 Address Text
 Representation";
 }

 typedef ip-address-no-zone {
 type union {
 type inet:ipv4-address-no-zone;
 type inet:ipv6-address-no-zone;
 reference
 "RFC 4291: IP Version 6 Addressing Architecture
 RFC 4007: IPv6 Scoped Address Architecture
 RFC 5952: A Recommendation for IPv6 Address Text
 	 Representation";

 }
 description
 "The ip-address-no-zone type represents an IP address and is

 typedef ip-address-no-zone {
 type union {
 type ipv4-address-no-zone;
 type ipv6-address-no-zone;
 }
 description
 "The ip-address-no-zone type represents an IP address and is
 IP version neutral. The format of the textual representation
 implies the IP version. This type does not support scoped
 addresses since it does not allow zone identifiers in the
 address format.";
 reference
 "RFC 4007: IPv6 Scoped Address Architecture";
 }
 reference
 "RFC 4007: IPv6 Scoped Address Architecture";

 typedef ipv4-address-no-zone {
 type inet:ipv4-address {
 pattern '[0-9\.]*';
 }
 description
 "An IPv4 address without a zone index. This type, derived from
 ipv4-address, may be used in situations where the zone is known
 from the context and hence no zone index is needed.";
 }

 typedef ipv6-address-no-zone {
 type inet:ipv6-address {
 pattern '[0-9a-fA-F:\.]*';

 typedef ipv4-address-no-zone {
 type ipv4-address {
 pattern '[0-9\.]*';
 }
 description
 "An IPv4 address without a zone index. This type, derived from
 ipv4-address, may be used in situations where the zone is
 known from the context and hence no zone index is needed.";
 }
 description
 "An IPv6 address without a zone index. This type, derived from
 ipv6-address, may be used in situations where the zone is known
 from the context and hence no zone index is needed.";
 reference
 "RFC 4291: IP Version 6 Addressing Architecture
 RFC 4007: IPv6 Scoped Address Architecture
 RFC 5952: A Recommendation for IPv6 Address Text
 Representation";
 }

 typedef ip-address-link-local {
 type union {
 type inet:ipv4-address-link-local;
 type inet:ipv6-address-link-local;

 typedef ipv6-address-no-zone {
 type ipv6-address {
 pattern '[0-9a-fA-F:\.]*';
 }
 description
 "An IPv6 address without a zone index. This type, derived from
 ipv6-address, may be used in situations where the zone is
 known from the context and hence no zone index is needed.";
 reference
 "RFC 4291: IP Version 6 Addressing Architecture
 RFC 4007: IPv6 Scoped Address Architecture
 RFC 5952: A Recommendation for IPv6 Address Text
 	 Representation";

 }
 description
 "The ip-address-link-local type represents a link-local IP
 address and is IP version neutral. The format of the textual
 representation implies the IP version.";
 }

 typedef ipv4-address-link-local {
 type ipv4-address {
 pattern '169\.254\..*';
 }
 description
 "A link-local IPv4 address in the prefix 169.254.0.0/16 as
 defined in section 2.1. of RFC 3927.";
 reference
 "RFC 3927: Dynamic Configuration of IPv4 Link-Local Addresses";
 }

 typedef ipv6-address-link-local {
 type ipv6-address {
 pattern '[fF][eE]80:.*';
 }
 description
 "A link-local IPv6 address in the prefix fe80::/10 as defined
 in section 2.5.6. of RFC 4291.";
 reference
 "RFC 4291: IP Version 6 Addressing Architecture";
 }

 typedef ip-prefix {
 type union {
 type inet:ipv4-prefix;
 type inet:ipv6-prefix;
 }
 description
 "The ip-prefix type represents an IP prefix and is IP

 typedef ip-prefix {
 type union {
 type ipv4-prefix;
 type ipv6-prefix;
 }
 description
 "The ip-prefix type represents an IP prefix and is IP
 version neutral. The format of the textual representations
 implies the IP version.";
 }

 typedef ipv4-prefix {
 type string {
 pattern
 '(([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])\.){3}'
 + '([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])'
 + '/(([0-9])|([1-2][0-9])|(3[0-2]))';
 }
 description
 "The ipv4-prefix type represents an IPv4 prefix.

 typedef ipv4-prefix {
 type string {
 pattern
 '(([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])\.){3}'
 + '([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])'
 + '/(([0-9])|([1-2][0-9])|(3[0-2]))';
 }
 description
 "The ipv4-prefix type represents an IPv4 address prefix.
 The prefix length is given by the number following the
 slash character and must be less than or equal to 32.

 A prefix length value of n corresponds to an IP address
 mask that has n contiguous 1-bits from the most
 significant bit (MSB) and all other bits set to 0.

 The canonical format of an IPv4 prefix has all bits of
 the IPv4 address set to zero that are not part of the
 IPv4 prefix.

 The definition of ipv4-prefix does not require that bits,
 which are not part of the prefix, are set to zero. However,
 implementations have to return values in canonical format,
 which requires non-prefix bits to be set to zero. This means
 that 192.0.2.1/24 must be accepted as a valid value but it
 will be converted into the canonical format 192.0.2.0/24.";
 }

 typedef ipv6-prefix {
 type string {
 pattern '((:|[0-9a-fA-F]{0,4}):)([0-9a-fA-F]{0,4}:){0,5}'
 IPv4 prefix.";
 }

 typedef ipv6-prefix {
 type string {
 pattern
 '((:|[0-9a-fA-F]{0,4}):)([0-9a-fA-F]{0,4}:){0,5}'
 + '((([0-9a-fA-F]{0,4}:)?(:|[0-9a-fA-F]{0,4}))|'
 + '(((25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])\.){3}'
 + '(25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])))'
 + '(/(([0-9])|([0-9]{2})|(1[0-1][0-9])|(12[0-8])))';
 pattern '(([^:]+:){6}(([^:]+:[^:]+)|(.*\..*)))|'
 pattern
 '(([^:]+:){6}(([^:]+:[^:]+)|(.*\..*)))|'
 + '((([^:]+:)*[^:]+)?::(([^:]+:)*[^:]+)?)'
 + '(/.+)';
 }
 description
 "The ipv6-prefix type represents an IPv6 prefix.
 }
 description
 "The ipv6-prefix type represents an IPv6 address prefix.
 The prefix length is given by the number following the
 slash character and must be less than or equal to 128.

