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Introduction
[bookmark: OLE_LINK13][bookmark: OLE_LINK14]In RAN #103, it was agreed to study the following objective with a corresponding checkpoint in RAN#105 
In the following, we provide our simulation results and observations on the gain of AI-based CSI prediction over non-AI approaches.
	For CSI prediction (UE-sided model), further study performance gain over Rel-18 non-AI/ML based approach and associated complexity, while addressing other aspects requiring further study/conclusion as captured in the conclusions section of the TR 38.843 (e.g., cell/site specific model could be considered to improve performance gain). 




Evaluation Results
In RAN1 #116, the discussion on performance evaluation for CSI prediction continued. There were a number of agreement and conclusion from the meeting regarding the methodology for evaluating CSI prediction studies at R19, as detailed below the listing:
	Agreement
For Rel-19 study on CSI prediction, consider EVM agreed in Rel-18 CSI prediction based on UE-sided model as a starting point.
· FFS on additional assumptions, e.g., channel estimation error, phase discontinuity, CSI-RS periodicity.
· Note: Rel-18 CSI-RS configuration/reporting can be reused. 
· Note: additional EVM and corresponding template to collect the results can be updated.

Agreement
For Rel-19 study on CSI prediction, companies are encouraged to evaluate throughput performance by comparing performance with non-AI/ML based CSI prediction. 
· [bookmark: OLE_LINK11]R18 eType II doppler codebook is assumed for CSI report for both AI/ML and Non AI/ML prediction. 
· Companies to report the assumption for N4, which could be 1, 2, 4, 8.

Note: Non-AI/ML based CSI prediction (Benchmark 2) can include statistical model based CSI prediction (e.g., based on Kalman filter, Wiener filter, Auto-regression).
Agreement
· For CSI prediction evaluations, to verify the generalization/scalability performance of an AI/ML model over various configurations, to evaluate one or more of the following aspects:
· Various UE speeds (e.g., 10km/h, 30km/h, 60km/h, 120km/h)
· Various deployment scenarios
· Various carrier frequencies (e.g., 2GHz, 3.5GHz)
· Various frequency granularity assumptions
· Various antenna port numbers (e.g., 32 ports, 16 ports)
· To report the selected configurations for generalization verification
· To report the method to achieve generalization over various configurations and/or to achieve scalability of the AI/ML input/output, including pre-processing, post-processing, etc.
· To report generalization cases where multiple aspects (e.g., combination of above) are involved in one dataset, if adopted. 
· To report the performance and requirement (e.g., updating filter parameters, convergence of filter) for non-AI/ML-based CSI prediction to handle the various scenarios/configurations.
Agreement
For evaluation, to report computational complexity in unit of FLOPs including additional complexity if applicable, e.g., update of filter, and their assumption on non-AI based CSI prediction when performance results are provided. 

Conclusion
For the evaluation of the AI/ML based CSI prediction,  it is up to companies to choose the modelling method and companies should report if ‘Channel estimation’ and/or ‘phase discontinuity’ is/are considered by companies.

Agreement
For the evaluation of the AI/ML based CSI prediction, consider following CSI-RS configuration
· Periodic: 5 ms periodicity (baseline), 20 ms periodicity (encouraged) 
· Aperiodic: Optional, CSI-RS burst with K resources and time interval m slots (based on R18 MIMO eType-II)
Note: Companies to report observation window (number/distance) and prediction window (number/distance between prediction instances/distance from the last observation instance to the 1st prediction instance) on their evaluation.




Basic set of evaluation results for CSI prediction 
In the AI-based CSI prediction design, the AI model is designed to derive the prediction of CSIs as the output of the model when using the historical CSIs as the input. The block diagram of AI-based CSI prediction is illustrated in Figure 1.
[image: ]
[bookmark: _Ref163059285]The block diagram of AI-based CSI prediction.
In this subsection, the eventual KPI and intermediate KPI of AI-based CSI prediction, nearest historical CSI without prediction (benchmark 1, also known as sample and hold (S&H)), and auto regression (AR)-based non-AI CSI prediction (benchmark 2) are evaluated. 
A. [bookmark: _Ref158023518]The gain of AI-based CSI prediction in a channel with spatial consistency
The performance of the channel with spatial consistency is displayed in Figure 2 to Figure 3. The parameter configurations for the training dataset can be found in Appendix A, and the system-level simulation parameters are available in Appendix B. 
In the following simulation, length of the observation window and prediction window is 10 and 1, respectively. The distance between the adjacent CSIs in prediction window and distance from the last observation instance to the 1st prediction instance is identical, which is 5ms, 4ms and 2ms, corresponding to UE speeds of 30km/h, 60km/h, and 120km/h, respectively.

[bookmark: _Ref163032946]SGCS gain of AI-based CSI prediction at different speeds (with spatial consistency)
[bookmark: _Hlk157606658]It is shown that, for intermediate KPI, the AI-based CSI prediction achieves a SGCS gain of 
· 113.9% over the benchmark 1, and 6.9% over the benchmark2 when UE speed is 30km/h； 
· 90.6% over the benchmark 1, and 48.8% over the benchmark2 when UE speed is 60km/h；
· 68.2% over the benchmark 1, and 20.6% over the benchmark2 when UE speed is 120km/h.

