

	
3GPP TSG-SA5 Meeting #147 	S5-232398
Athens, Greece, 27th February - 3rd March 2023

	CR-Form-v12.1

	CHANGE REQUEST

	

	
	32.423
	CR
	140
	rev
	
	Current version:
	16.8.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	
	Radio Access Network
	
	Core Network
	

	

	Title:	
	 Align trace record formats for different reporting methods

	
	

	Source to WG:
	Ericsson

	Source to TSG:
	S5

	
	

	Work item code:
	5GMDT
	
	Date:
	2023-02-06

	
	
	
	
	

	Category:
	F
	
	Release:
	Rel-16

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier 													release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)
Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-8	(Release 8)
Rel-9	(Release 9)
Rel-10	(Release 10)
Rel-11	(Release 11)
…
Rel-15	(Release 15)
Rel-16	(Release 16)
Rel-17	(Release 17)
Rel-18	(Release 18)

	
	

	Reason for change:
	Separate trace record formats are defined for streaming vs. file-based reporting. This difference is not required. A single format should be used for both reporting methods. The definition has eliminated the need for payloadSize parameter and includes extensibility to accommodate vendor specific messages .

	
	

	Summary of change:
	Trace record is updated to a common definition applicable to both reporting methods. Support for standardized vendor extensions is included.

	
	

	Consequences if not approved:
	Unncessary implementation costs for both producers and consumers of trace record data.

	
	

	Clauses affected:
	5.2.1, 5.2.2, 5.2.3, 5.2.4, 5.2.6, Annex G, Annex H

	
	

	
	Y
	N
	
	

	Other specs
	
	
	 Other core specifications	
	TS/TR ... CR ...

	affected:
	
	
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	

	
	

	This CR's revision history:
	

