[bookmark: bmS4-0-e_(AH)_Video_SW--2023-10-10]3GPP TSG-SA WG4 Meeting #128	S4-241104
Korea, Jeju, 20 – 24 May 2024
	
	
Source:	InterDigital Belgium. LLC
Title:	[FS_AI4Media] multi-branch split on ONNX models
Agenda item:	9.6
Document for:	Agreement

1. Introduction
In this contribution, we provide information on how to split ONNX models when a split occurs on a single branch or on multiple branches.
2. Discussion
ONNX provides a function extract_model() enabling the extraction of a sub-model from an ONNX model https://onnx.ai/onnx/api/utils.html as shown below

[image: A screenshot of a computer

Description automatically generated]

This function is already used by scripts in 5G-MAG repository such as onnx.py (https://github.com/5G-MAG/rt-ai-ml-evaluation-framework/blob/development/scripts/objectdetection/ssd300/split_onnx.py) and split_retinanet.py (https://github.com/5G-MAG/rt-ai-ml-evaluation-framework/blob/main/scripts/objectdetection/split_retinanet.py)
Single branch (§2.1) or multi-branches split script (§2.1) making use of extract-model function are described below. Specific Issues regarding input tensors and output results applied to multi-branch split are presented in §2.3, when Part II needs model input tensor and, in §2.4, when Part I generates partial output result of the full outputs results.

2.1 Bottleneck/single branch split
For some models, or some parts of a model, a node is connected with only one input node and one output node. For example, it is the case for all nodes of the VGG16 model. BAn overview of the beginning of VGG16 opened with Netron is provided below.
[image: A screenshot of a computer

Description automatically generated]
[image: A diagram of a computer

Description automatically generated with medium confidence]
In order to cut just before the node 5, “vgg0_conv2_fwd”:
[image: A diagram of a computer code

Description automatically generated with medium confidence]
The intermediate data communicated between the two submodels will be the tensor “vgg0_pool0_fwd”.
To get the two submodels, you need to give the tensor name of the input and the tensor name of the output of each part to the extract_model function.
For the first part, the following needs to be provided
· input: [“data”] (model input)
· output: [“vgg0_pool0_fwd”] (split tensor name)

For the second part, the following needs to be provided
· input: [“vgg0_pool0_fwd”] (split tensor name)
· output: ['vgg0_dense2_fwd'] (model output)

For illustration purpose, below is the experimentation result with the script split_onnx_multi.py (that is using extract_model() function), for the model vgg16:
	[bookmark: _Int_Z34JFgcH]$ python ../split_onnx_multi.py -a /c/AI4Media/onnx_zoo/vgg16-12/vgg16-12.onnx -r 5
Load Onnx file ...
Onnx verification...
Model will be split at rank 5, node name vgg0_conv2_fwd (before)
[bookmark: _Int_V0M61baN][bookmark: _Int_Kpc5nvOj][bookmark: _Int_773mIRRi]k= 5 Model Part I: [0-4] input:data (['1', '3', '224', '224']) output:['vgg0_pool0_fwd']
[bookmark: _Int_n19yeCWi][bookmark: _Int_UXXrdkFd] Model Part II: [5-40] input:['vgg0_pool0_fwd'] output:['vgg0_dense2_fwd']
Model Part I: Extraction at level 0 to 5 (excluded): input=['data'] output=['vgg0_pool0_fwd']
[bookmark: _Int_Yy8JSAIw]Model Part II: Extraction at level 5 (included) to 40 : input=['vgg0_pool0_fwd'] output=['vgg0_dense2_fwd']
Split done.
Onnx verification of splitted onnx files:
Onnx verification of part I: C:/AI4Media/onnx_zoo/vgg16-12/vgg16-12_part_I_node_5.onnx
Onnx verification of part II: C:/AI4Media/onnx_zoo/vgg16-12/vgg16-12_part_II_node_5.onnx
Intermediate data to transfer: ['vgg0_pool0_fwd']

Note: API of split_onnx_multi.py is described in another contribution. Script itself will be provided for the next meeting.
2.2 Multi branches split

For some models, or some parts of a model, a node is connected to several nodes for its input, and/or several nodes for its output. Below is an example for the resnet model split at node 6 with an overview of part I and Part II opened with Netron.