[bookmark: _Ref159260231]SE gain of AI-based CSI prediction at different speeds (with spatial consistency)
[bookmark: _Hlk157606644]It is shown that, for eventual KPI:
· With full buffer traffic, AI-based CSI prediction achieves a mean SE gain of 
· 75.5% over the benchmark 1, and 8.1% over the benchmark 2 when UE speed is 30km/h;
· 28.9% over the benchmark 1, and 6.5% over the benchmark 2 when UE speed is 60km/h;
· 29.2% over the benchmark 1, and 14.8% over the benchmark 2 when UE speed is 60km/h.
[bookmark: OLE_LINK20][bookmark: OLE_LINK21]In conclusion, the AI-based CSI prediction can achieve clearly higher prediction accuracy and SE over both benchmark 1 and benchmark 2. In general, the gain is more obvious when UE speed is greater than or equal to 60km/h.
Compared to benchmark 1, the AI-based CSI prediction method can achieve SGCS gain of 113.9% and SE gain of 75.5% in the case of spatial consistency.
Compared to benchmark 2, the AI-based CSI prediction method can achieve SGCS gain of 48.8% and SE gain of 14.8% in the case of spatial consistency.
[bookmark: OLE_LINK18][bookmark: OLE_LINK19]In the simulation results above, it is just a comparison between the channel predicted in one slot (i.e., N4=1) using different prediction methods on the UE side and the ground truth of the channel. However, the ideal CSI feedback cannot be realized by the UE in real scenarios, and we need to evaluate the performance between non-AI and AI prediction algorithms further under the premise of CSI feedback with loss. In addition, based on previous agreement made in RAN1#116, N4>1 also needs to be evaluated. Therefore,  we evaluated both AR-based non-AI prediction methods (benchmark 2) and AI-based prediction methods using feedback compressed with the R18 doppler domain codebook. 
We choose N4 = 3 as an appropriate value in this simulation, since longer prediction time causes more potential performance degradation, and it does not make sense to evaluate an unusable prediction channel. The simulation results are shown in Figure 4, and the other simulation parameters are consistent with other evaluation cases in this section, where PMI#0, PMI#1 and PMI#2 represent the predicted PMI in three delay-doppler (DD) units

[bookmark: _Ref163006065]SGCS gain of AI-based CSI prediction with R18 DD codebook (with spatial consistency)
It is shown that, for intermediate KPI, the AI-based CSI prediction achieves SGCS gain of
· 17.5% ~42.5% over the benchmark2 when UE speed is 30km/h； 
· 52.4%~63.6% over the benchmark2 when UE speed is 60km/h；
· 37.5%~50.5% over the benchmark2 when UE speed is 120km/h.
In conclusion, the gain of AI based prediction achieve significant performance gain over AR-based non-AI prediction method for N4>1, and the gain becomes higher when it is then compressed by Rel-18 DD codebook.  
Compared to benchmark 2, the AI-based CSI prediction method can achieve SGCS gain of 63.6% in the case of N4=3. The SGCS gain becomes higher when predicted CSIs are compressed by Rel-18 DD codebook.
B. The gain of AI-based CSI prediction in the channel without spatial consistency
We also evaluated the performance of CSI prediction in channels without spatial consistency. Besides the setting of spatial consistency, other simulation parameters are identical to those in 2.2.1.A. 
 
SGCS gain of AI-based CSI prediction at different speeds (without spatial consistency)
It is shown that, for intermediate KPI, the AI-based CSI prediction achieves an SGCS gain of:
· 64.9% over the benchmark 1, and 4.0% over the benchmark2 when UE speed is 30km/h;
· 86.5% over the benchmark 1, and 26.6% over the benchmark2 when UE speed is 60km/h;
· 54.6% over the benchmark 1, and 12.9% over the benchmark2 when UE speed is 120km/h.
 
[bookmark: _Ref159246045]SE gain of AI-based CSI prediction at different speeds (without spatial consistency)
It is shown that, for eventual KPI:
· With full buffer traffic, AI-based CSI prediction achieves a mean SE gain of 
· 86.4% over the benchmark 1, and 10% over the benchmark 2 when UE speed is 30km/h;
· 53.5% over the benchmark 1, and 20.0% over the benchmark 2 when UE speed is 60km/h;
· 30.0% over the benchmark 1, and 14.7% over the benchmark 2 when UE speed is 120km/h.
In conclusion, similar to those results in 2.2.1.A, the AI-based CSI prediction can achieve clearly higher prediction accuracy and SE over both benchmark 1 and benchmark 2, especially when UE speed is greater than or equal to 60km/h.
 Compared to benchmark 1, the AI-based CSI prediction method can achieve SGCS gain of 86.5% and SE gain of 86.4% in the case of non-spatial consistency.
Compared to benchmark 2, the AI-based CSI prediction method can achieve SGCS gain of 26.6% and SE gain of 20.0% in the case of non-spatial consistency.
C. The generalization of AI-based CSI prediction
· The generalization of AI-based prediction over speeds
In this sub-section, the generalization of AI-based CSI prediction over different speeds is evaluated. The corresponding simulation parameters are given below.
· Simulation parameters: Uma 38.901 ,carrier frequency 2GHz, subcarrier spacing 15KHz, 32 gNB antenna ( [Mg Ng M N P; Mp Np] = [1 1 2 8 2; 2 8]), 2 UE antenna ([Mg Ng M N P; Mp Np] = [1 1 1 1 2; 1 1]), 100% outdoor UE, Channel type: Uma, NLOS, Period of CSI-RS: 5ms; Input of AI model for CSI prediction: 10 raw historic channels in PRB, the spatial consistency procedure A with 50m decorrelation distance is used where the channel updating periodicity is assumed to be 1 ms.
The AI model is trained using the data with one specific UE speed (30, 60, or 120 km/h) or mixed speeds. Then, the trained model is tested on the data with the UE speed of 30 and 60 km/h and 120km/h, respectively, to evaluate the generalization performance.
The generalization performance of AI-based CSI prediction over speeds
	Case 1
	Train (setting#B, size/k)
	30km/h,90
	60km/h,90
	120km/h,90

