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	Begin of modifications


6.4.3
3GPP JSON Patch

3GPP JSON Patch is a 3GPP defined extension to JSON Merge Patch (RFC 6902 [13]).

Like 3GPP JSON Merge Patch, it allows, using a single patch document, to update the target resource (as does JSON Patch) and to update, create or delete descendant resources, which JSON Patch does not allow, at least not based on resource identifiers.

This extension is that the "path" and "from" properties of a patch operation define an offset to the target resource as specified by the request URI. This offset is relative to the target URI. It has a first component pointing to a resource below the target resource, and a second component pointing to a secondary resource within the resource identified by the first component.

The first component of "path" or "from" is built from URI path components. It follows the same syntax as the path components of the target URI. The second component is a URI fragment with a JSON pointer in the URI fragment identifier representation as defined in clause 6 of RFC 6901 [14], i.e. the second component starts with the "#" character. Both components are concatenated without a delimiter.
For example, assume the target URI is "/SubNetwork=SN1" and the "userLabel" attribute of a child of class "ManagedElement" with the id "ME1" is to be patched, then the first path component is "/ManagedElement=ME1/" and the second path component is "#attributes/userLabel". This results in the following path:

"path": "/ManagedElement=ME1/#attributes/userLabel".

The target URI shall identify a common ancestor resource of the resources to be patched, or the NRM root.

Note that when one or more root resources are patched, the target URI identifies always the NRM root. When no root resources are patched, the MnS producer has a choice as to the target resource. For example, assume the resource with the URI

"http://example.com/3gpp/ProvMnS/v 1700/ManagedElement=ME1/XyzFunction=XYZF1"

is patched. Then the target resource is either the parent resource of the patched resource, in this case the root resource,

"example.com/3gpp/ProvMnS/v1700/ManagedElement=ME1"

or the NRM root.

"example.com/3gpp/ProvMnS/v1700".

Setting the target resource always to the NRM root is hence a possible implementation option for MnS Consumers.

When creating new resources ("op"="add"), the object class name of the resource to be created shall be included in the "value" property of the operation. The "replace" operation is not applicable when the "path" identifies a resource.
The media type of 3GPP JSON Merge Patch is "3gpp-patch+json". This media type is defined by 3GPP and is not registered with IANA. Patch documents using this media type need to conform to the "application/json" media type.
The procedure is as follows:

1)
The MnS Consumer sends a HTTP PATCH request to the MnS Producer. The message body carries a 3GPP JSON Patch document describing a set of modification instructions (patch items) to be applied to the identified resources. The "Accept" header shall be included in the request and specify the media types acceptable to the MnS Consumer for "200 OK" or "204 No Content" responses.
2)
The MnS Producer returns the HTTP PATCH response to the MnS Consumer. On success, "200 OK" together with the representation of the updated and created resources, constructed according to either the flat or hierarchical response construction method described in clause 6.1.1, in the message body or "204 No Content" shall be returned. On failure, the appropriate error code shall be returned. The response message body may provide additional error information.
A single operation in a 3GPP JSON Patch document shall patch a single (primary) resource only. Different operations in a patch document can patch different resources though. The consequence of this restriction is for example that subtrees with multiple resources cannot be created or deleted with a single patch operation. Each resource needs to be created or deleted with an own patch operation in the patch document. This behaviour is aligned with those of the PUT and DELETE methods.

Note that the "replace" operation of (3GPP) JSON Patch has replace semantics like PUT and not merge semantics like JSON Merge Patch. When multiple attributes or attribute fields of a resource are patched, then a patch operation for each update is required, for example:
	PATCH /SubNetwork=SN1 HTTP/1.1

Host: example.org

Content-Type: application/vnd.3gpp.json-patch+json

Accept: application/json
[

  {

    "op": "replace",
    "path": "#/attributes/userLabel",
    "value": "Berlin NW-1"

  },

  {

    "op": "replace",
    "path": "#/attributes/plmnId/mcc",
    "value": 654

  }
]


To streamline partial updates of single resources, 3GPP JSON Patch introduces a new patch operation named "merge". For that operation, the JSON object contained in the "value" property shall be merged into the target resource referenced by "path" using the rules of JSON Merge Patch (RFC 7396 [12]). An MnS Producer shall verify if a "merge" operation is for a single resource by checking if the "path" property contains the string "#/attributes" and shall reject the request with "422 Unprocessable Entity" if it doesn't. 
With the "merge" operation, the updates in the previous example can be expressed as follows.

	PATCH /SubNetwork=SN1 HTTP/1.1

Host: example.org

Content-Type: application/vnd.3gpp.json-patch+json

Accept: application/json
[

  {

    "op": "merge",

    "path": "#/attributes",

    "value": {

      "userLabel": "Berlin NW-1",

      "plmnId": {

        "mcc": 654

      }

    }

  }

]


The following example is invalid. It attempts to patch, besides the target resource, which is allowed, the contained "ManagedElement" resources, which is not allowed.

	PATCH /SubNetwork=SN1 HTTP/1.1

Host: example.org

Content-Type: application/vnd.3gpp.json-patch+json

Accept: application/json
[

  {

    "op": "merge",

    "path": "",

    "value": {

      "attributes": {

        "userLabel": "Berlin NW-1",

        "plmnId": {

          "mcc": 654

        }

      },

      "ManagedElement": [

        {

          ...
        }  

      ]

    }

  }

]


In the same way as JSON Patch allows to construct conditional patch requests using the "test" operation, 3GPP JSON Patch can be used to construct condititional patch requests where the condition is expressed with the "test" operation. In contrast to JSON Patch, however, the condition may be based on attribute values outside of the patched resource.

For example, the following patch document replaces the value of "attrA", which is an attribute of a "XyzFunction" resource whereas the condition relates to an attribute in the "SubNetwork" resource.

	PATCH /SubNetwork=SN1 HTTP/1.1

Host: example.org

Content-Type: application/json-patch+json
Accept: application/json
[

  {

    "op": "test",

    "path": "#/attributes/userLabel",
    "value": "Berlin NW"
  },
  {

    "op": "replace",

    "path": "/ManagedElement=ME1/XyzFunction=XYZF1#/attributes/attrA",
    "value": "ghi"
  }

]


The 3GPP JSON Patch document is described by the following JSON schema fragment.

	{

  "type": "array",

  "items": {

    "type": "object",

    "properties": {

      "op": {

        "enum": [

          "add",

          "replace",

          "remove",

          "copy",

          "move",
          "merge",
          "test"

        ]

      },

      "from": {

        "type": "string"

      },

      "path": {

        "type": "string"

      },

      "value": {}

    },

    "required": [

      "op",

      "path"

    ]
  }

}
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