[bookmark: bmS4-0-e_(AH)_Video_SW--2023-10-10]3GPP TSG-SA WG4 Meeting #128	S4-241103
Korea, Jeju, 20 – 24 May 2024
	
	
Source:	InterDigital Belgium. LLC
Title:	[FS_AI4Media] multi-branch split APIs and scripts for ONNX models
Agenda item:	9.6
Document for:	Agreement

1. Introduction
In this contribution, we provide API of scripts that were used for the multi-branch split experimentations. These scripts will be provided to the 5G-MAG repository https://github.com/5G-MAG/rt-ai-ml-evaluation-framework/blob/development/scripts/objectdetection at a later meeting.
The different scripts comprise:
· A multi-branch script (split_onnx_multi.py) to split any ONNX model into two sub-models at any node regardless of the number of branches. It may split any ONNX model.
· A script (infer_onnx_multi.py) for the inference of the sub models generated by the previous script using two consecutive ONNX runtime for inferencing. The script produces metrics such as inference time measurements and intermediate data size. It supports models “ssd_resnet” and “retinanet” or any other object detection models having the same pre-processing and same post-processing as these models. The script provides an option for evaluation of compression and decompression algorithms using basic quantization and nnc with different quantization parameters.
· Variants of the existing calc_map.py script to compute the mAP score for an image (calc_map_image.py), for a video calc_map_vide.py) or for a dataset of images (calc_map_image_dataset.py).

2. Multi-branch split APIs and scripts
· split_onnx_multi.py
This script splits an ONNX file at any node. Split point may be referenced by the node index/rank or by the node name.
	split_onnx_multi is a script that split a ONNX model at a rank or at a node name

	optional arguments:
	

	-h, --help
	show this help message and exit

	-a ANCHOR, --anchor ANCHOR
	Path to model anchor

	-r RANK, --rank RANK
	Rank of the node where to split the model;
e.g., with '-r 7' Model I will contain nodes [0-6] and model II will contain nodes [7-48]

	-n NAME, --name NAME
	Name of the node where to split the model

	-f FLAG, --flag FLAG
	Split flag indicating if the split occurs 'before' or 'after' the given node (default is 'before')

[bookmark: _Int_jTu30BBq]Script outputs are the two model subsets part I and part II, suffixed with “_part_I_node_#rank” (resp. _part_II_node_#rank), located in the same directory as the anchor.

Example: python split_onnx_multi.py -a ./models/ssd_resnet.onnx -r 7

Output:
Model will be split at rank 7, node name /feature_extractor/feature_extractor/feature_extractor.4/feature_extractor.4.0/conv3/Conv (before)

Model Part I: Extraction at level 0 to 7 (excluded):
[bookmark: _Int_2jCyCk9E]input=['input'] output=['/feature_extractor/feature_extractor/feature_extractor.4/feature_extractor.4.0/relu_1/Relu_output_0', '/feature_extractor/feature_extractor/feature_extractor.3/MaxPool_output_0']

[bookmark: _Int_voQZGqTt]Model Part II: Extraction at level 7 (included) to 154 : input=['/feature_extractor/feature_extractor/feature_extractor.4/feature_extractor.4.0/relu_1/Relu_output_0', '/feature_extractor/feature_extractor/feature_extractor.3/MaxPool_output_0'] output=['output1', 'output2']

Split done.
part I: ./models/ssd_resnet_part_I_node_7.onnx
part II: ./models /ssd_resnet_part_II_node_7.onnx
Intermediate data to transfer: ['/feature_extractor/feature_extractor/feature_extractor.4/feature_extractor.4.0/relu_1/Relu_output_0', '/feature_extractor/feature_extractor/feature_extractor.3/MaxPool_output_0']

· infer_onnx_multi.py
This script infers the first ONNX model subset (part I) from a first ONNX runtime, encodes the output of the inference, decodes the encoded output, and passes the decoded output as an input for inference of the second ONNX subset (part II) with a second ONNX runtime. It emulates the two split inferences from a first and a second endpoint. It supports models “ssd_resnet” and “retinanet” or any other models having same pre-processing and same post-processing as these models.

	infer_onnx is a script that run the inference of either a ssd resnet model or retinanet model, full model or split

	optional arguments:
	