	
	Test (setting#B, size/k)
	30km/h,10
	60km/h,10
	120km/h,10

	
	SGCS 
	0.9896
	0.8012
	0.6156

	Case 2
	Train (setting#A, size/k)
	60km/h,90
120km/h,90
	30km/h,90
120km/h,90
	30km/h,90
60km/h,90

	
	Test (setting#B, size/k)
	30km/h,10
	60km/h,10
	120km/h,10

	
	SGCS/Loss
	0.9228/-6.75%
0.8834/-10.73%
	0.5605/-30.82%
0.7469/-7.81%
	0.5048/-17.99%
0.5691/-7.55%

	Case 3
	Train (setting#A+#B, size/k)
	30km/h+60km/h+120km/h,30+30+30
	30km/h+60km/h+120km/h,30+30+30
	30km/h+60km/h+120km/h,30+30+30

	
	Test (setting#B, size/k)
	30km/h,10
	60km/h,10
	120km/h,10

	
	SGCS/Loss
	0.9493/-4.07%
	0.7797/-3.76%
	0.5882/-4.45%



It is shown that the model trained at each speed can only cope with its corresponding speed but performs poor at other speed. Especially when the testing speed is higher than the training speed, the degradation of prediction accuracy is more significant.
The generalization of AI-based CSI prediction over speed is not good if the training set contains only one speed.
When the testing speed is higher than the training speed, the degradation of prediction accuracy is more significant than the other way around.
The generalization of AI-based CSI prediction over speed can be improved using training set with mixed speed, whose prediction accuracy is still worse than that of speed-specific models.
· The generalization of AI-based prediction over deployment scenarios
Similarly, the scenarios of channel such as Uma and Umi also impact the time varying property of wireless channel. In details, the models are trained by using data set from Uma, Umi and mixed scenarios, respectively and then test these models in Uma and Umi channel accordingly. In this simulation, the period of CSI-RS is 5 ms, and the prediction is with 10 historical CSIs as the input and the future CSI at +5ms as output. The UE is travelling at the speed of 60km/h. The carrier frequency is 2GHz and the subcarrier spacing is 15kHz. The channel type is NLOS. The spatial consistency procedure A with 50m decorrelation distance is used where the channel updating periodicity is assumed to be 1 ms.
The generalization performance of AI-based CSI prediction over Uma and Umi scenarios
	Case 1
	Train (setting#B, size/k)
	Uma,90
	Umi,90

	
	Test (setting#B, size/k)
	Uma,10
	Umi,10

	
	SGCS 
	0.8102
	0.9095

	
	NMSE 
	-4.817dB
	-7.55dB

	Case 2
	Train (setting#A, size/k)
	Umi,90
	Uma,90

	
	Test (setting#B, size/k)
	Uma,10
	Umi,10

	
	SGCS 
	0.7387/-8.82%
	0.8712/-4.11%

	Case 3
	Train (setting#A+#B, size/k)
	Uma+Umi,45+45
	Uma+Umi,45+45

	
	Test (setting#B, size/k)
	Uma,10
	Umi,10

	
	SGCS 
	0.7614/-6.02%
	0.8821/-3.01%



It can be seen that the prediction performance decreases significantly when the model trained by Uma is tested on the Umi data and the model trained by Umi is tested on the Uma data. Furthermore, the model trained by the mixed scenarios can improve the generalization performance while its data collection is needed to be carefully designed.
The generalization over the deployment scenarios, e.g., LOS/NLOS, Uma/Umi, is not good if the training set contains only one scenario. Training with mixed scenarios can improve the generalization performance while its data collection needs to be carefully designed
· [bookmark: _Hlk163029637]The generalization of AI-based prediction over carrier frequencies
Carrier frequency will also impact the time varying property of wireless channel since at least the doppler shift is related to the carrier frequency. In this sub-section, the generalization of AI-based CSI prediction over different carrier frequencies is evaluated. The corresponding simulation parameters are given below.
· Simulation parameters: Uma 38.901, subcarrier spacing 15KHz, 32 gNB antenna ( [Mg Ng M N P; Mp Np] = [1 1 2 8 2; 2 8]), 2 UE antenna ([Mg Ng M N P; Mp Np] = [1 1 1 1 2; 1 1]), 100% outdoor UE, Channel type: Uma, NLOS, speed: 30km/h. Period of CSI-RS: 5ms; Input of AI model for CSI prediction: 10 raw historic channels in PRB, the spatial consistency procedure A with 50m decorrelation distance is used where the channel updating periodicity is assumed to be 1 ms.
The AI model is trained using the data with one specific carrier frequency (2GHz or 3GHz) or mixed carrier frequencies. Then, the trained model is tested on the data with the carrier frequency of 2GHz and 3GHz, respectively, to evaluate the generalization performance.
The generalization performance of AI-based CSI prediction over carrier frequencies
	Case 1
	Train (setting#B, size/k)
	2GHz,90
	3GHz,90