Part II
Part I

The intermediate data communicated between the two submodels will be the tensors :[“/feature_extractor/feature_extractor/feature_extractor.4/feature_extractor.4.0/conv2/Conv_output_0”, “/feature_extractor/feature_extractor/feature_extractor.3/MaxPool_output_0”].
To get the two submodels, you need to give the tensor name of the input and the tensor name of the output of each part to the extract_model function.
For the first part, the following needs to be provide
· input: [“input”] (model input)
· output: [“/feature_extractor/feature_extractor/feature_extractor.4/feature_extractor.4.0/conv2/Conv_output_0”, “/feature_extractor/feature_extractor/feature_extractor.3/MaxPool_output_0”]

For the second part, the following needs to be provided:
· input: [“/feature_extractor/feature_extractor/feature_extractor.4/feature_extractor.4.0/conv2/Conv_output_0”, “/feature_extractor/feature_extractor/feature_extractor.3/MaxPool_output_0”]
· output: [“output1”,” output2”] (model output)

For illustration purpose , below is the experimentation result with the script split_onnx_multi.py (that is using extract_model() function), for the model ssd_resnet:
	[bookmark: _Int_UJM7WJdp]$ python ../split_onnx_multi.py -a /c/AI4Media/onnx_zoo/ssd_resnet/ssd_resnet.onnx -r 6
Load Onnx file ...
Onnx verification...
Model will be split at rank 6, node name /feature_extractor/feature_extractor/feature_extractor.4/feature_extractor.4.0/relu_1/Relu (before)
[bookmark: _Int_kj6w0igc]k= 6 Model Part I: [0-5] input:input (['1', '3', '300', '300']) output:
['/feature_extractor/feature_extractor/feature_extractor.4/feature_extractor.4.0/conv2/Conv_output_0', '/feature_extractor/feature_extractor/feature_extractor.3/MaxPool_output_0']
[bookmark: _Int_UBIKPu0w] Model Part II: [6-154] input:['/feature_extractor/feature_extractor/feature_extractor.4/feature_extractor.4.0/conv2/Conv_output_0', '/feature_extractor/feature_extractor/feature_extractor.3/MaxPool_output_0']
output: ['output1', 'output2']
[bookmark: _Int_nOx3aZD5]Model Part I: Extraction at level 0 to 6 (excluded): input=['input'] output=['/feature_extractor/feature_extractor/feature_extractor.4/feature_extractor.4.0/conv2/Conv_output_0', '/feature_extractor/feature_extractor/feature_extractor.3/MaxPool_output_0']
[bookmark: _Int_oyvvlN0Y][bookmark: _Int_1xzMkdxt][bookmark: _Int_Qu7itWvc]Model Part II: Extraction at level 6 (included) to 154 : input=['/feature_extractor/feature_extractor/feature_extractor.4/feature_extractor.4.0/conv2/Conv_output_0', '/feature_extractor/feature_extractor/feature_extractor.3/MaxPool_output_0'] output=['output1', 'output2']
Split done.
Onnx verification of splitted onnx files:
Onnx verification of part I: C:/AI4Media/onnx_zoo/ssd_resnet/ssd_resnet_part_I_node_6.onnx
Onnx verification of part II: C:/AI4Media/onnx_zoo/ssd_resnet/ssd_resnet_part_II_node_6.onnx
Intermediate data to transfer: ['/feature_extractor/feature_extractor/feature_extractor.4/feature_extractor.4.0/conv2/Conv_output_0', '/feature_extractor/feature_extractor/feature_extractor.3/MaxPool_output_0']

