	
3GPP TSG-SA WG6 Meeting #60	S6-241597
Changsha, China, 15th - 19th Apr 2024	(revision of S6-241342, S6-241088)

Source:	Apple
Title:	Solution on Frontend For Backend
Spec:	3GPP TR 23.700-22 v0.1.0
Agenda item:	8.7
Document for:	Approval
Contact:	Walter Featherstone, w_featherstone@apple.com

1. Introduction
This paper proposes to introduce a solution related to Key Issue 3 on RNAA architecture enhancements, where it is proposed to expand CAPIF to include the Backend For Frontend (BFF) architectural pattern, as described for instance in clause 6.1 of IETF draft-ietf-oauth-browser-based-apps-17. The description from the opening of clause 6.1 of that IETF internet draft is provided below (noting that IETF drafts allow hanging text and therefore there is further descriptive text in the subclauses of 6.1):
[image: A diagram of a computer program

Description automatically generated]
“In this architecture, the JavaScript code is first loaded from a static web host into the browser (A), and the application then runs in the browser. The application checks with the BFF if there is an active session (B). If an active session is found, the application resumes its authenticated state and skips forward to step J.
When no active session is found, the JavaScript application calls out to the BFF (C) to initiate the Authorization Code flow with the PKCE extension (described in Section 6.1.3.1), to which the BFF responds by redirecting the browser to the authorization endpoint (D). When the user is redirected back, the browser delivers the authorization code to the BFF (E), where the BFF can then exchange it for tokens at the token endpoint (F) using its client credentials and PKCE code verifier.
The BFF associates the obtained tokens with the user's session (See Section 6.1.2.2) and includes the relevant information in a cookie that is included in the response to the browser (G). This response to the browser will also trigger the reloading of the JavaScript application (H). When this application reloads, it will check with the BFF for an existing session (I), allowing the JavaScript application to resume its authenticated state.
When the JavaScript application in the browser wants to make a request to the resource server, it sends a request to the corresponding endpoint on the BFF (J). This request will include the cookie set in step G, allowing the BFF to obtain the proper tokens for this user's session. The BFF removes the cookie from the request, attaches the user's access token to the request, and forwards it to the actual resource server (K). The BFF then forwards the response back to the browser-based application (L).”
Of note, as inferred by the quoted text above, a cookie-based session is assumed for the user’s session between the Browser and BFF in the IETF draft.
2. Reason for Change
In 3GPP TS 33.122 clause 5.2, three envisioned functional security models for the API invoker in relation to the resource owner client (resource owner function in TS 23.222 nomenclature) are highlighted. However, these aren’t considered to include the scenario whereby service invocation is requested from by a resource owner’s (UE hosted) application client, but the API invoker functionality is offloaded to an intermediary backend entity.
A motivation to provide a solution for the scenario described above relates to securing public clients for which there are known security risks when adopting the regular OAuth 2.0 authorization flows. Such vulnerabilities include applications clients being exposed to malicious code to: exfiltrate tokens (access or refresh); establish silent Auth Code flows (e.g., via reception of malicious html inline frames); proxy requests to the resource server via the user’s browser. It is acknowledged that techniques such as Demonstrating Proof-of-Possession can be ineffective against the latter two cases. Therefore, the documented Backend For Frontend architectural pattern is proposed, which is known as a solution to address the aforementioned vulnerabilities.
3. Proposal
In relation to Key Issue 3 on RNAA architecture enhancements it is proposed to add a solution to TR 23.700-22 V0.1.0.

* * * First Change * * *
[bookmark: _Toc160824418][bookmark: _Toc14352733][bookmark: _Toc19026758][bookmark: _Toc19034159][bookmark: _Toc19036349][bookmark: _Toc19037347][bookmark: _Toc25612605][bookmark: _Toc25613307][bookmark: _Toc25613571][bookmark: _Toc27647528][bookmark: _Toc160735993]2	References
The following documents contain provisions which, through reference in this text, constitute provisions of the present document.
-	References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.
-	For a specific reference, subsequent revisions do not apply.
-	For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.
[1]	3GPP TR 21.905: "Vocabulary for 3GPP Specifications".
[2]	3GPP TS 23.222: "Common API Framework for 3GPP Northbound APIs".
[3]	3GPP TS 33.122: "Security aspects of Common API Framework (CAPIF) for 3GPP northbound APIs".
[4]	3GPP TS 22.261: "Service requirements for the 5G system".
[x1]	IETF draft-ietf-oauth-browser-based-apps-17: "OAuth 2.0 for Browser-Based Apps".
Editor's note:	The reference to draft-ietf-oauth-browser-based-apps-17 will be revised to RFC when finalized by IETF.
[x2]	IETF 6749: "The OAuth 2.0 Authorization Framework".