	
	Test (setting#B, size/k)
	2GHz,10
	3GHz,10

	
	SGCS 
	0.9896
	0.9262

	Case 2
	Train (setting#A, size/k)
	3GHz,10
	2GHz,10

	
	Test (setting#B, size/k)
	2GHz,10
	3GHz,10

	
	SGCS 
	0.9595/-3.3%
	0.7313/-21.04%

	Case 3
	Train (setting#A+#B, size/k)
	2GHz+3GHz,45+45
	2GHz+3GHz,45+45

	
	Test (setting#B, size/k)
	2GHz,10
	3GHz,10

	
	SGCS 
	0.9702/-1.96%
	0.8502/-8.21%



It is shown that the prediction performance decreases significantly when the model trained by data with carrier frequency of 2GHz is tested on the data with carrier frequency of 3GHz. Furthermore, the model trained by the mixed scenarios can improve the generalization performance while there still exist performance gap with generalization Case 1.
When the testing carrier frequency is higher than the training carrier frequency, the degradation of prediction accuracy is more significant than the other way around. The model trained by the mixed scenarios can improve the generalization performance while there still exist performance gap with generalization Case 1.
Investigate CSI prediction under practical impairments
In real fields, there are multiple aspects which makes ideal channel estimation impractical and impacts the performance of different prediction algorithms, e.g., phase discontinuity of the channel or gNB Tx RF chain, different levels of channel estimation error, etc. With these aspects being introduced, performance of non-AI algorithms like AR will degrade significantly as it requires smooth variation of the channel in time. However, for AI based prediction algorithms, at least part of these impairments can be learned by data driven approaches, which makes AI prediction more robust under such circumstances. Evaluation results in this section provide evidence.
A. The impact of channel estimation error
In this subsection, we evaluate the performance under multiple levels of channel estimation errors. The modelling of channel estimation error follows the model widely used in MIMO evaluations, which is done by first generating a random complex matrix with the same dimensions as the ideal channel and obeying a Gaussian distribution and then adding this error matrix to the ideal channel. 
The following is an intermediate KPI evaluation with a UE speed of 30km/h and a CSI-RS period of 5ms. The observation window covers 10 occasions and the prediction window is 1 occasion. Performance of the channel with realistic estimation is displayed in Figure 7.

SGCS gain of realistic channel estimation with different error levels
It is shown that, for intermediate KPI, the AI-based CSI prediction achieves an SGCS gain of:
· 62.8% over the benchmark 1, and 10.4% over the benchmark2 when standard deviation is equal to 0.1.
· 65.3% over the benchmark 1, and 25.7% over the benchmark2 when standard deviation is equal to 0.3.
In conclusion, AI-based CSI prediction can obtain significantly higher prediction accuracies than benchmark 2, especially when the standard deviation gradually increases, but the change in standard deviation has almost no effect on the gain of AI-based CSI prediction over benchmark 1.
Compared to benchmark 2, the AI-based CSI prediction method can achieve SGCS gain of 25.7% when channel estimation error gets larger. The gain of AI-based scheme over benchmark 2 increases with the standard deviation of the channel estimation error.
B. The gain of AI-based CSI prediction with Tx/Rx phase discontinuity in real fields
We have done some filed test to evaluate impact of practical impairments over prediction algorithms. The data is collected from the cell 1 and cell 2 depicted in Figure 8. The configuration of the UE and BS in this filed test is provided as follows: carrier frequency is 3.45GHz, subcarrier spacing is 30kHz, the number of antenna ports at BS is 8, the number of antenna ports at UE is 4, the CSI periodicity is 10ms, the number of historical CSIs in the observation window is 15, and the predicted CSI is at the time of +10ms. 
[bookmark: _GoBack][image: ]
[bookmark: _Ref159246142]The map of data collecting areas