2.3 [bookmark: _Int_jCWDGfpI]Particular issue: Part II need model input tensor
Here are the properties of the full model “retinanet.onnx”.
[image: A screenshot of a computer

Description automatically generated]
This model has 2248 nodes.
This model has for input [“input_images”] and for outputs [“2734”, “2712”,”2713”].
The model input is used by the 66th node (index 65 if we start at 0).
· node.index 66th
· node.name “/Split”
· node.input ['input_images']
· node.output ['/Split_output_0']
It means that if the split is made before this node, the model input will be required by the second part of the model.
For example, at node 5, here is part I sub model:
[image: A diagram of a company

Description automatically generated]
Here are the properties of the part I and part II sub model:
	Part I - properties
	Part II - properties

	[image: A screenshot of a computer

Description automatically generated]
	[image: A screenshot of a computer

Description automatically generated]

2.4 [bookmark: _Int_UJkPfgFP]Particular issue: Part I is generating a part of the full model outputs
Full retinanet model has for outputs: [“2734”, “2712”,”2713”]
· Tensor “2734” contains the Boxes [left,bottom, right, top]
· Tensor “2712” contains the scores
· Tensor “2713” contains the labels identifier
The output "2712” (scores) is generated by the node 2230.
The output "2713” (label identifier) is generated by the node 2231.
The output “2734” (boxes) is generated by the last node 2248.
[bookmark: _Int_2ulcW4Ud]If the split is made before between nodes 2230 and 2248, the partial results provided from the first part and from the second part are required for providing the final results. The partial result from an endpoint may need to be transfer to the other endpoint.
Here are the properties of the part I and part II sub model (split at node 2232):
	Part I - properties
	Part II - properties

	[image:]
	[image:]

	Part I is generating Tensor “2712” (scores) and Tensor “2713” (labels identifier)
	Part II is generating Tensor “2734” (boxes)

3. Proposal
It is proposed to agree the following changes of section 2 to the evaluation PD v0.5.0

image1.png
Extractor Back totop

class onnx.utils.Extractor(model: ModelProto) [source]

extract_ model

onnx.utils.extract_model(input_path: str | PathLike, output_path: str | PathLike,

input_names: list[str], output_names: list[str], check_model: bool = True) - None [source]

Extracts sub-model from an ONNX model.
The sub-model is defined by the names of the input and output tensors exactly.

Note: For control-flow operators, e.g. If and Loop, the _boundary of sub-model_, which is defined
by the input and output tensors, should not _cut through_ the subgraph that is connected to the
main graph as attributes of these operators.

PARAMETERS: ¢ input_path (str | os.PathLike) — The path to original ONNX model.
* output_path (st | os.PathLike) — The path to save the extracted ONNX model.

* input_names (list of string) — The names of the input tensors that to be
extracted.

* output_names (list of string) — The names of the output tensors that to be
extracted.

e check_model (bool) — Whether to run model checker on the extracted model.

image2.png
MODEL PROPERTIES

format
version
imports
graph
INPUTS
data
ouTPUTS

vgg0_dense2 fwd

ONNX V7
0
aionnxvi2

mxnet_converted_model

name: data

tensor: float32[1,3,224,224]

name: vgg0_dense2_fwd

tensor: float32[1,1000]

image3.png
data

W (sex3343)
B (s2)

W (84x6x323)
B ()

@t

aistons = 1.1
kermalshape.
pacs

gg0_relu0_fwd

vag0_relut_fwa

pacs
swdes =22

v990_po0i0_fwd

W (1288003.3)
8 (23

siston:

W (12812853:3)
B8 G23)

vag0_conv2_fwd

vgg0_relu2 fwe

sitstons =

pads =111
swides = 1.1

Va0 conv3_

image4.png
vggo_conv2_fwd

vgg0_pool0_fwd W (128x64x3x3)
B (128)
dilations = 1,1
kemel_shape = 3,3
pads =1,1,1,1
strides = 1,1

kernel_shape = 2,2
pads =0,0,0,0
stiides = 2,2

vgg0_pool0_fwd

image5.emf

Microsoft_Visio_Drawing.vsdx

image6.png
MODEL PROPERTIES

Format.
producer
imports.