Page 1

	[bookmark: _Toc114134619]1st Change

[bookmark: _Toc10820408][bookmark: _Toc36135529][bookmark: _Toc36138374][bookmark: _Toc44690740][bookmark: _Toc51853274][bookmark: _Toc90655986]2	References
The following documents contain provisions, which, through reference in this text, constitute provisions of the present document.
-	References are either specific (identified by date of publication, edition number, version number, etc.) or nonspecific.
-	For a specific reference, subsequent revisions do not apply.
-	For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.
[1]	3GPP TS 32.101: "Telecommunication management; Principles and high level requirements".
[2]	3GPP TS 32.421: "Telecommunication management; Subscriber and equipment trace: Trace concepts and requirements."
[3]	3GPP TS 32.422: "Telecommunication management; Subscriber and equipment trace: Trace control and configuration management ".
[4]	3GPP TR 21.905: "Vocabulary for 3GPP Specifications".
[5]	W3C Recommendation "Extensible Markup Language (XML) 1.0" (Second Edition, 6 October 2000) http://www.w3.org/TR/2000/REC-xml-20001006
[6]	W3C Recommendation "Namespaces in XML" (14 January 1999)
http://www.w3.org/TR/1999/REC-xml-names-19990114
[7]	W3C Recommendation "XML Schema Part 0: Primer" (2 May 2001)
http://www.w3.org/TR/2001/REC-xmlschema-0-20010502
[8]	W3C Recommendation "XML Schema Part 1: Structures" (2 May 2001)
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502
[9]	W3C Recommendation "XML Schema Part 2: Datatypes" (2 May 2001)
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502
[10]	International Standard ISO 8601: 1988 (E) "Representations of dates and times" (1988-06-15)
http://www.iso.ch/markete/8601.pdf
[11]	3GPP TS 32.300: "Telecommunication management; Configuration Management (CM); Name convention for Managed Objects".
[12]	3GPP TS 32.622: "Telecommunication management; Configuration Management (CM); Generic network resources Integration Reference Point (IRP): Network Resource Model (NRM)".
[13]	3GPP TS 29.274: "3GPP Evolved Packet System (EPS); Evolved General Packet Radio Service (GPRS) Tunnelling Protocol for Control plane (GTPv2-C); Stage 3".
[14]	3GPP TS 29.212: "Policy and Charging Control (PCC); Reference points".
[15]	3GPP TS 29.273: "Evolved Packet System (EPS); 3GPP EPS AAA interfaces".
[16]	3GPP TS 36.413: "Evolved Universal Terrestrial Radio Access Network (E-UTRAN); S1 Application Protocol (S1AP)".
[17]	3GPP TS 36.423 "Evolved Universal Terrestrial Radio Access Network (E-UTRAN); X2 Application Protocol (X2AP)".
[18]	3GPP TS 23.501: "System Architecture for the 5G System; Stage 2".
[19]	3GPP TS 23.502: "Procedures for the 5G System; Stage 2"
[20]	3GPP TS 38.300: "NR and NG-RAN Overall Description; Stage 2".
[21]	3GPP TS 38.331: "NR; Radio Resource Control (RRC); Protocol specification".
[22]	3GPP TS 38.401: "NG-RAN; Architecture Description".
[23]	3GPP TS 38.413: "NG-RAN; NG Application Protocol (NGAP)".
[24]	3GPP TS 38.423: "NG-RAN; Xn Application Protocol (XnAP)".
[25]	3GPP TS 38.463: "NG-RAN; E1 Application Protocol (E1AP)".
[26]	3GPP TS 38.473: "NG-RAN; F1 Application Protocol (F1AP)".
[27]	3GPP TS 24.501: "Non-Access-Stratum (NAS) protocol for 5G System (5GS); Stage 3".
[28]	3GPP TS 36.331: "Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Resource Control (RRC); Protocol specification".
[29]	3GPP TS 23.107: "Quality of Service (QoS) concept and architecture".
[30]	3GPP TS 25.331: "Radio Resource Control (RRC); Protocol specification".
[31]	3GPP TS 36.314: "Evolved Universal Terrestrial Radio Access (E-UTRA); Layer 2 - Measurements".
[32]	3GPP TS 37.320: "Universal Terrestrial Radio Access (UTRA) and Evolved Universal Terrestrial Radio Access (E-UTRA); Radio measurement collection for Minimization of Drive Tests (MDT); Overall description; Stage 2".
[33]	3GPP TS 36.213: "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer procedures".
[34]	3GPP TS 36.133: "Evolved Universal Terrestrial Radio Access (E-UTRA); Requirements for support of radio resource management".
[35]	3GPP TS 38.314: "NR; layer 2 measurements ".
[36]	3GPP TS 28.552: "Management and orchestration; 5G performance measurements".
[37]	3GPP TS 38.213: "NR; Physical layer procedures for control".
[38]	3GPP TS 36.214: "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer; Measurements".
[39]	3GPP TS 32.425: "Telecommunication management; Performance Management (PM); Performance measurements Evolved Universal Terrestrial Radio Access Network (E-UTRAN)".
[40]	IETF RFC 6455: "The WebSocket Procotol".
[41]	IETF RFC 7692: "Compression Extensions for WebSocket".
[42]	3GPP TS 38.215: "NR; Physical layer measurements".
[43]	3GPP TS 28.532: "Management and orchestration; Generic management services".
[44]	3GPP TS 38.305: "NG Radio Access Network (NG-RAN); Stage 2 functional specification of User Equipment (UE) positioning in NG-RAN".
[45]	Language Guide (Proto 3): https://developers.google.com/protocol-buffers/docs/proto3.
[x]	IETF RFC 4122: "A Universally Unique Identifier (UUID) URN Namespace".

	2nd Change

[bookmark: _Toc36138422][bookmark: _Toc44690788][bookmark: _Toc51853322]5.2	Streaming Trace Record
[bookmark: _Toc36138423][bookmark: _Toc44690789][bookmark: _Toc51853323]5.2.1	Introduction
The Streaming Trace Records comprises a header with common fields and support for vendor extensions, and a payload containing either a Trace Traffic Message or a Trace Administration Message and an optional common trace payload that contains the trace administrative message as shown in Figure 5.2.1-1.

 [image:]Trace Record

Payload
Header
Vendor specific
extension
Common
fields
Vendor Specified
Content
Size
Trace Record

Payload
Header
Vendor specific
extension
Common
fields
Vendor Specified
Content
Size

Trace Record
Trace Record Header
Common Fields.
The header is vendor extendable.
Trace Administration Message
Each message is vendor extendable.
Trace Traffic Message
OR
Trace Record Payload

 Trace Record

Payload
Header
Vendor specific
extension
Common
fields
Vendor Specified
Content
Size