 A prefix length value of n corresponds to an IP address
 mask that has n contiguous 1-bits from the most
 significant bit (MSB) and all other bits set to 0.

 The IPv6 address should have all bits that do not belong
 to the prefix set to zero.

 The canonical format of an IPv6 prefix has all bits of
 the IPv6 address set to zero that are not part of the
 IPv6 prefix. Furthermore, the IPv6 address is represented
 as defined in Section 4 of RFC 5952.

 The definition of ipv6-prefix does not require that bits,
 which are not part of the prefix, are set to zero. However,
 implementations have to return values in canonical format,
 which requires non-prefix bits to be set to zero. This means
 that 2001:db8::1/64 must be accepted as a valid value but it
 will be converted into the canonical format 2001:db8::/64.";
 reference
 "RFC 5952: A Recommendation for IPv6 Address Text
 Representation";
 }

 typedef ip-address-and-prefix {
 type union {
 type inet:ipv4-address-and-prefix;
 type inet:ipv6-address-and-prefix;
 }
 description
 "The ip-address-and-prefix type represents an IP address and
 prefix and is IP version neutral. The format of the textual
 representations implies the IP version.";
 }

 typedef ipv4-address-and-prefix {
 type string {
 pattern
 '(([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])\.){3}'
 + '([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])'
 + '/(([0-9])|([1-2][0-9])|(3[0-2]))';
 }
 description
 "The ipv4-address-and-prefix type represents an IPv4
 address and an associated ipv4 prefix.
 The prefix length is given by the number following the
 slash character and must be less than or equal to 32.
 as defined in Section 4 of RFC 5952.";
 reference
 "RFC 5952: A Recommendation for IPv6 Address Text
 	 Representation";

 A prefix length value of n corresponds to an IP address
 mask that has n contiguous 1-bits from the most
 significant bit (MSB) and all other bits set to 0.";
 }

 typedef ipv6-address-and-prefix {
 type string {
 pattern '((:|[0-9a-fA-F]{0,4}):)([0-9a-fA-F]{0,4}:){0,5}'
 + '((([0-9a-fA-F]{0,4}:)?(:|[0-9a-fA-F]{0,4}))|'
 + '(((25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])\.){3}'
 + '(25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])))'
 + '(/(([0-9])|([0-9]{2})|(1[0-1][0-9])|(12[0-8])))';
 pattern '(([^:]+:){6}(([^:]+:[^:]+)|(.*\..*)))|'
 + '((([^:]+:)*[^:]+)?::(([^:]+:)*[^:]+)?)'
 + '(/.+)';
 }
 description
 "The ipv6-address-and-prefix type represents an IPv6
 address and an associated ipv4 prefix.
 The prefix length is given by the number following the
 slash character and must be less than or equal to 128.

 A prefix length value of n corresponds to an IP address
 mask that has n contiguous 1-bits from the most
 significant bit (MSB) and all other bits set to 0.

 The canonical format requires that the IPv6 address is
 represented as defined in Section 4 of RFC 5952.";
 reference
 "RFC 5952: A Recommendation for IPv6 Address Text
 Representation";
 }

 /*** collection of domain name and URI types ***/

 typedef domain-name {
 type string {
 length "1..253";
 pattern
 '((([a-zA-Z0-9_]([a-zA-Z0-9\-_]){0,61})?[a-zA-Z0-9]\.)*'
 + '([a-zA-Z0-9_]([a-zA-Z0-9\-_]){0,61})?[a-zA-Z0-9]\.?)'
 + '|\.';
 }
 description
 "The domain-name type represents a DNS domain name. The
 name SHOULD be fully qualified whenever possible. This
 type does not support wildcards (see RFC 4592) or
 classless in-addr.arpa delegations (see RFC 2317).
 typedef domain-name {
 type string {
 length "1..253";
 pattern
 '((([a-zA-Z0-9_]([a-zA-Z0-9\-_]){0,61})?[a-zA-Z0-9]\.)*'
 + '([a-zA-Z0-9_]([a-zA-Z0-9\-_]){0,61})?[a-zA-Z0-9]\.?)'
 + '|\.';
 }
 description
 "The domain-name type represents a DNS domain name. The
 name SHOULD be fully qualified whenever possible.

 Internet domain names are only loosely specified. Section
 3.5 of RFC 1034 recommends a syntax (modified in Section
 2.1 of RFC 1123). The pattern above is intended to allow
 for current practice in domain name use, and some possible
 future expansion. Note that Internet host names have a
 stricter syntax (described in RFC 952) than the DNS
 recommendations in RFCs 1034 and 1123. Schema nodes
 representing host names should use the host-name type
 instead of the domain-type.
 future expansion. It is designed to hold various types of
 domain names, including names used for A or AAAA records
 (host names) and other records, such as SRV records. Note
 that Internet host names have a stricter syntax (described
 in RFC 952) than the DNS recommendations in RFCs 1034 and
 1123, and that systems that want to store host names in
 schema nodes using the domain-name type are recommended to
 adhere to this stricter standard to ensure interoperability.

