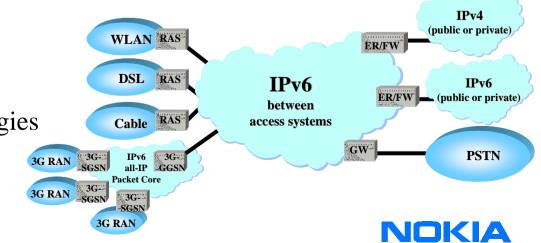

## **3GPP all-IP Workshop --Nokia All-IP System Design Principles**

February 7, 2000 Sami Huusko

sami.huusko@nokia.com






- <u>Fast track:</u> Leverage the best-in-class telecom and datacom standards
- Enhance existing specifications, or develop new ones when necessary, to reach open, multivendor system design
- <u>Smooth evolution</u> for both network and services
- <u>Scalability:</u> Support for 1 Billion+ terminals
- Rapid and flexible creation of new services: unlimited differentiation
- Separation of service, connection and mobility control: access independent and globally unified services
- System optimized for high load IP traffic
- Support of mobility between accesses
- End-to-end QoS support with high reliability and spectrum efficiency



# **<u>IP Version 6:</u>** The Basis of the All-IP System

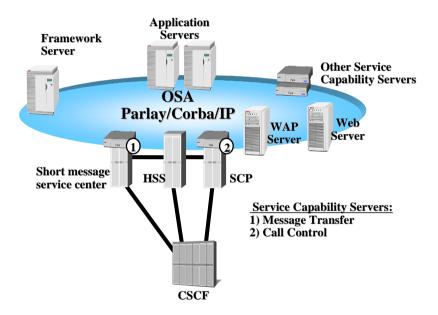
- Huge growth of mobile Internet terminals will exhaust IPv4 address space
  - All wireless terminals will have WAP and GPRS
    - IPv6 brings enough IP addresses
- Ease of scalability
  - Supporting billions of new devices and huge amounts of new bandwidth
  - Simplified, cost-efficient architecture without NATs, Proxies, ALGs,...
- Always-on connection establishes a variety of new services
  - Push, location-based, etc.
- Integrated Security
- Efficiency: IPv6 improves efficiency in a number of areas.
  - Routing, Broadcast handling
- Quality of Service improvements
  - Fragmentation, Flows
- Mobility Across Access Technologies



# **Benefits of IPv6**

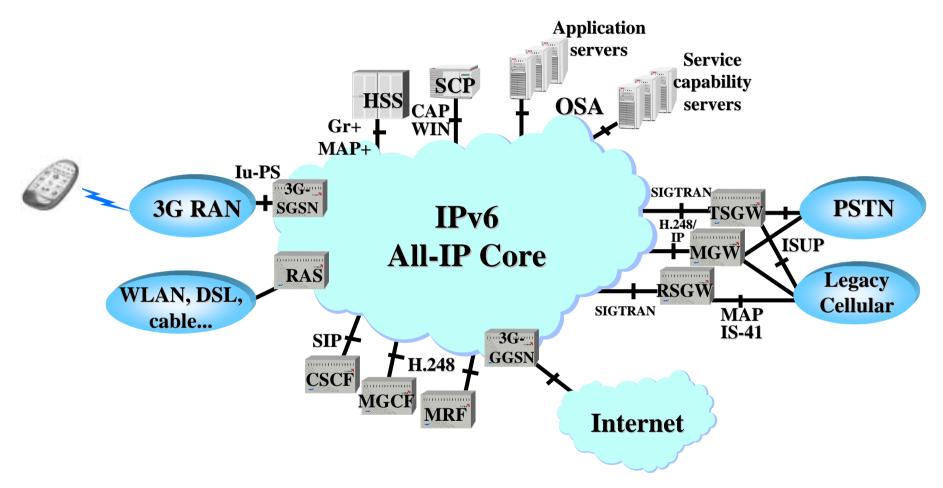
#### For end users / companies

- Easy management: Autoconfiguration
- Embedded encryption support and authentication
- Embedded mobility
- Embedded multicasting
- Internet Provider selection
- Efficient packet processing in routers
- Real-time support
- Protocol extensions for proprietary solutions