Figure 5.2.1-.1: Streaming Trace Record
The format of the Trace Record Header in Streaming Trace Record is specified in the clause 5.2.2.
The format of the PayloadTrace Traffic Message is specified in clause 5.2.3.and the Common Trace Payload carrying the Trace Administrative Message in Streaming Trace Record is specified in the clause 5.2.3 and 5.2.4 respectively.
The Streaming Trace Records may be used to carry the captured Trace data being reported by the MnS Producer to the MnS Consumer or to convey various administrative messages from the MnS Producer to the MnS Consumer. These cases are further explained in clause 5.2.4. Cases where MnS Consumer may transfer data or convey administrative messages to the MnS Producer are out of scope of the present document.
[bookmark: _Toc36138424][bookmark: _Toc44690790][bookmark: _Toc51853324]5.2.2	Streaming Trace Record Header
The streaming trace record header contains the common fields as specified in the Table 5.2.2-1, in addition it may also contain vendor specific extensions.
Table 5.2.2.1 : Common fields in the streaming trace record header
	[bookmark: _Hlk20989631]Trace Record Header field name
	Description

	vendorExtension (O)
	Vendor-specific extension(s) A list of key-value pairs used in a map function. The first string in the map function is a vendor specific identifier for a message defined in the schema defined by the vendorSchemaExtensionUri (Clauses 5.2.4.2 and 5.2.4.3a) See Note 6.

	timeStamp (M)
	Time stamp (in milliseconds since Epoch) of when the streaming trace record is produced internally in the Producer. Eencoded as a (64 bit integer).

	nfInstanceId (M)
	Universally Unique Iidentifer (UUID) of the Producer NF instance that produced this streaming trace record. represented Represented by a (Sstring) encoded per RFC 4122 [ref x].

	nfType networkFunctionType (M)
	Type of the Producer NF that produced this streaming trace record represented by a (String)n ENUM. For example: gNB-CU-CP, gNB-CU-UP or gNB-DU. See Note 2.

	InterfaceName (M)
	The name of the interface that is being traced. For example the gNB network functions use ENUM values: Uu, NG-C, Xn-C, X2-C, F1-C and E1. See Note 2.

	traceReference (CM)
	Trace Reference (see clause 5.6 of 3GPP TS 32.422 [23]) (represented by up to 6 octets including a 3 bytes octet string) for the Trace ID).

Not applicable if traceIdentifier is used.
Mandatory for all trace records associated with a trace session.

TraceReference is not applicable for the Trace Stream Heartbeat administrative message as this message is not associated with an active trace session (clause 5.2.4.4)

	traceRecordingSessionReference (CM)
	Trace Recording Session Reference (see clause 5.7 of 3GPP TS 32.422 [23]) represented by a (2- byte octet string. See Note 1.)

Not applicable if traceReference is not used.
Applicable to trace records associated with a particular UE. Not applicable to trace records associated with interface specific signalling (e.g. NG RESET TS 38.413).
Mandatory for applicable trace records for signalling based activation. Signalling based activation starts when the trace activation IE is received. Trace records associated with signalling that occurs without the trace activation IE in the UE context are not applicable to signalling based trace. e.g. INITIAL UE MESSAGE (TS 38.331).
Mandatory for applicable trace records for management based activation use cases where use of trace recording session reference has been specified for associating the trace records with a subscriber. Management based application of a trace recording session reference as described today requires a connection to the core. It has not been specified how to use trace recording session reference for split architecture or dual connectivity deployments. In these cases some trace record producers do not have a connection to the core.
Not applicable for MDT initiated trace records that are anonymized.

	traceIdentifier (CM)
	A n-tuple consisting of:
· Trace Id Type
· Trace Reference
· Trace Recording Session Reference

Mandatory when multiple trace references are associated with the same trace record.
May also be used as an alternative to providing a trace record with a single traceReference and its associated traceRecording Session Reference.
Not applicable to the Trace Stream Heartbeat administrative message as this message is not associated with an active trace session (clause 5.2.4.4)
Trace Id Type identifies the TR/TRSR identifier for the trace record, e.g. IMMEDIATE_MDT, TRACE_ONLY, IMMEDIATE_MDT_AND_TRACE
Examples of when multiple trace references may be associated with a trace record requiring the traceIdentifier to be repeated are:
· trace records associated with multiple trace jobs, each with its own associated trace reference and written to the same file.

	traceRecordTypeId (M)
	Identifier of the trace record type (see clause 5.2.4 for details) represented by an ENUM with the following values:
TRACE_TRAFFIC_RECORD, NORMAL
TRACE_SESSION_START,
TRACE_SESSION_STOP, TRACE_RECORDING_SESSION_START, TRACE_RECORDING_SESSION_STOP, TRACE_STREAM_HEARTBEAT,.
TRACE_RECORDING_SESSION_NOT_STARTED, TRACE_RECORDING_SESSION_DROPPED_EVENTS,

The value "TRACE_TRAFFIC_RECORD" is used for Trace Records that are not administrative messages.

	ranUeId (O)
	RAN defined UE Id (see 3GPP TS 38.463 [25] and 38.473 [26]) represented as the identity of the UE (8 byte octet string. See Note 3.)
The ranUeId field is present in the trace record header if it has been captured in the traced signaling messages.

	tracedEntityId (M)
	The ID of the node producing the trace records. See Note 2

	connectedEntityId (CM)
	The ID of the interface specific connected entity, Applicable for all interfaces except UU (clause 4.30). Not applicable for Administrative Messages from CU-CP. Mandatory for Minimum and Medium Trace depths. See Note 2

	payloadSchemaURI (O)
	URI identifying the schema to be used in order to decode the payload represented by a (String. See Note 4.)

	vendorExtension (O)
	Vendor-specific extension(s) represented by a (Arraylist of String. See Note 5.)