 The encoding of DNS names in the DNS protocol is limited
 to 255 characters. Since the encoding consists of labels
 prefixed by a length bytes and there is a trailing NULL
 byte, only 253 characters can appear in the textual dotted
 notation.

 The description clause of schema nodes using the domain-name
 type MUST describe when and how these names are resolved to
 IP addresses. Note that the resolution of a domain-name value
 may require to query multiple DNS records (e.g., A for IPv4
 and AAAA for IPv6). The order of the resolution process and
 which DNS record takes precedence can either be defined
 explicitly or may depend on the configuration of the
 resolver.

 Domain-name values use the US-ASCII encoding. Their canonical
 format uses lowercase US-ASCII characters. Internationalized
 domain names MUST be A-labels as per RFC 5890.";
 reference
 "RFC 952: DoD Internet Host Table Specification
 RFC 1034: Domain Names - Concepts and Facilities
 RFC 1123: Requirements for Internet Hosts -- Application
 and Support
 RFC 2317: Classless IN-ADDR.ARPA delegation
 RFC 2782: A DNS RR for specifying the location of services
 (DNS SRV)
 RFC 4592: The Role of Wildcards in the Domain Name System
 RFC 5890: Internationalized Domain Names in Applications
 (IDNA): Definitions and Document Framework";
 }

 typedef host-name {
 type domain-name {
 length "2..max";
 pattern '[a-zA-Z0-9\-\.]+';
 reference
 "RFC 952: DoD Internet Host Table Specification
 RFC 1034: Domain Names - Concepts and Facilities
 RFC 1123: Requirements for Internet Hosts -- Application
 	 and Support
 RFC 2782: A DNS RR for specifying the location of services
 	 (DNS SRV)
 RFC 5890: Internationalized Domain Names in Applications
 	 (IDNA): Definitions and Document Framework";

 }
 description
 "The host-name type represents (fully qualified) host names.
 Host names must be at least two characters long (see RFC 952)
 and they are restricted to labels consisting of letters, digits
 and hyphens separated by dots (see RFC1123 and RFC 952).";
 reference
 "RFC 952: DoD Internet Host Table Specification
 RFC 1123: Requirements for Internet Hosts -- Application
 and Support";
 }

 typedef host {
 type union {
 type inet:ip-address;
 type inet:host-name;

 typedef host {
 type union {
 type ip-address;
 type domain-name;
 }
 description
 "The host type represents either an IP address or a DNS
 domain name.";
 }
 description
 "The host type represents either an IP address or a (fully
 qualified) host name.";
 }

 typedef uri {
 type string {
 pattern '[a-z][a-z0-9+.-]*:.*';
 }
 description
 "The uri type represents a Uniform Resource Identifier
 (URI) as defined by the rule 'URI' in RFC 3986.
 typedef uri {
 type string;
 description
 "The uri type represents a Uniform Resource Identifier
 (URI) as defined by STD 66.

 Objects using the uri type MUST be in US-ASCII encoding,
 and MUST be normalized as described by RFC 3986 Sections
 6.2.1, 6.2.2.1, and 6.2.2.2. All unnecessary
 percent-encoding is removed, and all case-insensitive
 characters are set to lowercase except for hexadecimal
 digits, which are normalized to uppercase as described in
 Section 6.2.2.1.

 The purpose of this normalization is to help provide
 unique URIs. Note that this normalization is not
 sufficient to provide uniqueness. Two URIs that are
 textually distinct after this normalization may still be
 equivalent.

 Objects using the uri type may restrict the schemes that
 they permit. For example, 'data:' and 'urn:' schemes
 might not be appropriate.

 A zero-length URI is not a valid URI. This can be used to
 express 'URI absent' where required.

 In the value set and its semantics, this type is equivalent
 to the Uri SMIv2 textual convention defined in RFC 5017.";
 reference
 "RFC 3986: Uniform Resource Identifier (URI): Generic Syntax
 RFC 3305: Report from the Joint W3C/IETF URI Planning Interest
 Group: Uniform Resource Identifiers (URIs), URLs,
 and Uniform Resource Names (URNs): Clarifications
 and Recommendations
 RFC 5017: MIB Textual Conventions for Uniform Resource
 Identifiers (URIs)";
 }

 typedef email-address {
 type string {
 pattern '(([a-zA-Z0-9!#$%&'+"'"+'*+/=?\^_`{|}~-]+'
 + '(\.[a-zA-Z0-9!#$%&'+"'"+'*+/=?\^_`{|}~-]+)*)|'
 + '("[a-zA-Z0-9!#$%&'+"'"+'()*+,./\[\]\^_`{|}~-]*"))'
 + '@'
 + '(([a-zA-Z0-9!#$%&'+"'"+'*+/=?\^_`{|}~-]+'
 + '(\.[a-zA-Z0-9!#$%&'+"'"+'*+/=?\^_`{|}~-]+)*)|'
 + '\[[a-zA-Z0-9!"#$%&'+"'"+'()*+,./:;<=>?@\^_`{|}~-]+\])';
 reference
 "RFC 3986: Uniform Resource Identifier (URI): Generic Syntax
 RFC 3305: Report from the Joint W3C/IETF URI Planning Interest
 	 Group: Uniform Resource Identifiers (URIs), URLs,
 	 and Uniform Resource Names (URNs): Clarifications
 	 and Recommendations
 RFC 5017: MIB Textual Conventions for Uniform Resource
 	 Identifiers (URIs)";

 }
 description
 "The email-address type represents an email address as
 defined as addr-spec in RFC 5322 section 3.4.1 except
 that obs-local-part, obs-domain and obs-qtext of the
 quoted-string are not supported.