In the following Figure 9, the SGCS gain of AI-based CSI prediction corresponding to the filed data is illustrated. It is shown that the AI-based CSI prediction can achieve about 11%~54% SGCS gain over benchmark1 (S&H) and more than 19%~30% SGCS gain over benchmark2 (AR). The prediction performance of benchmark2 is very poor in some cases, e.g., in cell 2 (even worse than benchmark1). This is because there exists channel estimation error and phase discontinuity of radio frequency (RF) chain in the filed data channel, and AR is very sensitive to these impairments.
[image: ]
[bookmark: _Ref141981300]The SGCS gain of AI-based CSI prediction at filed data
To further verify the phase discontinuity of RF chain in the field test channel, we fixed the antennas at UE and collected a set of measured channel data, which was used to observe the phase information of consecutive multiple CSIs. The phases of consecutive multiple CSIs for a pair of transceiver antennas on a single RB are given in the following Figure 10. It is shown that the phases of consecutive multiple CSIs are unstable or have no obvious pattern of change even when the terminals are fixed, i.e., the existence of a phase discontinuity problem in the field test channel is confirmed. This problem may mainly come from the phase shift of hardware such as amplifier. Based on the large amount of CSI data, the AI model is able to learn at least part of the law of phase shift, and somehow achieves compensation to the CSIs. Therefore, it seems that the traditional AR algorithm may not be able to solve the CSI prediction under phase discontinuity conditions, while the AI-based scheme can still work well under phase discontinuity conditions.
[image: ]
[bookmark: _Ref141981723]The phase discontinuity of RF chain in field data
[bookmark: _Hlk142680063]The AI-based CSI prediction achieves significantly higher prediction accuracy and UPT over both benchmark 1 and benchmark 2 under impairments like channel estimation error and phase discontinuity. With the presence of phase discontinuity, AI achieves about 11%~54% SGCS gain over benchmark1 and 19%~30% SGCS gain over benchmark 2.
C. The impact of CSI prediction with Rx phase discontinuity in simulations
In RAN1#116bis, the following conclusions are made on the modelling of Rx phase discontinuity.
	Conclusion
If phase discontinuity is modeled, it is modelled as a uniform distribution between  within a time window of , where =40 degrees and =20ms can be a baseline. 
· Other modelling is not precluded, and companies should report how to model phase discontinuity if other modelling is considered, and additional .，if adopted
Conclusion
For the phase discontinuity modelling, it is clarified that
· A fixed phase for all CSI-RS observations within the time window, and another fixed phase for the next time window. The phases are according to uniform distribution.







Based on the concluded modelling, we evaluated the SGCS for the cases of and  when the UE is moving at 30km/h. The results shown in Figure 11 are presented in the form of using the SGCS of SH without the effect of discontinuous phase as a baseline. For example, if the SGCS of SH without the effect of phase discontinuities is A and the SGCS of AI at and  is B, then the ratio of SGCS with respect to A is B/A. Further, Figure 12 depicts the SGCS values for these cases when 
 [image: ]
[bookmark: _Ref163001845][bookmark: _Ref166243208]SGCS gain (%) of channel prediction with phase discontinuities

[bookmark: _Ref166243229] Impact of introducing phase discontinuities in channel modeling on channel prediction 
We also evaluate the impact of phase discontinuity modelling at the system level performance with the same simulation parameters as in the previous sections and N4 = 3, PC = 6. Phase discontinuity is modelled as given in the above conclusion, i.e., =40 degrees and  =20ms.

[bookmark: _Ref166252505]SE gain (%) of channel prediction with phase discontinuities
It can be observed from Figure 11 and Figure 12 that 
· With phase discontinuity modelled, AI based prediction shows much larger gain over non-AI based methods. This is aligned with the observation driven from field test.
· When phase discontinuity is high, e.g., , AI based prediction can still provide satisfactory SGCS.
Form Figure 13, it is shown that, for eventual KPI with phase continuity modelled as =40 degrees and  =20ms:
· With full buffer traffic, AI-based CSI prediction achieves a mean SE gain of 
· 81.9% over the benchmark 2 at 5% SE, and 24.7% over the benchmark 2 at average SE when UE speed is 30km/h;
· 48.9% over the benchmark 2 at 5% SE, and 41.3% over the benchmark 2 at average SE when UE speed is 60km/h;
With phase discontinuity modelled, AI based prediction shows much larger gain over non-AI based methods, e.g., up to 48.6% over benchmark 2 when . When phase discontinuity is high, e.g., , AI based prediction can still provide satisfactory SGCS, e.g., around 0.8 - 0.9.
With phase discontinuity modelling as =40 degrees and  =20ms, the AI-based prediction improves the gain on the 5% SE and average SE by 81.9% and 24.7% respectively compared to the non-AI prediction method at speed of 30km/h.
[bookmark: _Hlk166253190]With phase discontinuity modelling as =40 degrees and  =20ms, the AI-based prediction improves the gain on the 5% SE and average SE by 48.9% and 41.3% respectively compared to the non-AI prediction method at speed of 60km/h.

Specification impacts
Functionality based LCM
It is agreed that functionality based LCM is supported as baseline for CSI prediction based on AI. The keys issues on LCM includes functionality report and training-inference consistency.
Functionality report is the first step to make the whole AI based prediction work. NW needs to know the functionality/capability for AI based prediction, and then configure the resources and report settings for data collection, inference and monitoring. The reported information at least includes
· Maximum observation window for AI based prediction, so that NW can configure the RS resources for data collection and inference
· Maximum prediction window for AI based prediction, so that NW can configure the report setting for inference and RS for monitoring
· Processing unit related to AI based prediction. More details arte elaborated in section 3.2.
At least include the following information in functionality identification procedure for AI based prediction
· Maximum observation window for AI based prediction
· Maximum prediction window for AI based prediction
· Processing unit related to AI based prediction
For training-inference consistency, the need for introducing specification based approach (e.g., associated ID based approach introduced in general framework study) for CSI prediction is to be studied. The key of this study is to identify whether there are key NW additional conditions which impacts the performance of AI based CSI prediction. Potential examples might be CSI-RS virtualization, or gNB transmitter’s phase coherent time and phase jumping level as studied in section 2.2.
For training-inference consistency of CSI prediction use case, study to identify whether there are NW additional conditions which impacts the performance of AI based CSI prediction, e.g., CSI-RS virtualization, gNB transmitter’s phase coherent time and phase jumping level.