	NOTE 1: The traceRecordingSessionReference must be present for the Streaming Trace Records with non-zero size payload where the payload carries data captured for a Trace Recording Session and in administrative messages related to a Trace Recording Session (e.g. "Trace Recording Session Start" or "Trace Recording Session Stop"). The following approach is to be used whenever vendor_extensions are specified:

The first string or key in the map function is: [unique vendor identifier].[vendor specific message]. The second string in the map function is vendor defined.

The vendorSchemaExtensionUri is communicated in the first trace administration message at the start of the session (Clause 5.2.4).

For example: If CompanyA has GPB message: MySpecialMessage defined in the vendorSchemaExtensionUri as a vendor extension to the Trace Record Header the first string would be “CompanyA.MySpecialMessage”. MySpecialMessage schema may then be used by the consumer to decode the binary data in the second string (the value part of the key value pair).

NOTE 2: The traceRecordTypeId with value "NORMAL" is used for Streaming Trace Records that do not carry an administrative message. Non gNB identifiers are out of scope of the present document.
NOTE 3: The ranUeId field is present in the trace record header if it has been captured in the traced signaling messages.
NOTE 4: The payloadSchemaURI is not required for Streaming Trace Records with payload of zero-size, or payload using common payload format (e.g. used to convey Streaming Trace administrative messages).
NOTE 5: The vendorExtension is typically a generic list of key-value pairs.

[bookmark: _Toc36138425][bookmark: _Toc44690791][bookmark: _Toc51853325]5.2.3	Streaming Trace Traffic Message Trace Record Payload
The streaming trace Trace Traffic message record payload carries the captured Trace data being reported by the MnS Producer to the MnS Consumer and comprises the fields defined in Table 5.2.3-1.
Table 5.2.3.1 : Fields in the trace record payload
	Trace Record Payload parameter name
	Description

	payloadSize (O)
	Size of payload, in bytes represented by a (64 bit integer. The field may be omitted if the solution set specific encoding/decoding has its own support for indicating the size.)

	payload (M)
	Sequence of bytes representing the binary encoded data of the specific trace recordArray of bytes. See Note 1.

	asn1Message (O)
	Includes:

MsgDirection - ENUM with the following values:
 MSG_DIRECTION_VENDOR_EXTENSION_1 = 0
 MSG_DIRECTION_SEND = 1;
 MSG_DIRECTION_RECEIVE = 2;
 MSG_DIRECTION_VENDOR_EXTENSION_2 = 255;

Bytes – the ASN1 encoded message. This is the encoded trace record content associated with Maximum trace depth per clauses 4.30 (gNB-CU-CP) 4.31 (gNB-CU-UP) and 4.32 (gNB-DU) of the present document. This may also include MDT UE measurements (Clause 4.34.1). Whether MDT measurement specific (M1, M2 ..) measurements are provided here or as vendorExtension is vendor specific.

The appropriate ASN.1 decoder is identified by the PROTOCOL NAME.

