

	
3GPP TSG-SA5 Meeting #155	S5-242479
Jeju, Korea (Republic Of), 27th May 2024 - 31st May 2024
	CR-Form-v12.3

	CHANGE REQUEST

	

	
	32.156
	CR
	0095
	rev
	-
	Current version:
	18.5.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	
	Radio Access Network
	X
	Core Network
	X

	

	Title:	
	TS32.156 Rel18 correction to using ENUM and IOC as alternative reference

	
	

	Source to WG:
	Nokia, Nokia Shanghai Bell

	Source to TSG:
	S5

	
	

	Work item code:
	TEI17
	
	Date:
	2024-05-16

	
	
	
	
	

	Category:
	A
	
	Release:
	Rel-18

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier 													release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)
Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-8	(Release 8)
Rel-9	(Release 9)
Rel-10	(Release 10)
Rel-11	(Release 11)
…
Rel-17	(Release 17)
Rel-18	(Release 18)
Rel-19	(Release 19)
Rel-20	(Release 20)

	
	

	Reason for change:
	In a few specifications, e.g., TS 28.622/TS 28.541, etc., ENUM is used as a data type of <<enumeration>>, but this has never been defined in TS 32.156 or other 3GPP specification. Similar observation for using <<IOC>>.

A few editorial findings.

	
	

	Summary of change:
	As discussed in SA5#154 meeting, adding ENUM as alternative reference to <<enumeration>>
adding IOC as alternative reference to <<InformationObjectClass>>
Correct the editorial issues.

	
	

	Consequences if not approved:
	Incorrect specification leads to incorrect implementation.

	
	

	Clauses affected:
	5.2.1.1, 5.2.11.1, 5.3.2.1, 5.3.4.1, 5.3.5.1

	
	

	
	Y
	N
	
	

	Other specs
	
	X
	 Other core specifications	
	TS/TR ... CR ...

	affected:
	
	X
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	X
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	Mirror of S5-242478

	
	

	This CR's revision history:
	

Page 1

	Start of Change

[bookmark: _Ref305749510][bookmark: _Toc163044903]5.2.1.1	Description
An attribute is a typed element representing a property of a class (Unified Modelling Language (OMG UML), Infrastructure [1], clause 10.2.5.). An element that is typed implies that the element can only refer to a constrained set of values. See clause 10.1.4 of [1] for more information on type.
See clauses 5.3.4 and 5.4.3 for predefined data types and user-defined data types that can apply type information to an attribute.
The properties of an attribute are described by a set of attribute properties categorized as follows:
-	Attribute properties defining valid attribute values: type, allowedValues, multiplicity, isOrdered, isUnique, isNullable, passedById.
-	Attribute properties defining valid interactions of managers and agents with attributes values: isInvariant, isWritable, isReadable, isNotifyable, defaultValue.
-	Other attribute properties: documentation, supportQualifier.
The following tables provide definitions for the attributes of the three categories.
Table 5.2.1.1-1: Attribute properties defining valid attribute values
	Property name
	Description
	Legal values

	type
	Refers to a predefined (subclause 5.4.3) or user defined data type (section 5.3.4). See also subclause 7.3.44 of [2], inherited from StructuralFeature.
	N/A

	allowedValues
	Specifies restrictions to the data type defined by type. This property is useful when no dedicated data type, that includes the restriction, shall be defined. The property may be absent when no restrictions are defined.
	Dependent on type

	defaultValue
	Identifies a value at specification time that is used at object creation time under conditions defined in Annex B.
If there is no defined default value, the property shall be omitted from the attribute description or specified as ‘defaultValue: None.’.
	None (default) or a value that is dependent on allowedValues

	multiplicity
	Defines the number of values the attribute can simultaneously have. See subclause 7.3.44 of [2]; inherited from StructuralFeature.
	See 5.2.8 Default is 1

	isOrdered
	For a multi-valued multiplicity, this specifies if the values of this attribute instance are sequentially ordered. See subclause 7.3.44 and its Table 7.1 of [2].
If the property is present for attributes with a multiplicity of greater than “1”, it shall be set to either “True” or “False”. It shall not be set to “N/A”.
	True, False (default)