Feedback mechanism
	Agreement
[bookmark: _Hlk164784376][bookmark: _Hlk164784547][bookmark: _Hlk164784255]At least for inference, for UE-sided model based CSI prediction, legacy feedback mechanism using codebook type set to “typeII-Doppler-r18” is a starting point of discussion. Study the necessity and potential specification impacts including at least following aspects:
· CSI processing criteria and timeline


Generally Rel-18 Type II Doppler based CSI can be a baseline for feedback mechanism of AI based CSI prediction， which typically raw channel is used for prediction and Rel-18 Doppler codebook is used for PMI feedback. The keys issues for feedback mechanism then are CSI processing criteria and timeline as agreed above. 
For legacy CSI feedback, CSI processing unit (CPU) is used to quantize the UE capability of processing simultaneous CSI reports. However, the CPU used for AI-based CSI may be different from the CPU used for codebook-based CSI reporting, as different UE implementation modules (including both hardware and software) are expected to be used for AI based and legacy CSI prediction reports.
In our opinion, there are two options for CSI processing after the introduction of AI CSI:
· Option 1 – Joint processing unit pool for AI based CSI and legacy CSI: This option means that the AI CSI processing flow can be added to the existing CSI processing flow, in other words, the CSI feedback of the codebook and the CSI feedback of the AI share a common pool of CSI processing units. For example, some UE operations like DCI detection, channel estimation, PMI/CQI derivation can be common to legacy CSI and AI based CSI. A further step is to determine the different weights/priorities for AI based CSI and legacy CSI in CPU occupation depending on UE’s implementation on AI based CSI.
· Option 2 – Separate processing unit pools for AI based CSI and legacy CSI: In this option, the processing unit of AI CSI is separated from the CPU of legacy CSI to construct two independent processing pools. This option comes from the fact that the processing of AI based CSI typically uses different hardware compared with legacy CSI in UE implementation, i.e., UE typically will employ separate hardware to support AI based CSI prediction. Hence it is reasonable to use separate pools for them so that the processing of legacy CSI and AI CSI won’t interfere mutually to avoid unnecessary dropping.
However, both of the above schemes have the same problem: when the UE uses neural network for inference, the network side nodes do not know the neural network arithmetic of the terminal, the time the terminal runs the neural network, etc., which makes it difficult to configure the neural network for the terminal to match the terminal's operating resources, making it difficult to match the neural network model used by the terminal to its operating resources, and thus both require the terminal to interact with the network side nodes to carry out some processing Therefore, it is necessary for the terminal to interact with the network side nodes for reporting some processing capability information, so that the base station can maximise the CSI processing capacity of the UE.
Last but not least, CSI prediction use case is similar with UE side beam prediction use case. A common approach is expected to be adopted for these two.
Study the following two options to quantize the processing criteria of AI based CSI
· Option 1: Joint processing unit pool for AI based CSI and legacy CSI
· Option 2: Separate processing unit pools for AI based CSI and legacy CSI

Performance monitoring
	Agreement
For CSI prediction using UE side model use case, at least the following aspects have been proposed by companies on performance monitoring for functionality-based LCM: 
· Type 1: 
· UE calculate the performance metric(s) 
· UE reports performance monitoring output that facilitates functionality fallback decision at the network
· Performance monitoring output details can be further defined 
· NW may configure threshold criterion to facilitate UE side performance monitoring (if needed). 
· NW makes decision(s) of functionality fallback operation (fallback mechanism to legacy CSI reporting). 
· Type 2: 
· UE reports predicted CSI and/or the corresponding ground truth  
· NW calculates the performance metrics. 
· NW makes decision(s) of functionality fallback operation (fallback mechanism to legacy CSI reporting).
· Type 3: 
· UE calculate the performance metric(s) 
· UE report performance metric(s) to the NW
· NW makes decision(s) of functionality fallback operation (fallback mechanism to legacy CSI reporting). 
· Functionality selection/activation/ deactivation/switching what is defined for other UE side use cases can be reused, if applicable. 
· Configuration and procedure for performance monitoring 
· CSI-RS configuration for performance monitoring
· Performance metric including at least intermediate KPI (e.g., NMSE or SGCS)
· UE report, including periodic/semi-persistent/aperiodic reporting, and event driven report.
· Note: down selection is not precluded.
· Note: UE may make decision within the same functionality on model selection, activation, deactivation, switching operation transparent to the NW. 

