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1. Introduction
In this contribution, we provide information on how to split ONNX models when a split occurs on a single branch or on multiple branches.
2. Discussion
ONNX provides a function extract_model() enabling the extraction of a sub-model from an ONNX model https://onnx.ai/onnx/api/utils.html as shown below
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This function is already used by scripts in 5G-MAG repository such as onnx.py (https://github.com/5G-MAG/rt-ai-ml-evaluation-framework/blob/development/scripts/objectdetection/ssd300/split_onnx.py ) and split_retinanet.py (https://github.com/5G-MAG/rt-ai-ml-evaluation-framework/blob/main/scripts/objectdetection/split_retinanet.py)
Single branch (§2.1) or multi-branches split script (§2.1) making use of extract-model function are described below. Specific Issues regarding input tensors and output results applied to multi-branch split are presented in §2.3, when Part II needs model input tensor and, in §2.4, when Part I generates partial output result of the full outputs results. 

2.1 Bottleneck/single branch split
For some models, or some parts of a model, a node is connected with only one input node  and one output node. For example,  it is the case for all nodes of the VGG16 model.  BAn overview of the beginning of VGG16 opened with Netron is provided below.
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Description automatically generated with medium confidence]
In order to cut just before the node 5, “vgg0_conv2_fwd”:
[image: A diagram of a computer code

Description automatically generated with medium confidence]
The intermediate data communicated between the two submodels will be the tensor “vgg0_pool0_fwd”.
To get the two submodels, you need to give the tensor name of the input and the tensor name of the output of each part to the extract_model function.
For the first part, the following needs to be provided 
· input: [“data”] (model input)
· output: [“vgg0_pool0_fwd”] (split tensor name)

For the second part, the following needs to be provided 
· input: [“vgg0_pool0_fwd”] (split tensor name)
· output: ['vgg0_dense2_fwd'] (model output)

For illustration purpose,  below is the experimentation result with the script split_onnx_multi.py (that is using extract_model() function), for the model vgg16:
	[bookmark: _Int_Z34JFgcH]$ python ../split_onnx_multi.py -a /c/AI4Media/onnx_zoo/vgg16-12/vgg16-12.onnx -r 5
Load Onnx file ...
Onnx verification...
Model will be split at rank 5, node name vgg0_conv2_fwd (before)
[bookmark: _Int_V0M61baN][bookmark: _Int_Kpc5nvOj][bookmark: _Int_773mIRRi]k=  5 Model Part I:  [0-4] input:data (['1', '3', '224', '224']) output:['vgg0_pool0_fwd']
[bookmark: _Int_n19yeCWi][bookmark: _Int_UXXrdkFd]      Model Part II: [5-40] input:['vgg0_pool0_fwd'] output:['vgg0_dense2_fwd']
Model Part I: Extraction at level 0 to 5 (excluded): input=['data'] output=['vgg0_pool0_fwd']
[bookmark: _Int_Yy8JSAIw]Model Part II: Extraction at level 5 (included) to 40 : input=['vgg0_pool0_fwd'] output=['vgg0_dense2_fwd']
Split done.
Onnx verification of splitted onnx files:
Onnx verification of part I: C:/AI4Media/onnx_zoo/vgg16-12/vgg16-12_part_I_node_5.onnx
Onnx verification of part II: C:/AI4Media/onnx_zoo/vgg16-12/vgg16-12_part_II_node_5.onnx
Intermediate data to transfer: ['vgg0_pool0_fwd']



Note: API of split_onnx_multi.py is described in another contribution. Script itself will be provided for the next meeting.
2.2 Multi branches split

For some models, or some parts of a model, a node is connected to several nodes for its input, and/or several nodes for its output. Below is an example for the resnet model split at node 6 with  an overview of part I and Part II opened with Netron.


Part II
Part I



The intermediate data communicated between the two submodels will be the tensors :[“/feature_extractor/feature_extractor/feature_extractor.4/feature_extractor.4.0/conv2/Conv_output_0”, “/feature_extractor/feature_extractor/feature_extractor.3/MaxPool_output_0”].
To get the two submodels, you need to give the tensor name of the input and the tensor name of the output of each part to the extract_model function.
For the first part, the following needs to be provide 
· input: [“input”] (model input)
· output: [“/feature_extractor/feature_extractor/feature_extractor.4/feature_extractor.4.0/conv2/Conv_output_0”, “/feature_extractor/feature_extractor/feature_extractor.3/MaxPool_output_0”]