 The email-address type uses US-ASCII characters. The
 canonical format of the domain part of an email-address
 uses lowercase US-ASCII characters.";
 reference
 "RFC 5322: Internet Message Format";
 }

}
 } // module ietf-inet-types
<CODE ENDS>
*** END OF CHANGE 6 ***
*** START OF CHANGE 7 ***
*** yang-models/external-yams/ietf-yang-types.yangyang-models/external-yams/ietf-yang-types@2013-07-15.yang ***
<CODE BEGINS>
module ietf-yang-types {

 namespace "urn:ietf:params:xml:ns:yang:ietf-yang-types";
 prefix "yang";

 organization
 "IETF Network Modeling (NETMOD) Working Group";
 "IETF NETMOD (NETCONF Data Modeling Language) Working Group";

 contact
 "WG Web: <https://datatracker.ietf.org/wg/netmod/>
 "WG Web: <http://tools.ietf.org/wg/netmod/>
 WG List: <mailto:netmod@ietf.org>

 WG Chair: David Kessens
 <mailto:david.kessens@nsn.com>

 WG Chair: Juergen Schoenwaelder
 <mailto:j.schoenwaelder@jacobs-university.de>

 Editor: Juergen Schoenwaelder
 <mailto:jschoenwaelder@constructor.university>";
 <mailto:j.schoenwaelder@jacobs-university.de>";

 description
 "This module contains a collection of generally useful derived
 YANG data types.

 The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', 'SHALL
 NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED', 'NOT RECOMMENDED',
 'MAY', and 'OPTIONAL' in this document are to be interpreted as
 described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,
 they appear in all capitals, as shown here.

 Copyright (c) 2022 IETF Trust and the persons identified as
 Copyright (c) 2013 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Revised BSD License
 to the license terms contained in, the Simplified BSD License
 set forth in Section 4.c of the IETF Trust's Legal Provisions
 Relating to IETF Documents
 (https://trustee.ietf.org/license-info).
 (http://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX;
 see the RFC itself for full legal notices.";

 revision 2023-01-23 {
 description
 "This revision adds the following new data types:
 - yang:date-with-zone-offset
 - yang:date-no-zone
 - yang:time-with-zone-offset
 - yang:time-no-zone
 - yang:hours32
 - yang:minutes32
 - yang:seconds32
 - yang:centiseconds32
 - yang:milliseconds32
 - yang:microseconds32
 - yang:microseconds64
 - yang:nanoseconds32
 - yang:nanoseconds64
 - yang:language-tag
 The yang-identifier definition has been aligned with YANG 1.1.
 Several pattern statements have been improved.";
 reference
 "RFC XXXX: Common YANG Data Types";
 }
 This version of this YANG module is part of RFC 6991; see
 the RFC itself for full legal notices.";

 revision 2013-07-15 {
 description
 "This revision adds the following new data types:
 - yang:yang-identifier
 - yang:hex-string
 - yang:uuid
 - yang:dotted-quad";
 - yang-identifier
 - hex-string
 - uuid
 - dotted-quad";
 reference
 "RFC 6991: Common YANG Data Types";
 }

 revision 2010-09-24 {
 description
 "Initial revision.";
 reference
 "RFC 6021: Common YANG Data Types";
 }

 /*** collection of counter and gauge types ***/

 typedef counter32 {
 type uint32;
 description
 "The counter32 type represents a non-negative integer
 that monotonically increases until it reaches a
 maximum value of 2^32-1 (4294967295 decimal), when it
 wraps around and starts increasing again from zero.

 Counters have no defined 'initial' value, and thus, a
 single value of a counter has (in general) no information
 content. Discontinuities in the monotonically increasing
 value normally occur at re-initialization of the
 management system, and at other times as specified in the
 description of a schema node using this type. If such
 other times can occur, for example, the instantiation of
 other times can occur, for example, the creation of
 a schema node of type counter32 at times other than
 re-initialization, then a corresponding schema node
 should be defined, with an appropriate type, to indicate
 the last discontinuity.

 The counter32 type should not be used for configuration
 schema nodes. A default statement SHOULD NOT be used in
 combination with the type counter32.

 In the value set and its semantics, this type is equivalent
 to the Counter32 type of the SMIv2.";
 reference
 "RFC 2578: Structure of Management Information Version 2
 (SMIv2)";
 }

 typedef zero-based-counter32 {
 type yang:counter32;
 default "0";
 description
 "The zero-based-counter32 type represents a counter32
 that has the defined 'initial' value zero.
 A schema node instance of this type will be set to zero (0)
 on creation and will thereafter increase monotonically until
 it reaches a maximum value of 2^32-1 (4294967295 decimal),
 when it wraps around and starts increasing again from zero.

 A schema node of this type will be set to zero (0) on creation
 and will thereafter increase monotonically until it reaches
 a maximum value of 2^32-1 (4294967295 decimal), when it
 wraps around and starts increasing again from zero.

 Provided that an application discovers a new schema node
 instance of this type within the minimum time to wrap, it
 can use the 'initial' value as a delta. It is important for
 a management station to be aware of this minimum time and the
 actual time between polls, and to discard data if the actual
 time is too long or there is no defined minimum time.
 of this type within the minimum time to wrap, it can use the
 'initial' value as a delta. It is important for a management
 station to be aware of this minimum time and the actual time
 between polls, and to discard data if the actual time is too
 long or there is no defined minimum time.