#### For ISPs / Operators

- Easy management: Autoconfiguration
- Efficient address allocation
- Improved multicast management
- Renumbering possible
- Efficient network route aggregation
- Efficient packet processing in routers
- Real-time support

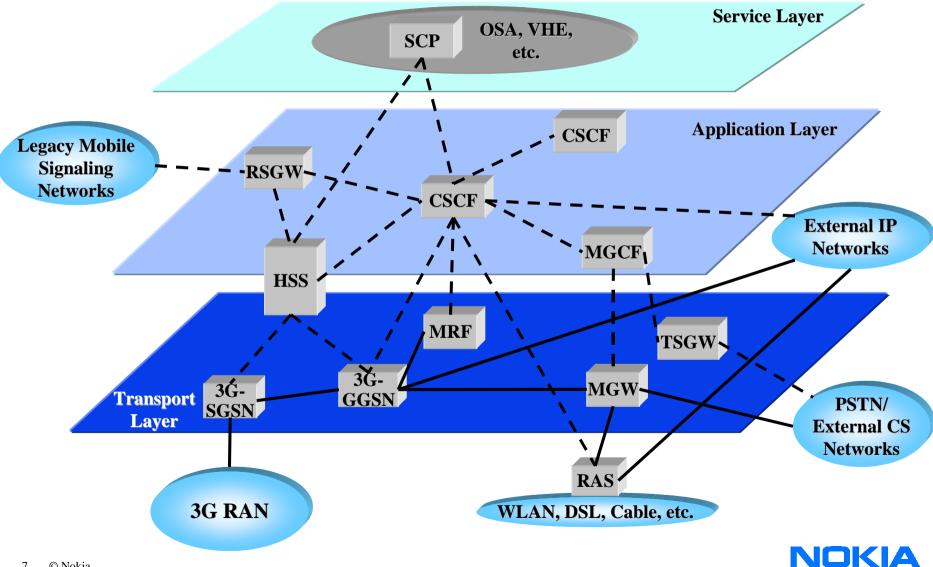



## **Service Architecture**

- Common service machinery for all access systems
- A core set of basic and supplementary services defined
  - e.g., call divert, barring, pre-paid, emergency call, etc
- Open APIs (Parlay, JAIN, etc.) to support rapid, flexible and secure service creation to enable
  - 3rd party application development
  - Vendor independence
  - New business models with external service providers
- OSA service architecture to support services
  - Similar to current IN services
  - Exploiting the enhanced capabilities of IP network (video, multimedia etc.)
- Globally accessible services via CAMEL/WIN or by direct access between terminal and application server






## **All-IP System Level Architecture**



| CSCF | Call State Control Function    | MRF  | Multimedia Resource Function           |
|------|--------------------------------|------|----------------------------------------|
| HSS  | Home Subscriber Server         | RAS  | Remote Access Server (DSLAM, head end) |
| MGCF | Media Gateway Control Function | RSGW | Roaming Signaling Gateway              |
| MGW  | Media Gateway                  | TSGW | Transport Signaling Gate               |



### **All-IP Reference Architecture --Robust Platform for Future Evolution**



### **Conclusion -- Requirements for Future All-IP Systems**

- Mobility Handling
  - Determined by, and optimised for, mobile terminals
- Multiservice
  - Common Network for real time and non real time services
  - Rapid, flexible and easy creation of new services
- Layered Network Functionality
  - For independence of access, transport, applications and service creation
  - For system flexibility and future evolution
- Multiaccess & Access Independence
  - Several accesses including WCDMA, EDGE, WLAN, Cable etc.
  - Mobility between accesses (Global IP Mobility)
- IPv6-Based
  - For mobility between accesses (Global IP Mobility)
  - For scalability and address space
- Evolution and Legacy Support
  - For utilisation of existing investments
  - For service continuity
- Shared Transport and Network Management
  - For cost efficiency