	isUnique
	For a multi-valued multiplicity, this specifies if the values of this attribute instance are unique (i.e., no duplicate attribute values). See subclause 7.3.44 and its Table 7.1 of [2].
If the property is present for attributes with a multiplicity of greater than “1”, it shall be set to either “True” or “False”. It shall not be set to “N/A”.
	True (default), False

	isNullable
	Identifies if an attribute can carry no information. The implied meaning of carrying “no information” is context sensitive and is not defined in this Model Repertoire.
Note, the property "isNullable: True" is semantically identical to adding the value "0" to the "multiplicity" specified. Usage of the "multiplicity" property is preferred to express an attribute can have no value or carry no information.
	True, False (default)

	passedById
	Usage of the value False is deprecated.
The property is only applicable to attributes related to roles, for other attributes it has no significance,
See Table 5.2.9.1-1: passedById property

	True(default), False

	lifecycleStatus
	See Table 5.2.A11.1-1
	Current (default), Deprecated

Table 5.2.1.1-2: Attribute properties defining valid interactions with attributes
	Property name
	Description
	Legal values

	isInvariant
	If an attribute has an "isInvariant: True" property, its value can be set only upon object creation. After object creation, the initial value cannot be modified by any entity.
If an attribute has an "isInvariant: False" property, its value can be set at object creation time. After object creation, the initial value can be modified.
Details on how initial values are provided upon object creation are specified in Annex B.
	True, False (default)

	isWritable
	If an attribute has an "isWritable: True" property, a manager can set its value upon object creation. After object creation, a manager can modify the initial value if "isInvariant: False". If "isInvariant: True", a manager cannot modify the initial value. The "isInvariant" property supersedes hence the "isWritable" property.
If an attribute has an "isWritable: False" property, a manager cannot set the value upon object creation nor modify it later.
A "isWritable: True" property might be restricted by access control.
	True, False (default)

	isReadable
	Specifies if the attribute can be read by a manager.
A "isReadable: True" property might be restricted by access control.
	True , False (default)

	isNotifyable
	Identifies if a notification shall be sent in case of an attribute value change.
	True (default), False

Table 5.2.1.1-3: Attribute properties related to the specification of attributes
	Property name
	Description
	Legal values

	documentation
	Contains a textual description of the attribute.
Should refer (to enable traceability) to the specific requirement.
	Any

	supportQualifier
	Identifies the required support of the attribute. See also subclause 6.
	M, O (default), CM, CO, C

Upon completion of any manipulation of an attribute the attribute properties related to valid attribute values shall be respected. If an interaction results in violating at least one of these properties, the manipulation request shall be rejected.
The value N/A (Not applicable) shall not be used for attribute properties except for properties "isOrdered", "isUnique" and "allowedValues".

	Next of Change

[bookmark: _Toc163044943]5.2.11.1	Description
Model elements may have a life-cycle. They are created, updated, become obsolete and may be removed. The lifecycleStatus property indicates this. LifecycleStatus is applicable to attributes, data types, IOCs operations and notifications.
Table 5.2.A11.1-1: lifecycleStatus property
	Property name
	Description
	Legal values

	[bookmark: _Hlk89353290]lifecycleStatus
	"Current" means that the definition of the element is current and valid, it is freely available for use.

"Deprecated" means the element has a valid definition, it is available for use, but its use is discouraged. Deprecated elements may already have a replacement element defined. Deprecated elements may be removed in the next release.
	Current(default), Deprecated

	Next of Change

[bookmark: _Toc163044952]5.3.2.1	Description
The <<InformationObjectClass>> is identical to UML class except that it does not include/define methods or operations. It may also be referred as <<IOC>>, which can only be used without causing ambiguity.
A UML class represents a capability or concept within the system being modelled. Classes have data structure and behaviour and relationships to other elements.
This class can inherit from zero, one or multiple classes (multiple inheritances).
See more on UML class in 10.2.1 of [1].

	Next of Change

[bookmark: _Toc163044960]5.3.4.1	Description
It represents an attribute property type (see Table 5.2.1.1-1: Attribute properties).