 In the value set and its semantics, this type is equivalent
 to the ZeroBasedCounter32 textual convention of the SMIv2.";
 reference
 "RFC 4502: Remote Network Monitoring Management Information
 Base Version 2";
 }

 typedef counter64 {
 type uint64;
 description
 "The counter64 type represents a non-negative integer
 that monotonically increases until it reaches a
 maximum value of 2^64-1 (18446744073709551615 decimal),
 when it wraps around and starts increasing again from zero.

 Counters have no defined 'initial' value, and thus, a
 single value of a counter has (in general) no information
 content. Discontinuities in the monotonically increasing
 value normally occur at re-initialization of the
 management system, and at other times as specified in the
 description of a schema node using this type. If such
 other times can occur, for example, the instantiation of
 other times can occur, for example, the creation of
 a schema node of type counter64 at times other than
 re-initialization, then a corresponding schema node
 should be defined, with an appropriate type, to indicate
 the last discontinuity.

 The counter64 type should not be used for configuration
 schema nodes. A default statement SHOULD NOT be used in
 combination with the type counter64.

 In the value set and its semantics, this type is equivalent
 to the Counter64 type of the SMIv2.";
 reference
 "RFC 2578: Structure of Management Information Version 2
 (SMIv2)";
 }

 typedef zero-based-counter64 {
 type yang:counter64;
 default "0";
 description
 "The zero-based-counter64 type represents a counter64 that
 has the defined 'initial' value zero.

 A schema node instance of this type will be set to zero (0)
 on creation and will thereafter increase monotonically until
 it reaches a maximum value of 2^64-1 (18446744073709551615
 decimal), when it wraps around and starts increasing again
 from zero.

 A schema node of this type will be set to zero (0) on creation
 and will thereafter increase monotonically until it reaches
 a maximum value of 2^64-1 (18446744073709551615 decimal),
 when it wraps around and starts increasing again from zero.

 Provided that an application discovers a new schema node
 instance of this type within the minimum time to wrap, it
 can use the 'initial' value as a delta. It is important for
 a management station to be aware of this minimum time and the
 actual time between polls, and to discard data if the actual
 time is too long or there is no defined minimum time.
 of this type within the minimum time to wrap, it can use the
 'initial' value as a delta. It is important for a management
 station to be aware of this minimum time and the actual time
 between polls, and to discard data if the actual time is too
 long or there is no defined minimum time.

 In the value set and its semantics, this type is equivalent
 to the ZeroBasedCounter64 textual convention of the SMIv2.";
 reference
 "RFC 2856: Textual Conventions for Additional High Capacity
 Data Types";
 }

 typedef gauge32 {
 type uint32;
 description
 "The gauge32 type represents a non-negative integer, which
 may increase or decrease, but shall never exceed a maximum
 value, nor fall below a minimum value. The maximum value
 cannot be greater than 2^32-1 (4294967295 decimal), and
 the minimum value cannot be smaller than 0. The value of
 a gauge32 has its maximum value whenever the information
 being modeled is greater than or equal to its maximum
 value, and has its minimum value whenever the information
 being modeled is smaller than or equal to its minimum value.
 If the information being modeled subsequently decreases
 below (increases above) the maximum (minimum) value, the
 gauge32 also decreases (increases).

 In the value set and its semantics, this type is equivalent
 to the Gauge32 type of the SMIv2.";
 reference
 "RFC 2578: Structure of Management Information Version 2
 (SMIv2)";
 }

 typedef gauge64 {
 type uint64;
 description
 "The gauge64 type represents a non-negative integer, which
 may increase or decrease, but shall never exceed a maximum
 value, nor fall below a minimum value. The maximum value
 cannot be greater than 2^64-1 (18446744073709551615), and
 the minimum value cannot be smaller than 0. The value of
 a gauge64 has its maximum value whenever the information
 being modeled is greater than or equal to its maximum
 value, and has its minimum value whenever the information
 being modeled is smaller than or equal to its minimum value.
 If the information being modeled subsequently decreases
 below (increases above) the maximum (minimum) value, the
 gauge64 also decreases (increases).

 In the value set and its semantics, this type is equivalent
 to the CounterBasedGauge64 SMIv2 textual convention defined
 in RFC 2856";
 reference
 "RFC 2856: Textual Conventions for Additional High Capacity
 Data Types";
 }

 /*** collection of identifier-related types ***/

 typedef object-identifier {
 type string {
 pattern '(([0-1](\.[1-3]?[0-9]))|(2\.(0|([1-9][0-9]*))))'
 + '(\.(0|([1-9][0-9]*)))*';
 pattern '(([0-1](\.[1-3]?[0-9]))|(2\.(0|([1-9]\d*))))'
 + '(\.(0|([1-9]\d*)))*';
 }
 description
 "The object-identifier type represents administratively
 assigned names in a registration-hierarchical-name tree.

 Values of this type are denoted as a sequence of numerical
 non-negative sub-identifier values. Each sub-identifier
 value MUST NOT exceed 2^32-1 (4294967295). Sub-identifiers
 are separated by single dots and without any intermediate
 whitespace.

 The ASN.1 standard restricts the value space of the first
 sub-identifier to 0, 1, or 2. Furthermore, the value space
 of the second sub-identifier is restricted to the range
 0 to 39 if the first sub-identifier is 0 or 1. Finally,
 the ASN.1 standard requires that an object identifier
 has always at least two sub-identifiers. The pattern
 captures these restrictions.

 Although the number of sub-identifiers is not limited,
 module designers should realize that there may be
 implementations that stick with the SMIv2 limit of 128
 sub-identifiers.