For the second part, the following  needs to be provided: 
· input: [“/feature_extractor/feature_extractor/feature_extractor.4/feature_extractor.4.0/conv2/Conv_output_0”, “/feature_extractor/feature_extractor/feature_extractor.3/MaxPool_output_0”]
· output: [“output1”,” output2”] (model output)

For illustration purpose ,  below is the experimentation result with the script split_onnx_multi.py (that is using extract_model() function), for the model ssd_resnet:
	[bookmark: _Int_UJM7WJdp]$ python ../split_onnx_multi.py -a /c/AI4Media/onnx_zoo/ssd_resnet/ssd_resnet.onnx -r 6
Load Onnx file ...
Onnx verification...
Model will be split at rank 6, node name /feature_extractor/feature_extractor/feature_extractor.4/feature_extractor.4.0/relu_1/Relu (before)
[bookmark: _Int_kj6w0igc]k=  6 Model Part I:  [0-5] input:input (['1', '3', '300', '300']) output:
['/feature_extractor/feature_extractor/feature_extractor.4/feature_extractor.4.0/conv2/Conv_output_0', '/feature_extractor/feature_extractor/feature_extractor.3/MaxPool_output_0']
[bookmark: _Int_UBIKPu0w]      Model Part II: [6-154] input:['/feature_extractor/feature_extractor/feature_extractor.4/feature_extractor.4.0/conv2/Conv_output_0', '/feature_extractor/feature_extractor/feature_extractor.3/MaxPool_output_0'] 
output: ['output1', 'output2']
[bookmark: _Int_nOx3aZD5]Model Part I: Extraction at level 0 to 6 (excluded): input=['input'] output=['/feature_extractor/feature_extractor/feature_extractor.4/feature_extractor.4.0/conv2/Conv_output_0', '/feature_extractor/feature_extractor/feature_extractor.3/MaxPool_output_0']
[bookmark: _Int_oyvvlN0Y][bookmark: _Int_1xzMkdxt][bookmark: _Int_Qu7itWvc]Model Part II: Extraction at level 6 (included) to 154 : input=['/feature_extractor/feature_extractor/feature_extractor.4/feature_extractor.4.0/conv2/Conv_output_0', '/feature_extractor/feature_extractor/feature_extractor.3/MaxPool_output_0'] output=['output1', 'output2']
Split done.
Onnx verification of splitted onnx files:
Onnx verification of part I: C:/AI4Media/onnx_zoo/ssd_resnet/ssd_resnet_part_I_node_6.onnx
Onnx verification of part II: C:/AI4Media/onnx_zoo/ssd_resnet/ssd_resnet_part_II_node_6.onnx
Intermediate data to transfer: ['/feature_extractor/feature_extractor/feature_extractor.4/feature_extractor.4.0/conv2/Conv_output_0', '/feature_extractor/feature_extractor/feature_extractor.3/MaxPool_output_0']




2.3 [bookmark: _Int_jCWDGfpI]Particular issue: Part II need model input tensor
Here are the properties of the full model “retinanet.onnx”.
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Description automatically generated]
This model has 2248 nodes.
This model has for input [“input_images”] and for outputs [“2734”, “2712”,”2713”].
The model input is used by the 66th node (index 65 if we start at 0).
· node.index 66th 
· node.name “/Split”
· node.input ['input_images']
· node.output ['/Split_output_0']
It means that if the split is made before this node, the model input will be required by the second part of the model.
For example, at node 5, here is part I sub model:
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Here are the properties of the part I and part II sub model:
	Part I - properties
	Part II - properties
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2.4 [bookmark: _Int_UJkPfgFP]Particular issue: Part I is generating a part of the full model outputs
Full retinanet  model has for outputs: [“2734”, “2712”,”2713”]
· Tensor “2734” contains the Boxes [left,bottom, right, top]
· Tensor “2712” contains the scores
· Tensor “2713” contains the labels identifier
The output "2712” (scores) is generated by the node 2230.
The output "2713” (label identifier) is generated by the node 2231.
The output “2734” (boxes) is generated by the last node 2248.
[bookmark: _Int_2ulcW4Ud]If the split is made before between nodes 2230 and 2248, the partial results provided from the first part and from the second part are required for providing the final results. The partial result from an endpoint may need to be transfer to the other endpoint. 
Here are the properties of the part I and part II sub model (split at node 2232):
	Part I - properties
	Part II - properties

	[image: ]
	[image: ]

	Part I is generating Tensor “2712” (scores) and Tensor “2713” (labels identifier)
	Part II is generating Tensor “2734” (boxes)



3. Proposal
It is proposed to agree the following changes of section 2 to the evaluation PD v0.5.0
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