* * * Second Change * * *
[bookmark: _Toc160824422]3.3	Abbreviations
For the purposes of the present document, the abbreviations given in TR 21.905 [1] and the following apply. An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in TR 21.905 [1].
<ABBREVIATION>	<Expansion>
BFF	Backend For Frontend

* * * Third Change * * *
[bookmark: _Toc160824447]6.1	Mapping of solutions to key issues
Table 6.1-1 Mapping of solutions to key issues
	
	KI #1
	KI #2
	KI #3
	KI #4
	KI #5
	KI #6
	KI #7

	Sol #1
	
	
	
	
	
	
	

	Sol #2
	
	
	
	
	
	
	

	Sol #x
	
	
	X
	
	
	
	

* * * Fourth Change * * *

6.x	Solution #x: Frontend For Backend<title>
[bookmark: _Toc464463366]Editor's Note:	Please provide a suitable title for the solution.
[bookmark: _Toc475064960][bookmark: _Toc478400631][bookmark: _Toc7485786][bookmark: _Toc78314760][bookmark: _Toc147904935][bookmark: _Toc160824449]6.x.1	Solution description
Editor's Note:	This clause will describe the solution. Each solution should clearly describe which of the key issues it covers and how.
This solution relates to KI#3 on RNAA architecture enhancements. Specifically, it proposes the Backend For Frontend (BFF) pattern (as described, for example, in clause 6.1 of IETF draft-ietf-oauth-browser-based-apps-17 [x1]) to be included as an architectural option.
In 3GPP TS 23.222 [2] clause 7.5, the RNAA deployment option in which the API invoker is deployed on a UE is presented. A UE can be considered as hosting public clients according to the OAuth 2.0 Authorization Framework [x2]. Such public clients lack the ability to maintain the confidentiality of secrets such as their client credentials or even access tokens provided to them. Regarding this vulnerability, as an example, clause 5.1 of IETF draft-ietf-oauth-browser-based-apps-17 [x1] highlights the danger of malicious JavaScript in relation to browser-based applications (highlighted as an example of a user-agent-based application public client in the OAuth 2.0 Authorization Framework [x2]). This IETF draft presents the BFF application architecture pattern as an approach in which applications are built to rely on a backend component for handling OAuth responsibilities and then all requests are proxied through this backend component. Such an architectural approach is applicable to CAPIF as described in the next sub-clause.
NOTE:	The security aspects of the CAPIF architectural variant described in this solution are the responsibility of SA3.
[bookmark: _Toc147904936][bookmark: _Toc160824450]6.x.2	Architecture Impacts
Editor's note:	This clause provides the architecture impacts of the solution and possible new SA6 capabilities and interfaces.
[bookmark: _Toc147904937][bookmark: _Toc160824451]In relation to the OAuth 2.0 Authorization Framework [x2] the CAPIF resource owner function (responsible for managing authorization related procedures towards the CAPIF authorization function hosted by the CAPIF core function) can be considered as the user-agent (aligned with clause 6.3.8 of 3GPP TS 23.222 [2]), which in turn manages procedures towards the authorization server in OAuth. Furthermore, the CAPIF resource owner function is responsible for interactions with the resource owner, which is anticipated to be in a similar manner to the way in which interactions between the resource owner’s user agent are described by the OAuth framework.
With OAuth there is also a client (or client application) that interacts with the user-agent and authorization server in order to gain access to information exposed by a resource server.
The OAuth resource server is considered as the CAPIF API exposing function, aligned with clause 6.5.3.1 of 3GPP TS 33.122 [3].
The OAuth client is considered as the CAPIF API invoker (aligned with clause 6.5.3.1 of 3GPP TS 33.122 [3]), where that API invoker can be UE hosted as previously highlighted.
Then in this solution (as presented in Figure 6.x.2-1) it is proposed to support an option in which the API invoker hosted by a UE (API invoker frontend) interacts via a new reference point (CAPIF-X) with a “helper” API invoker (API invoker backend) that is placed server-side (network-side) and is considered alongside the Backend For Frontend component in the Application Architecture presented in clause 6.1.1 of IETF draft-ietf-oauth-browser-based-apps-17 [x1].
According to that IETF draft, the BFF:
1. Interacts with the authorization server as a confidential client
2. Manages access and refresh tokens and does not share those with the client, i.e., the tokens are inaccessible to the client
3. Proxies all requests from the client to the resource server, augmenting them with the correct access token before forwarding them to the resource server
In the IETF draft, an OAuth user-agent-based application is considered in which the client application runs within the user-agent. On the other hand, for an OAuth native application, the user-agent and client application are presented as separate entities, which is also the case the architectural solution proposal in Figure 6.x.2-1.
[image:]
Figure 6.x.2-1: High level functional architecture for CAPIF supporting BFF
NOTE:	Impacts to the reference points with their assocaited procedures between the API provider domain functions and the CAPIF core function are not anticipated (and hence have not been depicted in Figure 6.x.2-1).
Editor's note:	Whether the reference point and procedures between the resource owner function and API invoker are in scope of 3GPP is TBD.
[image:]
Figure 6.x.2-2: BFF based procedure for service API access
Figure 6.x.2-2 illustrates the BBF based procedure. Firstly in step 1, the UE hosted API invoker (API invoker frontend) initiates the authorization flow, where the API invoker’s objective is to gain access to particular resources offered through the service APIs exposed by the API provider domain.
In step 2, the API invoker backend, in response to the trigger from the API invoker frontend to initiate the authorization flow, provides a response to the API invoker frontend redirecting its request towards the authorization function (step 3).
Once the response is obtained indicating granted authorization (step 4), the resource owner function provides indication of that authorization to the API invoker backend (step 5).
Next in step 6, the API invoker backend requests access to the API exposing function’s service APIs from the authorization function using the obtained authorization.
The API invoker backend maintains an association between its session with API invoker frontend and access information it has obtained in step 7 from the authorization function.
The API invoker backend then provides indication to the API invoker frontend that service API access is permitted, e.g., through cookies using a secure HTTP session, in step 8. The indication provided by the API invoker backend does not include the access information necessary to enable the API invoker frontend to access the service APIs directly.
When the API invoker frontend subsequently initiates a service API request including the access indication information previously by the API invoker backend (step 9), the API invoker backend uses its granted service API access that it received from the authorization function (that is associated with the API invoker frontend’s resource owner function to API invoker backend session) to make the request towards the service API (step 10).
The response from the service API (step 11) is then forwarded towards the API invoker frontend by the API invoker backend (step 12).
6.x.3	Corresponding APIs
Editor's note:	The CAPIF-X reference point and related procedures are FFS.
Editor's note:	This clause provides the corresponding APIs for supporting the solution.
[bookmark: _Toc532993748][bookmark: _Toc78314761][bookmark: _Toc147904938][bookmark: _Toc160824452]Editor's note:	New APIs are anticipated for CAPIF-8 in support of this solution, although those may leverage OAuth 2.0 Authorization Framework [x2].
6.x.4	Solution evaluation
Editor's note:	This clause provides an evaluation of the solution. The evaluation should include the descriptions of the impacts to existing architectures.