This repertoire uses two kinds of data types: predefined data types and user-defined data types. The former is defined in subclause 5.4.3. The latter is defined by the specification by authors using a <<dataType>> model element.
The names of predefined data types and user-defined data types must be chosen such that they do not clash.
User-defined data types can be simple types containing one or more values of a single simple type like iInteger or Sstring or they can be structured types containing one or more named attribute fields each having properties similar to an attribute as described in table 5.2.1.1-1. The individual attribute fields may have different property values e.g., different types, multiplicity or supportQualifier. A named attribute field itself can be of a simple or a structured data type.
Structured data types could be embedded in any depth; however, they should not be embedded more than 3 levels, that is attribute-structuredType-structuredType-structuredType-simpletype. Reasons for avoiding deep embedding of structured types include:
- Any construct that would be modeled by such deep structures can be modeled partly of fully by IOCs instead, thus avoiding deep structures.
- It is difficult to understand deep structured types, it is hard to follow their "type containment".
- Addressing in most contexts is based on Distinguished Names which does not allow addressing individual attribute fields.
- Filtering of attribute fields becomes complex.
- Usability problems on any human interface (GUI, CLI).
The user-defined data types support the modelling of structured data types (see <<dataType>> PLMNId in 5.3.4.2).
When an attribute is of a structured data type, attribute properties may be declared on multiple levels: declared for the attribute as a whole and also for each attribute field. As an attributed field itself may be of a structured data type, properties may be declared on 2, 3 or more levels.
"Documentation” is relevant on the attribute or attribute field level where it is declared. Properties "multiplicity", "isOrdered", "isUnique", "type" and "allowedValues" are always relevant and should be enforced on the attribute or attribute field level where they are declared.
The property "supportQualifier" always applies to the level where it is declared. However, the support for a model element is always conditional on the support of the higher level. E.g., if an attribute is optional but one of its fields is mandatory, that means the field is mandatory if the attribute itself is supported; if the attribute is not supported this results in none of its fields(subparts) being supported.
For properties "isReadable", "isWritable", "isNotifyable" the following rules apply:
- If a structured attribute specifies the property as False then the False value shall be used for the attribute and all its (descendant) attribute fields (if any).
- If a structured attribute specifies the property as True then the True value shall be used for the attribute and all its (descendant) attribute fields if and only if True is also specified for all of them.
- If a structured attribute specifies the property as True then the True value shall be used for the attribute and all its (descendant) attribute fields until a False value is specified for an attribute field. This attribute field and all (descendant) attribute fields shall have a False value.
For the "isInvariant" property the following rules apply:
- If a structured attribute specifies the property as True then the True value shall be used for the attribute and all its (descendant) attribute fields (if any).
- If a structured attribute specifies the property as False then the False value shall be used for the attribute and all its (descendant) attribute fields if and only if False is also specified for all of them.
- If a structured attribute specifies the property as False then the False value shall be used for the attribute and all its (descendant) attribute fields until a True value is specified for an attribute field. This attribute field and all (descendant) attribute fields shall have a True value.
If an attribute has the property lifecycleStatus=Deprecated all its fields are are also deprecated. If a data type has property lifecycleStatus=Deprecated all its fields (subparts) are also deprecated.
When a user-defined or predefined data type is used to apply type (see property named type in Table 5.2.1.1‑1: Attribute properties) information to a class attribute, the data type name is shown along with the class attribute. See Example below.
When an attribute/field is defined with a datatype the relationship between them can be optionally established in the UML relationship diagram, e.g. for deeply nested datatypes. The relationship is shown as a relationship in the diagram between the parent attribute/field name and the datatype. The line includes the attribute/field. These diagrams shall be limited to one class and associated datatypes.

	Next of Change

[bookmark: _Toc163044964]5.3.5.1	Description
An enumeration is a data type. It contains sets of named literals that represent the values of the enumeration. An enumeration has a name. This data type may also be referred as ENUM, which can only be used without causing ambiguity.
See 10.3.2 Enumeration of [1].

	End of Change