Agreement
[bookmark: _Hlk164784582][bookmark: _Hlk164784594]For performance monitoring for functionality-based LCM, further study on details of type 1,2 and 3, e.g., potential specification impact, pros/cons aspects. 
· To clarify the boundary between type 1 and type 3
· To clarify definition of monitoring output and performance metric


Throughout the R18 SI phase, a lot of performance evaluation work has been done for AI CSI prediction, and from the evaluation results, we can easily find that the AI prediction performance varies with the speed, transmission scenario, and channel type, and is also affected by the observation window and prediction window. In real scenarios, the terminal environment changes all the time, and model monitoring is an indispensable part for the stable operation of the AI CSI prediction function.
In #116-bis, there was a consensus on functional-based LCM performance monitoring, and further study on details of type 1,2 and 3. Therefore, in this section we will describe our understanding of these three types of performance monitoring.
For type 1, its advantage is that it can report performance monitoring outputs on demand, and the UE can choose to report performance monitoring outputs as long as they are available or when they are abnormal. The reporting is very small payload, while the computation process does not involve information interactions. Per contra, it has the disadvantage that extra data processing increases the load on the UE, such as power consumption and data resources (e.g. the number of CPUs that can be allocated). The performance monitoring outputs introduced by the UE based on the metrics calculated from its own monitoring KPIs may be too incomprehensive, and the base station will receive incomprehensive and small amount of information, leading the base station to make incorrect functional LCM decisions for the UE.
For Type2, which is very similar to existing measurement reporting mechanisms, its advantage lies in the fact that it allows the base station to obtain more information and has less impact on existing specifications. On the other hand, its disadvantages are also obvious, the UE reporting has large overhead. Further, to make the monitoring accurate, the overhead can be even larger than regular CSI report.  
For type3, it can be considered as a trade-off between type1 and type2, so it has the advantage of streamlining the reporting content while allowing the base station to get enough information for functional decision-making. It is only responsible for monitoring, not involved in decision-making, the base station can get enough information for AI function management through the reported content. Of course, this will also bring additional overheads.
The above is our understanding of the 3 performance monitoring types. The difference between the reported contents of type1 and type3 lies in the results of which phase of monitoring, the whole monitoring process can be divided into two phases, the monitoring period and the monitoring summary period. Obviously, the reported content of type1 is the output of the monitoring summary period, that is, type1 reports the final output of the monitoring results, after the end of the whole monitoring, the UE based on some methods of the whole monitoring period of the summary of the output can be the model monitoring scores (based on the results of the metric combined with a certain criterion for the model to determine the scoring) or based on the overall monitoring of the metric, the terminal to give whether or not to continue the monitoring metric, the endpoint gives a recommended action (Boolean value) to continue the AI function or not. On the other hand, type3 reports the monitoring results, the whole operation is in the monitoring period, and the terminal only provides the KPIs or metrics in the monitoring, and puts the summary of the whole monitoring on the base station side. In short, type 1 reports 0/1 hard information for monitoring, while type 3 reports soft information with specified monitoring metrics. 
At least prioritize type 3 for CSI prediction performance monitoring. Further study the specified reporting metric.
Conclusions
We have the following observations for this meeting:
1. Compared to benchmark 1, the AI-based CSI prediction method can achieve SGCS gain of 113.9% and SE gain of 75.5% in the case of spatial consistency.
1. Compared to benchmark 2, the AI-based CSI prediction method can achieve SGCS gain of 48.8% and SE gain of 14.8% in the case of spatial consistency.
1. Compared to benchmark 2, the AI-based CSI prediction method can achieve SGCS gain of 63.6% in the case of N4=3. The SGCS gain becomes higher when predicted CSIs are compressed by Rel-18 DD codebook.
1. Compared to benchmark 1, the AI-based CSI prediction method can achieve SGCS gain of 86.5% and SE gain of 86.4% in the case of non-spatial consistency.
1. Compared to benchmark 2, the AI-based CSI prediction method can achieve SGCS gain of 26.6% and SE gain of 20.0% in the case of non-spatial consistency.
1. The generalization of AI-based CSI prediction over speed is not good if the training set contains only one speed.
1. When the testing speed is higher than the training speed, the degradation of prediction accuracy is more significant than the other way around.
1. The generalization of AI-based CSI prediction over speed can be improved using training set with mixed speed, whose prediction accuracy is still worse than that of speed-specific models.
1. The generalization over the deployment scenarios, e.g., LOS/NLOS, Uma/Umi, is not good if the training set contains only one scenario. Training with mixed scenarios can improve the generalization performance while its data collection needs to be carefully designed
1. When the testing carrier frequency is higher than the training carrier frequency, the degradation of prediction accuracy is more significant than the other way around. The model trained by the mixed scenarios can improve the generalization performance while there still exist performance gap with generalization Case 1.
Compared to benchmark 2, the AI-based CSI prediction method can achieve SGCS gain of 25.7% when channel estimation error gets larger. The gain of AI-based scheme over benchmark 2 increases with the standard deviation of the channel estimation error.
The AI-based CSI prediction achieves significantly higher prediction accuracy and UPT over both benchmark 1 and benchmark 2 under impairments like channel estimation error and phase discontinuity. With the presence of phase discontinuity, AI achieves about 11%~54% SGCS gain over benchmark1 and 19%~30% SGCS gain over benchmark 2.
With phase discontinuity modelled, AI based prediction shows much larger gain over non-AI based methods, e.g., up to 48.6% over benchmark 2 when . When phase discontinuity is high, e.g., , AI based prediction can still provide satisfactory SGCS, e.g., around 0.8 - 0.9.
With phase discontinuity modelling as =40 degrees and  =20ms, the AI-based prediction improves the gain on the 5% SE and average SE by 81.9% and 24.7% respectively compared to the non-AI prediction method at speed of 30km/h.
With phase discontinuity modelling as =40 degrees and  =20ms, the AI-based prediction improves the gain on the 5% SE and average SE by 48.9% and 41.3% respectively compared to the non-AI prediction method at speed of 60km/h.