 This type is a superset of the SMIv2 OBJECT IDENTIFIER type
 since it is not restricted to 128 sub-identifiers. Hence,
 this type SHOULD NOT be used to represent the SMIv2 OBJECT
 IDENTIFIER type; the object-identifier-128 type SHOULD be
 used instead.";
 reference
 "ISO9834-1: Information technology -- Open Systems
 Interconnection -- Procedures for the operation of OSI
 Registration Authorities: General procedures and top
 arcs of the ASN.1 Object Identifier tree";
 }

 typedef object-identifier-128 {
 type object-identifier {
 pattern '[0-9]*(\.[0-9]*){1,127}';
 pattern '\d*(\.\d*){1,127}';
 }
 description
 "This type represents object-identifiers restricted to 128
 sub-identifiers.

 In the value set and its semantics, this type is equivalent
 to the OBJECT IDENTIFIER type of the SMIv2.";
 reference
 "RFC 2578: Structure of Management Information Version 2
 (SMIv2)";
 }

 /*** collection of types related to date and time ***/
 typedef yang-identifier {
 type string {
 length "1..max";
 pattern '[a-zA-Z_][a-zA-Z0-9\-_.]*';
 pattern '.|..|[^xX].*|.[^mM].*|..[^lL].*';
 }
 description
 "A YANG identifier string as defined by the 'identifier'
 rule in Section 12 of RFC 6020. An identifier must
 start with an alphabetic character or an underscore
 followed by an arbitrary sequence of alphabetic or
 numeric characters, underscores, hyphens, or dots.

 A YANG identifier MUST NOT start with any possible
 combination of the lowercase or uppercase character
 sequence 'xml'.";
 reference
 "RFC 6020: YANG - A Data Modeling Language for the Network
 Configuration Protocol (NETCONF)";
 }

 /*** collection of types related to date and time***/

 typedef date-and-time {
 type string {
 pattern '[0-9]{4}-(1[0-2]|0[1-9])-(0[1-9]|[1-2][0-9]|3[0-1])'
 + 'T(0[0-9]|1[0-9]|2[0-3]):[0-5][0-9]:[0-5][0-9](\.[0-9]+)?'
 + '(Z|[\+\-]((1[0-3]|0[0-9]):([0-5][0-9])|14:00))?';
 pattern '\d{4}-\d{2}-\d{2}T\d{2}:\d{2}:\d{2}(\.\d+)?'
 + '(Z|[\+\-]\d{2}:\d{2})';
 }
 description
 "The date-and-time type is a profile of the ISO 8601
 standard for representation of dates and times using the
 Gregorian calendar. The profile is defined by the
 date-time production in Section 5.6 of RFC 3339.

 The date-and-time type is compatible with the dateTime XML
 schema dateTime type with the following notable exceptions:
 schema type with the following notable exceptions:

 (a) The date-and-time type does not allow negative years.

 (b) The time-offset -00:00 indicates that the date-and-time
 value is reported in UTC and that the local time zone
 reference point is unknown. The time-offsets +00:00 and Z
 both indicate that the date-and-time value is reported in
 UTC and that the local time reference point is UTC (see RFC
 3339 section 4.3).
 (b) The date-and-time time-offset -00:00 indicates an unknown
 time zone (see RFC 3339) while -00:00 and +00:00 and Z
 all represent the same time zone in dateTime.

 (c) The canonical format (see below) of data-and-time values
 differs from the canonical format used by the dateTime XML
 schema type, which requires all times to be in UTC using
 the time-offset 'Z'.

 This type is not equivalent to the DateAndTime textual
 convention of the SMIv2 since RFC 3339 uses a different
 separator between full-date and full-time and provides
 higher resolution of time-secfrac.

 The canonical format for date-and-time values with a known time
 zone uses a numeric time zone offset that is calculated using
 the device's configured known offset to UTC time. A change of
 the device's offset to UTC time will cause date-and-time values
 to change accordingly. Such changes might happen periodically
 in case a server follows automatically daylight saving time
 (DST) time zone offset changes. The canonical format for
 date-and-time values with an unknown time zone (usually
 referring to the notion of local time) uses the time-offset
 -00:00, i.e., date-and-time values must be reported in UTC.";
 -00:00.";
 reference
 "RFC 3339: Date and Time on the Internet: Timestamps
 RFC 2579: Textual Conventions for SMIv2
 XSD-TYPES: XML Schema Definition Language (XSD) 1.1
 Part 2: Datatypes";
 }

 typedef date-with-zone-offset {
 type string {
 pattern '[0-9]{4}-(1[0-2]|0[1-9])-(0[1-9]|[1-2][0-9]|3[0-1])'
 + '(Z|[\+\-]((1[0-3]|0[0-9]):([0-5][0-9])|14:00))?';
 }
 description
 "The date type represents a time-interval of the length
 of a day, i.e., 24 hours.

 The date type is compatible with the XML schema date
 type with the following notable exceptions:
 (a) The date type does not allow negative years.

 (b) The time-offset -00:00 indicates that the date value is
 reported in UTC and that the local time zone reference point
 is unknown. The time-offsets +00:00 and Z both indicate that
 the date value is reported in UTC and that the local time
 reference point is UTC (see RFC 3339 section 4.3).

