

	
3GPP TSG-SA5 Meeting #155	S5-242835
Jeju, Korea (Republic Of), 27th May 2024 - 31st May 2024
	CR-Form-v12.3

	CHANGE REQUEST

	

	
	32.160
	CR
	0058
	rev
	-
	Current version:
	17.11.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	
	Radio Access Network
	X
	Core Network
	X

	

	Title:	
	Rel-17 CR 32.160 Detailed specification of YANG model extensions

	
	

	Source to WG:
	Ericsson Hungary Ltd

	Source to TSG:
	S5

	
	

	Work item code:
	TEI17
	
	Date:
	2024-05-17

	
	
	
	
	

	Category:
	F
	
	Release:
	Rel-17

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier 													release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)
Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-8	(Release 8)
Rel-9	(Release 9)
Rel-10	(Release 10)
Rel-11	(Release 11)
…
Rel-17	(Release 17)
Rel-18	(Release 18)
Rel-19	(Release 19)
Rel-20	(Release 20)

	
	

	Reason for change:
	Some external (to 3GPP) parties have misunderstood how vendor extension to 3GPP YANG models should be done. Our goal is to direct vendor extensions to maintain the class/DN-id/attribute structure even in extended models in order to
- to maintain the a common structure for 3GPP defined and vendor defined parts of the model
- allow the usage of DN based addressing
- to allow the usage of 3GPP SA5 defined filtering patterns to work with model extensions too.

	
	

	Summary of change:
	Provide a more detailed description of what kind of YANG extension are allowed and are not allowed.

Specify that the same extension rules apply to vendor extensions and extension by other SDOs or industry groups.

Clarify what kind of data nodes may be added directly to lists representing IOCs.

	
	

	Consequences if not approved:
	YANG models not following the 3GPP model structure resulting in the failure of DN based addressing and usage of curent filtering patterns.

	
	

	Clauses affected:
	6.2.1.8, 6.2.4.1

	
	

	
	Y
	N
	
	

	Other specs
	
	X
	 Other core specifications	
	TS/TR ... CR ...

	affected:
	
	X
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	X
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	

	
	

	This CR's revision history:
	

First change
6.2.1.8	Vendor specific model changesUpdating the 3GPP YANG schema tree by external parties
This clause is valid for any external (to 3GPP) party modifying the 3GPP YANG schema tree (defined by the set of YANG modules). Whenever vendors are mentioned in this clause the same is valid for other standard organizations or industry groups.
Vendors shall not modify 3GPP YANG modules by changing the original file. Instead, vendors shall create vendor-specific YANG modules containing the appropriate YANG constructs (typically “deviation” and/or “augment” statements).
In accordance with RFC 7950 [18], the final YANG schema, formed by the totality of the 3GPP YANG modules and any vendor-specific YANG modules as represented through the Yang Library, shall represent the vendor implementation as much as this is possible with the available YANG language constructs and 3GPP-defined extensions; this is especially of importance if, in exceptional cases, the final YANG schema is such that the vendor implementation of IOCs and/or attributes does not align with their 3GPP definitions.
3GPP explicitly allows and in some cases (1 and5 below) even requires the following modifications of the schema tree.
1) When a vendor does not implement a model element that is optional to support as defined by the 3GPP stage-2 supportQualifier, it shall be marked as not supported using the deviation / deviate not- supported YANG statements according to RFC 7950 [18] clause 7.20.3.2.
If the non-support of an IOC effectively results in a complete YANG module not being implemented, the deviation statement shall not be used; instead, the module shall not be listed in the YANG library. However, if the YANG module is required due to import statements, the YANG module shall be listed in the YANG library with conformance-type “import-only”.
2) A vendor may extend the schema tree with data nodes (see [x] section 7.17). Adding manadatory model elements is potentially backwards incompatible, so the relevant rules in [x] section 7.17 shall be followed.
2a) Adding vendor specific attributes
Vendor-specific attributes shall always be augmented into the “attributes” YANG container (see clause 6.2.4), or, if the amended model element is a structured attribute (see clause 6.2.12), into the YANG list representing the structured attribute. For example:
augment /me3gpp:ManagedElement/attributes {
 leaf isCabinetClosed {
 type boolean;
 description “Indicates whether the doors of the HW cabinet is closed.”;
 }
}
The definition of new attributes shall follow the general guidelines and rules in the present document.
The name of the new attribute shall not be equal to the name of an already-existing 3GPP-defined attribute of the same IOC (ignoring case and namespace).
2b) Adding vendor specific IOCs
The definition of the new IOC shall follow the general guidelines and rules in the present document.
The new IOC shall be name-contained under a 3GPP-defined IOC (this 3GPP-defined IOC may be the direct containment parent, or an ancestor in the containment tree)
The model should follow the IOC/attribute structure based on TS 32.156[3].
Inheritance from abstract 3GPP IOCs (e.g. Top) is recommended and encouraged.