	-h, --help
	show this help message and exit

	-s INPUT_SOURCE, --input_source INPUT_SOURCE

	Path to input source (Image, video, directory of images)

	-loop LOOP

	loop inference (for image)

	-partI PARTI

	Path to model part I

	-partII PARTII
	Path to model part II

	-anchor ANCHOR
	Path to model anchor

	-f FAMILY, --family FAMILY

	Model family i.e., 'ssd_resnet' or 'retinanet'

	-results_filename RESULTS_FILENAME

	Path to .csv results file (time measurement)

	-results_dir RESULTS_DIR

	Path to results directory hosting predictions

	-no_CPU_anchor

	no inference with CPU on model anchor

	-no_GPU_anchor
	no inference with GPU on model anchor

	-ref_split REF_SPLIT
	reference split label

	-no_split
	no split (just anchor for instance)

	-no_check_model
	do not check the model partI and partII

	-save_intermediate_data

	to save intermediate data

	-nb_frames NB_FRAMES
	Limit the inference to the nb_frames first frames for a video

	-encode_algo ENCODE_ALGO

	algo for intermediate_data encoding 0=no encoding; 1= convert to float16; 8xx for nnc with xx = abs(qp) (e.g., 838 for qp=-38)

	-PU_partI PU_PARTI
	Processing Unit for part I (CPU or GPU)

	-PU_partII PU_PARTII
	Processing Unit for part II (CPU or GPU)

	--labels_coco LABELS_COCO

	Path to labels file coco_labels.csv

According to the parameters the script is doing:
· Verification of the ONNX model by using checker.check_model() function. This verification can be skipped especially for the splitted models that may sometimes raise an unfounded error (i.e., an error which does not prevent a correct inference with the ONNX runtime)
· inference of the anchor using GPU (except if flag -no_GPU_anchor is activated)
· inference of part I and part II using processing units indicating by flags (-PU_partI and -PU_partII)(except if flag -no_split is activated). Intermediate data are encoded and decoded using the algorithm indicated by the identifier -encode_algo.
· inference of the anchor using CPU (except if flag -no_CPU_anchor is activated)

Script outputs are:
· A .csv file containing information on time measurement, intermediate data size, predictions (described below)
· A folder containing the image (or frame) with the predictions on overlay (bounding boxes with label and prediction score)
· A folder containing the .txt predictions file compatible with format expected by calc_map scripts

Results .csv file have following columns:
	Column name
	Type
	Unit
	Description

	Source
	String
	-
	path to the input data source

	Nodes

	String
	-
	node reference (e.g., split_node_0010)

	Inference_loop

	Int
	-
	number of inference run on the source

	UE_inference_time_CPU (avg; std)
	Float
	ms
	 inference time of the part I (average and standard deviation on all measures) when the processing unit of part I is CPU

	UE_inference_time_CPU_steady_state (avg;std)

	Float
	ms
	inference time of the part I (average and standard deviation on all measures except the first one) when the processing unit of part I is CPU

	UE_inference_time_GPU (avg;std)

	Float
	ms
	inference time of the part I (average and standard deviation on all measures) when the processing unit of part I is GPU

	UE_inference_time_GPU_steady_state (avg; std):

	Float
	ms
	inference time of the part I (average and standard deviation on all measures except the first one) when the processing unit of part I is GPU

	Server_inference_time_CPU(avg; std):

	Float
	ms
	inference time of the part II (average and standard deviation on all measures except the first one) when the processing unit of part II is CPU

	Server_inference_time_CPU_steady_state(avg; std):
	Float
	ms
	inference time of the part II (average and standard deviation on all measures except the first one) when the processing unit of part I is CPU

	Server_inference_time_GPU(avg; std);
	Float
	ms
	inference time of the part II (average and standard deviation on all measures except the first one) when the processing unit of part II is GPU

	Server_inference_time_GPU_steady_state (avg; std);
	Float
	ms
	inference time of the part II (average and standard deviation on all measures except the first one) when the processing unit of part I is GPU

	Total_inference_time_steady_state (avg; std);
	Float
	ms
	Sum of “UE inference time steady state” + “Server inference time steady state “ (average and standard deviation)

	Encoding_time (min,avg,max);
	Float
	ms
	Encoding time of the intermediate data

	Decoding_time (min,avg,max);

	Float
	ms
	Decoding time of the intermediate data

	nb_inference;

