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[bookmark: OLE_LINK39][bookmark: OLE_LINK38][bookmark: OLE_LINK37]Introduction
In the RAN#102 plenary meeting [1], a new SID was approved on intelligence (AI)/machine learning (ML) for mobility in NR. 
	Agreements:
1. At least measurement event evaluation based on RRM measurement prediction result will be studied.   Direct measurement event prediction is also allowed.   
2. Clarifications on what is being as input should be provided with results  
3. Start with A3 as a baseline.  
4. Measurement event prediction study can start after some further progress on RRM measurement prediction has been made


In this contribution, we focus on the objective of measurement event prediction for mobility management purposes, exploring the approach of indirect measurement prediction, and further using predicted measurement results make early measurement event report, and trigger measurement event with a longer duration. We also detail the operational mechanics of the proposed solution and evaluate the system's performance through simulation.
Motivation
[bookmark: OLE_LINK4]The legacy L3 HO mechanism has proven to be quite effective in normal mobility scenarios, offering a balance of simplicity and efficiency. Its performance and reliability have been extensively tested and continuously enhanced within commercial networks. However, this mechanism falls short in delivering optimal mobility performance in more challenging conditions, such as those encountered with FR2 and/or high-speed movement. In such extreme mobility scenarios, the reactive nature of the process—which includes measurement, reporting, and handover or cell switching—struggles to keep pace with rapid channel variations due to the long latency. This results in a complex system that requires significant measurement effort and signaling overhead, yet only achieves suboptimal mobility performance. Moreover, emerging services like XR demand a reliable mobile connection with high throughput, further highlighting the limitations of the current L3 HO mechanism in meeting the needs of such applications.
[bookmark: OLE_LINK3]Observation 1: Legacy L3 HO mechanism works well in normal mobility scenarios with acceptable complexity and overhead. But it can’t achieve optimum mobility performances in extreme mobility scenarios i.e., FR2 and/or high mobility. 
For the legacy RRM measurement and report mechanism, AI/ML can be used to intelligently determine when a handover is truly necessary, reducing the occurrence of ping-pong effects. By predicting measurement events criteria with extended duration including Time to Trigger (TTT) and following prediction period, the unnecessary measurement and reporting can be reduced, consequently lowering signaling overhead. Reducing unnecessary handovers can mitigate ping-pong effects resulting from frequent and unwarranted cell transitions, ultimately optimizing system performance. Moreover, by predicting the occurrence of a measurement event in advance, the network can proactively allocate resources, such as pre-allocating radio resources in the target cell for handover. This proactive approach enhances transition smoothness and optimizes resource utilization. 
[bookmark: _Hlk163056147][bookmark: OLE_LINK41]Proposal 1: The goal of AI/ML-based measurement event prediction is to investigate approaches that further improve the handover robustness and minimize unnecessary handover, which consequently improves user experience during mobility comparable to those achieved by conventional non-AI mechanisms. 
Motivated by this goal, our discussion and evaluation center on the application of AI/ML in predicting measurement events to improve the system performance. We aim to decrease unnecessary handover, minimize handover failures, and minimize optimal handover latency, further improving the overall system performance.
Discussion
[bookmark: _Hlk161415726][bookmark: OLE_LINK13]Time-to-Trigger (TTT) and offset are pivotal in the decision-making process of measurement event reports, ensuring that the condition is stable and persistent. 
With measurement event prediction at the temporal domain, UE gains insight into future duration. Following use of AI/ML for measurement event prediction are considered:
1. [bookmark: OLE_LINK8][bookmark: OLE_LINK96]Measurement event prediction with longer duration than TTT: Considering measurement event prediction with a longer duration including TTT and prediction window, fewer unnecessary measurement reports would be sent to the network by using measurement event prediction. 
2. [bookmark: OLE_LINK10]Early measurement report by measurement prediction: UE reports predicted events early, enabling the network to make early handover decisions based on early measurement reports. 
3. Direct target cell prediction: utilizing target cell prediction directly, the timing for handover to a specific cell can be predicted either by UE or by network, thereby transforming the conventional reactive mechanism into a proactive one. Proactive decisions could minimize delays caused by handovers, leading to a smoother and more consistent user experience.
AI/ML Prediction for RRM measurement event prediction
[bookmark: OLE_LINK97]Measurement event prediction with longer duration than TTT
[bookmark: _Hlk163062665]Measurement event prediction with longer duration than TTT Considering measurement event prediction with a longer duration, at measurement period (e.g., TTT), UE leverages the AI/ML model to predict measurements within a prediction window and reports the predicted measurement event that meets the reporting criteria with a longer duration, including both Time-to-Trigger (TTT) and prediction window. Utilizing measurement reports with extended duration criteria ensures that the UE avoids unnecessary handovers.