araph

INPUTS

input_images.

outPuTs

o34

a2

a3

ONNX 6
pytorch2.0.1
alonnxv1t

torch i

name: input_images
tensor: Float32[bs, 3, h,u]

name: 2734

tensor: floataz[Concat2734_din.

name: 2712
tensor: floata2[6ather2712_din_0]
name:2713

tensor intea[Gather2712_din 0]

image7.png
input (256x1x1) input (256x1x1)

input (256x1x1)

input (25611

onnx:Add 3016

onne:Mul 3015

onnx:Add 3014

onne:Mul_3013

[onmc:Addjms] [onmc:Mu\jDiS] [onnx Addj(lm] [onmc:MquD!S]

image8.png
MODEL PROPERTIES

format
producer
version
imports

graph

INPUTS

input_images

ouTPUTS

onnx:Mul 3013

onnxzAdd_3014

onnx:Mul 3015

onnxzAdd_3016

ONNX V6.
onnxutils.extract_model
0

aionnxvi1

Extracted from {torch_jit}

name: input_images

tensor: float32[bs,3,h,u]

name: onmx:Mul 3013
tensor: float32[256,1,1]
name: onnx:Add_3014
tensor: float32[256,1,1]
name: onmx:Mul 3015
tensor: float32[256,1,1]
name: onnx:Add_3016

tensor: float32[256,1,1]

image9.png
MODEL PROPERTIES

format ONNXv6.

producer onnx.utils.extract_model
version 0
imports ai.onnxvi1

graph Extracted from ftorch jit}

INPUTS

input images name: input_images

tensor: Float32[bs,3,h,u]

onme:Mul 3013 name: onnx:Mul_3013

tensor: Float32[256,1,1]

onmAdd 3014 name: onnx:Add_3014

tensor: Float32[256,1,1]

onme:Mul 3015 name: onnx::Mul_3015

tensor: Float32[256,1,1]

onnxiAdd 3016 name: onnx::Add_3016

tensor: Float32[256,1,1]

oUTPUTS

2734 name: 2734

tensor: float32[Concat2734_dim_0,4]
2712 name: 2712

tensor: float32[Gather2712_din_6]
2713 name: 2713

tensor: int64[Gather2712_dim_0]

image10.png
MODEL PROPERTIES

format
producer
version
imports
graph
INPUTS

input images

©OUTPUTS

/Cast 9_output 0

/Cast 4_output 0

/Gather_1_output..

/Cast 3 _output 0

/Gather_68_outp..

2712

2713

ONNX v6
onnx.utils.extract_model
[

aionnxvi1

Extracted from {torch_jit}

tensor: Float32[bs,3,h,w]

name: /Cast 9_output 0

tensor: float32

name: /Cast 4 output 0

tensor: float32

name: /Gather_1_output 0

tensor: int64.

name: /Cast 3_output 0

tensor: float32

name: /Gather 68 output 0
tensor: float32

name: 2712

tensor: float32[Gather2712_din_6]
name: 2713

tensor: int6a[Gather2712_dim_0]

image11.png
MODEL PROPERTIES

format

producer

version

imports.

graph

INPUTS

/Cast 9_output 0

/Cast 4_output 0

/Gather_1_output..

/Cast 3_output 0

/Gather 68_outp..

oUTPUTS

2734

ONNX V6.
onnxutils.extract_model
0

aionnxvi1

Extracted from {torch_jit}

name: /Cast 9_output 0

tensor: float32

name: /Cast

output 0
tensor: float32

name: /Gather_1_output 0

tensor: int64.

name: /Cast 3_output 0

tensor: float32

name: /Gather 68 output 0

tensor: float32

name: 2734

tensor: float32[Concat2734_din_0,4]