 The canonical format for date values with a known time
 zone uses a numeric time zone offset that is calculated using
 the device's configured known offset to UTC time. A change of
 the device's offset to UTC time will cause date values
 to change accordingly. Such changes might happen periodically
 in case a server follows automatically daylight saving time
 (DST) time zone offset changes. The canonical format for
 date values with an unknown time zone (usually referring
 to the notion of local time) uses the time-offset -00:00,
 i.e., date values must be reported in UTC.";
 reference
 "RFC 3339: Date and Time on the Internet: Timestamps
 XSD-TYPES: XML Schema Definition Language (XSD) 1.1
 Part 2: Datatypes";
 }

 typedef date-no-zone {
 type date-with-zone-offset {
 pattern '[0-9]{4}-(1[0-2]|0[1-9])-(0[1-9]|[1-2][0-9]|3[0-1])';
 }
 description
 "The date-no-zone type represents a date without the optional
 time zone offset information.";
 }

 typedef time-with-zone-offset {
 type string {
 pattern '(0[0-9]|1[0-9]|2[0-3]):[0-5][0-9]:[0-5][0-9](\.[0-9]+)?'
 + '(Z|[\+\-]((1[0-3]|0[0-9]):([0-5][0-9])|14:00))?';
 }
 description
 "The time type represents an instance of time of zero-duration
 that recurs every day.

 The time type is compatible with the XML schema time
 type with the following notable exception:

 (a) The time-offset -00:00 indicates that the time value is
 reported in UTC and that the local time zone reference point
 is unknown. The time-offsets +00:00 and Z both indicate that
 the time value is reported in UTC and that the local time
 reference point is UTC (see RFC 3339 section 4.3).

 The canonical format for time values with a known time
 zone uses a numeric time zone offset that is calculated using
 the device's configured known offset to UTC time. A change of
 the device's offset to UTC time will cause time values
 to change accordingly. Such changes might happen periodically
 in case a server follows automatically daylight saving time
 (DST) time zone offset changes. The canonical format for
 time values with an unknown time zone (usually referring
 to the notion of local time) uses the time-offset -00:00,
 i.e., time values must be reported in UTC.";
 reference
 "RFC 3339: Date and Time on the Internet: Timestamps
 XSD-TYPES: XML Schema Definition Language (XSD) 1.1
 Part 2: Datatypes";
 }

 typedef time-no-zone {
 type time-with-zone-offset {
 pattern '(0[0-9]|1[0-9]|2[0-3]):[0-5][0-9]:[0-5][0-9](\.[0-9]+)?';
 }
 description
 "The time-no-zone type represents a time without the optional
 time zone offset information.";
 }

 typedef hours32 {
 type int32;
 units "hours";
 description
 "A period of time, measured in units of hours.

 The maximum time period that can be expressed is in the
 range [-89478485 days 08:00:00 to 89478485 days 07:00:00].

 This type should be range restricted in situations
 where only non-negative time periods are desirable,
 (i.e., range '0..max').";
 }

 typedef minutes32 {
 type int32;
 units "minutes";
 description
 "A period of time, measured in units of minutes.

 The maximum time period that can be expressed is in the
 range [-1491308 days 2:08:00 to 1491308 days 2:07:00].

 This type should be range restricted in situations
 where only non-negative time periods are desirable,
 (i.e., range '0..max').";
 }

 typedef seconds32 {
 type int32;
 units "seconds";
 description
 "A period of time, measured in units of seconds.

 The maximum time period that can be expressed is in the
 range [-24855 days 03:14:08 to 24855 days 03:14:07].

 This type should be range restricted in situations
 where only non-negative time periods are desirable,
 (i.e., range '0..max').";
 }

 typedef centiseconds32 {
 type int32;
 units "centiseconds";
 description
 "A period of time, measured in units of 10^-2 seconds.

 The maximum time period that can be expressed is in the
 range [-248 days 13:13:56 to 248 days 13:13:56].

 This type should be range restricted in situations
 where only non-negative time periods are desirable,
 (i.e., range '0..max').";
 }

 typedef milliseconds32 {
 type int32;
 units "milliseconds";
 description
 "A period of time, measured in units of 10^-3 seconds.

 The maximum time period that can be expressed is in the
 range [-24 days 20:31:23 to 24 days 20:31:23].

 This type should be range restricted in situations
 where only non-negative time periods are desirable,
 (i.e., range '0..max').";
 }

 typedef microseconds32 {
 type int32;
 units "microseconds";
 description
 "A period of time, measured in units of 10^-6 seconds.

 The maximum time period that can be expressed is in the
 range [-00:35:47 to 00:35:47].

 This type should be range restricted in situations
 where only non-negative time periods are desirable,
 (i.e., range '0..max').";
 }

 typedef microseconds64 {
 type int64;
 units "microseconds";
 description
 "A period of time, measured in units of 10^-6 seconds.

 The maximum time period that can be expressed is in the
 range [-106751991 days 04:00:54 to 106751991 days 04:00:54].

 This type should be range restricted in situations
 where only non-negative time periods are desirable,
 (i.e., range '0..max').";
 }

 typedef nanoseconds32 {
 type int32;
 units "nanoseconds";
 description
 "A period of time, measured in units of 10^-9 seconds.

 The maximum time period that can be expressed is in the
 range [-00:00:02 to 00:00:02].

 This type should be range restricted in situations
 where only non-negative time periods are desirable,
 (i.e., range '0..max').";
 }

 typedef nanoseconds64 {
 type int64;
 units "nanoseconds";
 description
 "A period of time, measured in units of 10^-9 seconds.

 The maximum time period that can be expressed is in the
 range [-106753 days 23:12:44 to 106752 days 0:47:16].

 This type should be range restricted in situations
 where only non-negative time periods are desirable,
 (i.e., range '0..max').";
 XSD-TYPES: XML Schema Part 2: Datatypes Second Edition";
 }

 typedef timeticks {
 type uint32;
 description
 "The timeticks type represents a non-negative integer that
 represents the time, modulo 2^32 (4294967296 decimal), in
 hundredths of a second between two epochs. When a schema
 node is defined that uses this type, the description of
 the schema node identifies both of the reference epochs.