Example:
//vendor class
grouping VendorClassGrp {
 // contains all attributes
 leaf exampleAttribute {
 type string;
 description vendorMarker;
 }
}

augment /me3gpp:ManagedElement {
 list VendorClass {
 key id;
 uses top3gpp:Top_Grp;
 container attributes {
 uses VendorClassGrp ;
 }
 // YANG lists representing contained classes
 }
}	
2c) Forbidden additions
It is not allowed to augment in data nodes directly under the list representing an IOC except for lists representing contained vendor specific IOCs.
3) Compatible modifications: Deviations that maintain backwards compatibility as defined in RFC 7950 [18] section 11 are allowed. The most common such modification is changing the properties of attributes. Modifications of the properties of a data nodes are achieved by usage of a “deviation” statement, with “deviate add/delete/replace” as appropriate (also see RFC 7950 [X], clause 7.20.3.2).
4) Limit the unlimited: For strings that have no length limit it is allowed to specify a length limit. No one expects an implementation to support infinitely long strings. For lists and leaf-lists that do not have a max-elements substatement it is allowed to add a max-elements substatement. No one expects an implementation to support infinitely long lists.
5) Specifying non-conformance to the standard
In the exceptional case when the vendor has not implemented a model element although the 3GPP stage 2 supportQualifier does not mark it as optional, or when a model element has been modified in contradiction to the above rules, the vendor shall document portions of the 3GPP module that are not supported, or that are supported but with different syntax, by using the "deviation" statements. Note this behavior is discouraged, providing deviation statements is not a substitute for proper conformance to the specifications.
Making non-backward compatible changes (other then what's specified in point 4) to the schema tree is strongly discouraged, considered non-conformant and thus has to be specified with deviations.
The IOC naming attribute (see clause 6.2.3) shall always be supported by the server implementation and therefore shall never be marked as not supported.
Vendors shall not modify 3GPP YANG modules either by changing the original file or by adding vendor specific YANG modules that contain deviations targeting parts of a 3GPP module. Only the following exceptions are allowed from the above rule:
-	Deviations that maintain backwards compatibility as defined in RFC 7950 [18] are allowed
-	Marking as "not supported" any model element that is optional to support as defined by the 3GPP stage 2 supportQualifier is allowed.
Vendors extensions shall to the model be done in separate YANG modules; they do not impact compliance.
[bookmark: _Hlk145925197]Vendor extensions to the model should follow the IOC/attribute structure based on TS 32.156[3] and the mapping defined in clause 6.2 and its subclauses. Inheritance from abstract 3GPP IOCs (e.g. Top) is encouraged.
Example 1 – Add a vendor specific attribute to a 3GPP specified IOC:
augment /me3gpp:ManagedElement/attributes {
 leaf isCabinetClosed {
 type boolean ;
 description “Indicates whether the doors of the HW cabinet is closed.” ;
 }
}

Example 2 – Add a vendor specific IOC:
//vendor class
grouping VendorClassGrp {
 // contains all attributes
 leaf exampleAttribute {
 type string;
 description vendorMarker;
 }
}

augment /me3gpp:ManagedElement {
 list VendorClass {
 key id;
 uses top3gpp:Top_Grp;
 container attributes {
 uses VendorClassGrp ;
 }
 //YANG lists representing contained classes
 }
}
Next change
[bookmark: _Toc20312282][bookmark: _Toc27561343][bookmark: _Toc36041305][bookmark: _Toc44603419][bookmark: _Toc163044955]6.2.4.1	YANG mapping
A concrete class shall be mapped to a "list" that "uses" a "grouping". The "grouping" shall be named <IocName>Grp. It shall contain all attributes of the class in the same manner as the "grouping" for an abstract class. The "list" shall be named <IocName>. The NamingAttribute shall be used as a key. All other attributes shall be placed inside a non-presence "container" named "attributes". The "container attributes" will facilitate asking for all attributes of an object instance with a simple subtree or XPath filter. The “list” mapped from a concrete class therefore only contains the id “leaf”, the “attributes container”, and possibly other contained concrete classes mapped to “list” statements (see clause 6.2.6.2).
//concrete class
grouping MyConcreteClassGrp {
 // contains all attributes in the same manner as
 // a grouping for abstract class
}

list MyConcreteClass {
 key namingAttributeid; // usually named ‘id’
 leaf namingAttribute id {…}
 container attributes {
 uses MyConcreteClassGrp;
 }
 //YANG lists representing contained classes
}

End of changes