Figure 1 Measurement event prediction with a longer duration than TTT
[bookmark: OLE_LINK98]Early measurement report by measurement prediction 
Considering the early prediction measurement event report, during the measurement phase, UE predicts the measurement event that will happen within the prediction period and reports the predicted measurement event to the network at the measurement period. By providing an early report of the measurement event, the network is enabled to make Handover decisions and send the HO command to the UE proactively. 

  
Figure 2 Early measurement report by measurement prediction
Target cell prediction
The target cell prediction can be performed at the UE side or the network side. If AI/ML inference for target cell prediction is performed on the network side, RAN predicts the target cell for the UE based on the historic measurement results reported by the UE. But it is also worthwhile to consider UE-based mobility, i.e., UE performs target cell prediction and initiates HO towards the selected target cell in certain extreme mobility scenarios. 
Utilizing target cell prediction ensures that HO is performed at the right point of time when the best cell appears. When TRP #2 becomes the best cell UE has HO to TRP #2 successfully, thus improving mobility performance. Target cell prediction not only improves mobility performance but also reduces measurement efforts and signaling overhead.
[image: ]
Figure 3 Proactive data-driven HO
By measuring the quality of beam-pairs as model input, infer the target cell ID for future time.
Evaluation results for RRM measurement event prediction
[bookmark: OLE_LINK7]Measurement event prediction with longer duration than TTT
For the case of measurement event prediction with a longer duration, preliminary simulation results demonstrate a reduction in unnecessary Handovers (e.g., ping-pong), while the interruption time remains relatively stable or marginally decreases accompanied by a slight increase in HOF/RLF occurrences. We can get the conclusion that measurement event prediction with a longer duration than TTT can reduce the unnecessary HO (e.g., ping-pong) while maintaining other system performance (e.g., data interruption time).
  [image: ]         [image: ]
   (a) Data interruption time rate                 (b)  HO success/HOF times 
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   (c) Ping-pong times                        (d) Average time of stay(ms)
Figure 4 Simulation results for measurement event prediction with a longer duration
[bookmark: OLE_LINK47][bookmark: OLE_LINK44]Observation 2: By AI/ML measurement event prediction with a longer duration than TTT, lower ping-pong rate and longer ToS can be achieved, without any degradation in mobility performance compared with legacy L3 HO in the metrics such as HOF, data interruption time. 
Proposal 3: RAN2 study AI/ML-based measurement event prediction with a longer duration than TTT for the goal of avoiding unnecessary handover without sacrificing the handover robustness in terms of HOFs and RLFs.
[bookmark: OLE_LINK9]Early measurement report by measurement prediction 
For the case of early prediction measurement event reports, at the measurement phase, UE predicts the measurement results in the prediction window (e.g., TTT), with early measurement event prediction of the prediction window, UE sends the measurement report that is expected to happen at the prediction phase. The preliminary simulation results show a decrease in Handover Failure (HOF) / Radio Link Failure (RLF) occurrences, contributing to an improvement in system performance.
[bookmark: _Hlk162878309]     [image: ]           [image: ]
   (a) Data interruption time rate                 (b) HO success/HOF times 
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   (c) Ping-pong times                        (d) Average time of stay(ms)
Figure 5 Simulation results for early measurement report
[bookmark: _Hlk163068066]Observation 3: By AI/ML measurement event prediction with early measurement report, fewer HOF/RLF can be achieved, without any degradation in mobility performance compared with legacy L3 HO in the metrics such as data interruption time and ToS.
Proposal 4: RAN2 study AI/ML-based early prediction measurement event reports for the goal of enhancing handover robustness, i.e., reducing the HOF/RLF rate.
Target cell prediction
For the case of target cell prediction, unnecessary Handovers (HO) can be circumvented. The preliminary simulation results indicate that at low speeds of 30km/h, the data interrupt time of Radio Link Failure (RLF) / Handover Failure (HOF) remains unchanged. However, at higher speeds of 120km/h, the data interrupt time of RLF/HOF increases. The rapid fluctuations in channel conditions at higher speeds lead to challenges for target cell ID prediction, increasing occurrences of HOF/RLF. Consequently, the results show a decrease in overall DIT time, and the AI/ML-based target cell prediction of measurement event prediction improves the system performance significantly.
Observation 4: By AI/ML measurement event prediction with target cell prediction, data interruption time can be reduced in mobility performance compared with legacy L3 HO in the metrics.
Proposal 5: RAN2 study the potentials of AI/ML-based target cell prediction to enhance mobility performance. The target cell prediction can be performed at UE side and network side. 
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(a)RSRP difference                   (b) data interruption time(s)
Figure 6 Simulation results for target cell prediction
Performance Metrics
The performance metrics can include the performance and complexity of the AI/ML model and system performance for mobility.
· Intermediate metrics
The intermediate metrics reflect the performance of the AI/ML model, which is derived from the model output and actual value. For measurement event prediction, the RSRP difference between prediction target cell and actual target cell can be considered as intermediate metrics. Besides, the typical KPI for the classification model can also be considered, e.g., accuracy.
· Complexity
The size of AI model often measured by the total number of parameters and weights, is a direct indicator of storage complexity. The computational complexity can be measured in terms of FLOPs(floating-point operations) or the time taken to train or infer.
· System performance metrics
For the mobility system performance, the HOF/RLF rate, ping pong rate, time of stay can be used to monitor the performance. Besides, the throughput can also be considered in the future.
Proposal 6: To evaluate the performance, key performance indicators (KPIs) shall comprise the AI/ML intermediate metrics, storage and computational complexity (e.g., model size/FLOPs), and system performance metrics (incl.., HOF/RLF/Ping-pong rate/ToS. FFS on throughput).
Proposal 7: For direct measurement event prediction, the intermediate metrics considers prediction accuracy, precision, recall or potentially any weighted combination thereof as representative metrics.
Proposal 8: For indirect measurement event prediction, the intermediate metrics considers RSRP difference/MSE/RMSE.
Conclusion
Observations:
Observation 1: Legacy L3 HO mechanism works well in normal mobility scenarios with acceptable complexity and overhead. But it can’t achieve optimum mobility performances in extreme mobility scenarios i.e., FR2 and/or high mobility. 
Observation 2: By AI/ML measurement event prediction with a longer duration than TTT, lower ping-pong rate and longer ToS can be achieved, without any degradation in mobility performance compared with legacy L3 HO in the metrics such as HOF, data interruption time. 
Observation 3: By AI/ML measurement event prediction with early measurement report, fewer HOF/RLF can be achieved, without any degradation in mobility performance compared with legacy L3 HO in the metrics such as data interruption time and ToS.
Observation 4: By AI/ML measurement event prediction with target cell prediction, data interruption time can be reduced in mobility performance compared with legacy L3 HO in the metrics.
We have following proposals:
[bookmark: OLE_LINK99]Motivation
Proposal 1: RAN2 aims to improve the mobility performance in the mobility scenarios where the mobility performance is suboptimal but requires significant measurement effort and signaling overhead.
Goal
Proposal 2: The goal of AI/ML-based measurement event prediction is to investigate approaches that further improve the handover robustness and minimize unnecessary handover, which consequently improves user experience during mobility comparable to those achieved by conventional non-AI mechanisms. 
Solution
Proposal 3: RAN2 study AI/ML-based measurement event prediction with a longer duration than TTT for the goal of avoiding unnecessary handover without sacrificing the handover robustness in terms of HOFs and RLFs.
Proposal 4: RAN2 study AI/ML-based early prediction measurement event reports for the goal of enhancing handover robustness, i.e., reducing the HOF/RLF rate.
Proposal 5: RAN2 study the potentials of AI/ML-based target cell prediction to enhance mobility performance. The target cell prediction can be performed at UE side and network side. 
Evaluation metrics
Proposal 6: To evaluate the performance, key performance indicators (KPIs) shall comprise the AI/ML intermediate metrics (e.g., accuracy/RSRP difference/MSE/RMSE), (storage/computational) complexity (e.g., model size/FLOPs), and system performance metrics (incl.., HOF/RLF/Ping-pong rate/ToS. FFS on throughput).
Proposal 7: For direct measurement event prediction, the intermediate metrics considers prediction accuracy, precision, recall or potentially any weighted combination thereof as representative metrics.
Proposal 8: For indirect measurement event prediction, the intermediate metrics considers RSRP difference/MSE/RMSE.
Reference
[1]RP-234055, Study on Artificial Intelligence (AI)/Machine Learning (ML) for mobility in NR, RAN#102.