 In the value set and its semantics, this type is equivalent
 to the TimeTicks type of the SMIv2.";
 reference
 "RFC 2578: Structure of Management Information Version 2
 (SMIv2)";
 }

 typedef timestamp {
 type yang:timeticks;
 description
 "The timestamp type represents the value of an associated
 timeticks schema node instance at which a specific occurrence
 timeticks schema node at which a specific occurrence
 happened. The specific occurrence must be defined in the
 description of any schema node defined using this type. When
 the specific occurrence occurred prior to the last time the
 associated timeticks schema node instance was zero, then the
 timestamp value is zero.

 Note that this requires all timestamp values to be reset to
 zero when the value of the associated timeticks schema node
 instance reaches 497+ days and wraps around to zero.
 associated timeticks attribute was zero, then the timestamp
 value is zero. Note that this requires all timestamp values
 to be reset to zero when the value of the associated timeticks
 attribute reaches 497+ days and wraps around to zero.

 The associated timeticks schema node must be specified
 in the description of any schema node using this type.

 In the value set and its semantics, this type is equivalent
 to the TimeStamp textual convention of the SMIv2.";
 reference
 "RFC 2579: Textual Conventions for SMIv2";
 }

 /*** collection of generic address types ***/

 typedef phys-address {
 type string {
 pattern '([0-9a-fA-F]{2}(:[0-9a-fA-F]{2})*)?';
 }

 description
 "Represents media- or physical-level addresses represented
 as a sequence octets, each octet represented by two hexadecimal
 numbers. Octets are separated by colons. The canonical
 representation uses lowercase characters.

 In the value set and its semantics, this type is equivalent
 to the PhysAddress textual convention of the SMIv2.";
 reference
 "RFC 2579: Textual Conventions for SMIv2";
 }

 typedef mac-address {
 type string {
 pattern '[0-9a-fA-F]{2}(:[0-9a-fA-F]{2}){5}';
 }
 description
 "The mac-address type represents an IEEE 802 MAC address.
 The canonical representation uses lowercase characters.

 In the value set and its semantics, this type is equivalent
 to the MacAddress textual convention of the SMIv2.";
 reference
 "IEEE 802: IEEE Standard for Local and Metropolitan Area
 Networks: Overview and Architecture
 RFC 2579: Textual Conventions for SMIv2";
 }

 /*** collection of XML-specific types ***/

 typedef xpath1.0 {
 type string;
 description
 "This type represents an XPATH 1.0 expression.

 When a schema node is defined that uses this type, the
 description of the schema node MUST specify the XPath
 context in which the XPath expression is evaluated.";
 reference
 "XPATH: XML Path Language (XPath) Version 1.0";
 }

 /*** collection of string types ***/

 typedef hex-string {
 type string {
 pattern '([0-9a-fA-F]{2}(:[0-9a-fA-F]{2})*)?';
 }
 description
 "A hexadecimal string with octets represented as hex digits
 separated by colons. The canonical representation uses
 lowercase characters.";
 }

 typedef uuid {
 type string {
 pattern '[0-9a-fA-F]{8}-[0-9a-fA-F]{4}-[0-9a-fA-F]{4}-'
 + '[0-9a-fA-F]{4}-[0-9a-fA-F]{12}';
 }
 description
 "A Universally Unique IDentifier in the string representation
 defined in RFC 4122. The canonical representation uses
 lowercase characters.

 The following is an example of a UUID in string representation:
 f81d4fae-7dec-11d0-a765-00a0c91e6bf6
 ";
 reference
 "RFC 4122: A Universally Unique IDentifier (UUID) URN
 Namespace";
 }

 typedef dotted-quad {
 type string {
 pattern
 '(([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])\.){3}'
 + '([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])';
 }
 description
 "An unsigned 32-bit number expressed in the dotted-quad
 notation, i.e., four octets written as decimal numbers
 and separated with the '.' (full stop) character.";
 }

 typedef language-tag {
 type string;
 description
 "A language tag according to RFC 5646 (BCP 47). The
 canonical representation uses lowercase characters.

 Values of this type must be well-formed language tags,
 in conformance with the definition of well-formed tags
 in BCP 47. Implementations MAY further limit the values
 they accept to those permitted by a 'validating'
 processor, as defined in BCP 47.

 The canonical representation of values of this type is
 aligned with the SMIv2 LangTag textual convention for
 language tags fitting the length constraints imposed
 by the LangTag textual convention.";
 reference
 "RFC 5646: Tags for Identifying Languages
 RFC 5131: A MIB Textual Convention for Language Tags";
 }

 /*** collection of YANG specific types ***/

 typedef yang-identifier {
 type string {
 length "1..max";
 pattern '[a-zA-Z_][a-zA-Z0-9\-_.]*';
 }
 description
 "A YANG identifier string as defined by the 'identifier'
 rule in Section 14 of RFC 7950. An identifier must
 start with an alphabetic character or an underscore
 followed by an arbitrary sequence of alphabetic or
 numeric characters, underscores, hyphens, or dots.

 This definition conforms to YANG 1.1 defined in RFC
 7950. An earlier version of this definition did exclude
 all identifiers starting with any possible combination
 of the lowercase or uppercase character sequence 'xml',
 as required by YANG 1 defined in RFC 6020. If this type
 is used in a YANG 1 context, then this restriction still
 applies.";
 reference
 "RFC 7950: The YANG 1.1 Data Modeling Language
 RFC 6020: YANG - A Data Modeling Language for the
 Network Configuration Protocol (NETCONF)";
 }

}
<CODE ENDS>
*** END OF CHANGE 7 ***
Page 1