* * * End of Changes * * *

image1.png
| |
|Authorization| | Token |] Resource |
| Endpoint | Endpoint |] Server |
| [[|
L e + Fomm e L e] +
A A A
| (F) | (K) |
| v v
| T T e
| |
| | Backend for Frontend (BFF)
(D) | |
| T T e
|
| A A A + A+
| (B, @O (B)] (6] 11w
v \ \ + v + v
_________________ + F oo e e e e e e e e e e e e e e m e ——— =
[(AH) |
| Static Web Host | +----- > | Browser

image2.emf

API invoker frontendResource owner function

API invoker backend

CAPIF core function

Authorization function

UE

CAPIF-8

CAPIF-1

CAPIF APIs
API exposing function

Service APIsService APIsService APIs

API provider domain

API publishing function

API management function

CAPIF-2

CAPIF-X

image3.emf

API invoker
frontend

Resource owner
function (ROF)

API invoker
backend CCF / AF AEF

2. API invoker backend provides redirect response

1. API invoker frontend initiates the authorization flow towards
API invoker backend

3. ROF makes authorization request to AF

4. AF provides authorization response to ROF

5. ROC provides received
authorization to API invoker backend

6. API invoker backendmakes access request to AF

7. AF provides access to API invoker backend

8. API invoker backend provides access indication to API invoker frontend

9. API invoker frontend makes API service request towards API
invoker backend with the access indication obtained in step 8

10. API invoker backend makes API service request towards
AEF with the access information it obtained in step 7

11. AEF provides API service response to API invoker
backend

12. API invoker backend forwards API service response to API invoker frontend

UE