We have the following proposal for this meeting:
1. At least include the following information in functionality identification procedure for AI based prediction
· Maximum observation window for AI based prediction
· Maximum prediction window for AI based prediction
· Processing unit related to AI based prediction
For training-inference consistency of CSI prediction use case, study to identify whether there are NW additional conditions which impacts the performance of AI based CSI prediction, e.g., CSI-RS virtualization, gNB transmitter’s phase coherent time and phase jumping level.
Study the following two options to quantize the processing criteria of AI based CSI
· Option 1: Joint processing unit pool for AI based CSI and legacy CSI
· Option 2: Separate processing unit pools for AI based CSI and legacy CSI
At least prioritize type 3 for CSI prediction performance monitoring. Further study the specified reporting metric.
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Appendix A: Dataset parameter configuration

	Parameter
	Value

	Scenario
	UMa

	Channel model
	Uma 38.901

	Carrier frequency
	2GHz

	Bandwidth
	10MHz

	Subcarrier spacing
	15KHz

	Data type
	raw channel

	Time domain part
	200 consecutive slots

	Antenna configuration for Cell
	[Mg Ng M N P; Mp Np] = [1 1 2 8 2; 2 8]

	Antenna configuration for UE
	[Mg Ng M N P; Mp Np] = [1 1 2 1 1; 1 1]

	Site number
	7

	Sector number
	3

	User number per cell
	50

	Drop number
	100



Appendix B: System-level evaluation parameters

	Parameter
	Value

	Scenario
	UMa

	Channel model
	Uma 38.901

	Site number
	7

	Sector number
	3 

	User number per cell
	10

	Carrier frequency
	2GHz

	Bandwidth
	10MHz

	CSI period
	Depends on the speed

	Feedback delay
	4ms

	Feedback type
	R16 etype II codebook with PC=1
R18 etype II codebook with PC = 6

	Subcarrier spacing
	14 OFDM symbol slot, SCS = 15kHz

	Beam set at TRxP
	Azimuth angle φi = [0], Zenith angle θj = [102].

	Channel estimation
	Ideal

	Receiver
	MMSE-IRC

	Transmission scheme
	MU-MIMO, maximum layers = 8

	Scheduling
	PF

	Traffic model
	Full buffer

	BS Tx Power
	43 dBm per 10MHz

	Antenna configuration for Cell
	[Mg Ng M N P; Mp Np] = [1 1 2 8 2; 2 8]

	Antenna configuration for UE
	[Mg Ng M N P; Mp Np] = [1 1 2 1 1; 1 1]

	User distribution
	100% outdoor

	Propagation type
	NLOS

	Additional channel modeling
	Spatial consistency with procedure a



The SGCS gain of AI-based CSI prediction

gain over benchmark 1	
30km/h	60km/h	120km/h	1.139	0.90600000000000003	0.68200000000000005	gain over benchmark 2	
30km/h	60km/h	120km/h	6.9000000000000006E-2	0.48799999999999999	0.20599999999999999	



The SE gain of AI-based CSI prediction

gain over benchmark 1	
30km/h	60km/h	120km/h	0.755	0.28899999999999998	0.29199999999999998	gain over benchmark 2	
30km/h	60km/h	120km/h	8.1000000000000003E-2	6.5000000000000002E-2	0.14799999999999999	



SGCS gain over benchmark 2 

PMI#0	
30km/h	60km/h	120km/h	0.17499999999999999	0.52400000000000002	0.38700000000000001	PMI#1	
30km/h	60km/h	120km/h	0.36799999999999999	0.63600000000000001	0.375	PMI#2	
30km/h	60km/h	120km/h	0.42499999999999999	0.54100000000000004	0.505	
SGCS gain




The SGCS gain of AI-based CSI prediction

gain over benchmark 1	
30km/h	60km/h	120km/h	0.64900000000000002	0.86499999999999999	0.54600000000000004	gain over benchmark 2	
30km/h	60km/h	120km/h	0.04	0.26600000000000001	0.129	



The SE gain of AI-based CSI prediction

gain over benchmark 1	
30km/h	60km/h	120km/h	0.86399999999999999	0.53500000000000003	0.3	gain over benchmark 2	
30km/h	60km/h	120km/h	0.1	0.2	0.14699999999999999	



SGCS gain with different standard deviations

gain over benchmark 1	
std=0.1	std=0.3	0.628	0.65300000000000002	gain over benchmark 2	
std=0.1	std=0.3	0.104	0.25700000000000001	



SH-T_W=20	
phi_max=0	phi_max=15	phi_max=30	phi_max=40	0.88500000000000001	0.82499999999999996	0.47399999999999998	0.45800000000000002	AR-T_W=20	
phi_max=0	phi_max=15	phi_max=30	phi_max=40	0.97099999999999997	0.95	0.75900000000000001	0.54700000000000004	AI-T_W=20	
phi_max=0	phi_max=15	phi_max=30	phi_max=40	0.98799999999999999	0.97299999999999998	0.91100000000000003	0.81299999999999994	



System Spectral Efficiency Gain Comparison

5% SE	
30km/h	60km/h	0.81899999999999995	0.48899999999999999	Average SE	
30km/h	60km/h	0.247	0.41299999999999998	
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