	Int
	-
	number of inference run on a video source (nb frames)

	intermediate_data_size (min,avg,max);

	Int
	bytes
	Intermediate data size (uncompressed)

	encoded_intermediate_data_size (min,avg,max);

	Int
	bytes
	Intermediate data size (encoded/compressed)

	encoding_algo;

	Int
	-
	Encoding Algorithm identifier

	predictions_size (min,avg,max);

	Int
	Bytes
	Size of the post-processed predictions

	predictions

	String
	-
	Post-processed predictions
(label, boxes coordinates (top_x, top_y, bottom_x, bottom_y), confidence score)
(e.g., bear 13 28 573 620 0.49)

· calc_map_image.py
This script calculates the mAP score for an image. This script is based on the existing calc_map.py script, and is a simple adaptation to be able to compute the mAP score on a single image. It uses the same calculate_map() function as calc_map.py. It can compute the mAP score for several splits.
	Calculate the mAP for the object detection prediction

	optional arguments:
	

	-h, --help
	show this help message and exit

	-i IMAGE_PATH,
--image_path IMAGE_PATH
	Path to the image

	-p PREDICTION_PATH,
--prediction_path PREDICTION_PATH
	Path to the prediction file or directory containing prediction files (for several splits)

	-g GROUNDTRUTH_PATH,
--groundtruth_path GROUNDTRUTH_PATH
	Path to the ground-truth annotation file

	-r RESULTS_FILENAME,
--results_filename RESULTS_FILENAME
	Path to .csv results file

	--threshold THRESHOLD

	The threshold for the prediction confidence to consider the prediction.

	
--no_plot

	do not display the plot.

· calc_map_video.py
This script calculates the mAP score for a video. This script is based on the existing calc_map.py script and is a simple adaptation to be able to compute the mAP score on a single video. It uses the same calculate_map() function as calc_map.py. It can compute the mAP score for several splits.

	Calculate the mAP for the object detection prediction

	optional arguments:
	

	-h, --help
	show this help message and exit

	-v VIDEO_PATH, --video_path VIDEO_PATH
	Path to the video

	-p PREDICTION_PATH,
--prediction_path PREDICTION_PATH
	Path to the directory containing prediction files (one split) or Path to the directory containing directories of each split (several splits)

	-g GROUNDTRUTH_PATH,
--groundtruth_path GROUNDTRUTH_PATH
	Path to the directory containing groundtruth annotation file

	-r RESULTS_FILENAME,
--results_filename RESULTS_FILENAME
	Path to .csv results file

	--labels_imagenet LABELS_IMAGENET

	Path to labels file imagenet_coco.csv

	--labels_coco LABELS_COCO

	Path to labels file coco_labels.csv

	-o IMAGE_PATH, --image_path IMAGE_PATH

	Path to the output file containg the mAP outplot plot

	--threshold THRESHOLD

	The threshold for the prediction confidence to consider the prediction.

· calc_map_image_dataset.py
This script calculates the mAP score for a set of images. This script is based on the existing calc_map.py script and is a simple adaptation to be able to compute the mAP score on a set of images. It uses the same calculate_map() function than calc_map.py. It can compute the mAP score for several splits.

	Calculate the mAP for the object detection prediction

	optional arguments:
	

	-h, --help
	show this help message and exit

	-d IMAGE_DATASET_PATH, --image_dataset_path IMAGE_DATASET_PATH

	Path to the directory containing the images

	-p PREDICTION_PATH,
--prediction_path PREDICTION_PATH
	Path to the directory containing prediction files (one split) or Path to the directory containing directories of each split (several splits)

	--multisplit
	indicates if prediction path contains several directories for multi split

	-g GROUNDTRUTH_PATH,
--groundtruth_path GROUNDTRUTH_PATH
	Path to the directory containing groundtruth annotation file

	-r RESULTS_FILENAME,
--results_filename RESULTS_FILENAME
	Path to .csv results file

	--labels_imagenet LABELS_IMAGENET

	Path to labels file imagenet_coco.csv

	--labels_coco LABELS_COCO

	Path to labels file coco_labels.csv

	--threshold THRESHOLD

	The threshold for the prediction confidence to consider the prediction.

3. Proposal
It is proposed to add 	the Multi-branch split APIs and scripts (section 2) to the evaluation PD v0.5.0.