Appendix-Simulation Assumptions

	Items 
	Values

	ISD
	200m for FR2

	Channel model
	38.901 UMa model with LOS/NLOS

	Number of sites/sectors
	The 2 tiers model of 7 sites each with 3 sectors

	Antenna Configuration
	(4, 8, 2, 1, 1, 1, 1) (dV, dH) = (0.5, 0.5)λ

	Carrier Frequency / Bandwidth 
	30GHz for FR2, 80MHz

	BS Beam setting
	32 beams downlink Tx beams (max number of available beams) at NW side. Other values, e.g., 64 or 256 not precluded.

	Sub-carrier spacing
	120KHz

	BS Total TX power 
	46 dBm
Other values (e.g., 34 dBm) not precluded

	BS height
	25m

	UE beam setting
	1 beam omni or 4 beams per UE panel

	UE Antenna configuration
	(1, 4, 2, 1, 1, 1, 1), 1 panels

	UE placement
	100% outdoor

	UE speed
	30/60/120 km/h

	UE height
	1.5m

	UE trajectory
	Options 1-3 in TR 38.843 section 6.3.1
Other options are not precluded

	Scenario 
	Uma with LoS and NLOS (TR 38.913) is the basic scenario for dataset generation and performance evaluation.
Other scenarios are not precluded.
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