ProtocolName – ENUM with the following values:
 PROTOCOL_NAME_VENDOR_EXTENSION_0 = 0
 PROTOCOL_NAME_RRC_36_331_BCCH_BCH_MESSAGE = 1;
 PROTOCOL_NAME_36_331_BCCH_DL_SCH_MESSAGE = 2;
 PROTOCOL_NAME_RRC_36_331_DL_CCCH_MESSAGE = 3;
 PROTOCOL_NAME_36_331_DL_DCCH_MESSAGE = 4;
 PROTOCOL_NAME_36_331_PCCH_MESSAGE = 5;
 PROTOCOL_NAME_36_331_UL_CCCH_MESSAGE = 6;
 PROTOCOL_NAME_36_331_UL_DCCH_MESSAGE= 7;
 PROTOCOL_NAME_RRC_38_331_BCCH_BCH_MESSAGE = 8;
 PROTOCOL_NAME_RRC_38_331_BCCH_DL_SCH_MESSAGE = 9;
 PROTOCOL_NAME_RRC_38_331_DL_CCCH_MESSAGE = 10;
 PROTOCOL_NAME_RRC_38_331_DL_DCCH_MESSAGE = 11;
 PROTOCOL_NAME_RRC_38_331_PCCH_MESSAGE = 12;
 PROTOCOL_NAME_RRC_38_331_UL_CCCH_MESSAGE = 13;
 PROTOCOL_NAME_RRC_38_331_UL_DCCH_MESSAGE = 14;
 PROTOCOL_NAME_S1AP_36_413 = 15;
 PROTOCOL_NAME_X2AP_36_423 = 16;
 PROTOCOL_NAME_NGAP_38_413 = 17;
 PROTOCOL_NAME_XNAP_38_423 = 18;
 PROTOCOL_NAME_F1AP_38_473 = 19;
 PROTOCOL_NAME_E1AP_38_463 = 20;
 PROTOCOL_NAME_VENDOR_EXTENSION_21 = 21;
 PROTOCOL_NAME_RRC_38_331_UL_CCCH1_MESSAGE =22;
 PROTOCOL_NAME_VENDOR_EXTENSION_255 = 255;

Vendor-specific extension(s) A list of key-value pairs used in a map function. The first string in the map function is a vendor specific identifier for a message defined in the schema defined by the vendorSchemaExtensionURI (Clauses 5.2.4.2 and 5.2.4.3a) See Note 1 Clause 5.2.2.

When used as a vendor extension in this message the vendorExtension may contain references to GPB messages that provide:
· Decoded IEs of ASN messages not captured in the header.
· Required message metadata. For example: MDT M1 measurements require the Triggering Event (Clause 4.34.1)
· MDT measurements as an alternative to providing them as part of Asn1message (above).
· Vendor specific data.

	gpbMessage (O)
	Includes:

Sequence of bytes representing the GPB encoded data of the specific trace record.

Vendor-specific extension(s) A list of key-value pairs used in a map function. The first string in the map function is a vendor specific identifier for a message defined in the schema defined by the vendorSchemaExtensionURI (Clauses 5.2.4.2 and 5.2.4.3a) See Note 1 Clause 5.2.2.

When used as a vendor extension in this message the vendorExtension may contain references to GPB messages that provide:
· Decoded IEs of ASN messages not captured in the header.
· Required message metadata. For example: MDT M1 measurements require the Triggering Event (Clause 4.34.1)
· MDT measurements as an alternative to providing them as part of Asn1message (above).
· Vendor specific data.

	NOTE 1: For example, trace record content per clause 4 of the present document with schema indicated in the header field payloadSchemaURI required for decoding.VOID

[bookmark: _Toc36138426][bookmark: _Toc44690792][bookmark: _Toc51853326]5.2.4	Streaming Trace aAdministrativeon Mmessage Payloads
[bookmark: _Toc36138427][bookmark: _Toc44690793][bookmark: _Toc51853327]5.2.4.1	Introduction
The following administrative payload messages are defined to for trace stream management purposes:
- Trace Session Start
- Trace Session Stop
- Trace Recording Session Start
- Trace Recording Session Stop
- Trace Stream Heartbeat (streaming only)
- Trace Recording Session Not Started
- Trace Recording Session Dropped Events

[bookmark: _Toc36138428][bookmark: _Toc44690794][bookmark: _Toc51853328]5.2.4.2	Trace Session Start administrative message
The Trace Session Start administrative message shall beis used to convey the start of a management based Trace Session (see 3GPP TS 32.422 [3] for details). The Streaming Trace Record in this case may have zero-size payload. The value of the traceRecordTypeId field in the Streaming Trace Record Header is set to "TRACE_SESSION_START".
The start trace session administrative message is not used for signalling based activation. The Trace Recording Session Start administrative message is sufficient as there is no separate trigger for starting the session and the trace recording session.
The Trace Session Start administrative message shall be the first trace record produced when the trace activation is management based. The vendor_schema_extension_uri field shall be populated in order to support vendor specific extensions to this GPB definition.
[bookmark: _Toc36138429][bookmark: _Toc44690795][bookmark: _Toc51853329]5.2.4.3	Trace Session Stop administrative message
The Trace Session Stop administrative message shall beis used to convey the stop of a management based Trace Session (see 3GPP TS 32.422 [3] for details). The Streaming Trace Record in this case may have zero-size payload. The value of the traceRecordTypeId field in the Streaming Trace Record Header is set to "TRACE_SESSION_STOP".
The stop trace session administrative message is not used for signalling based deactivation. The Trace RecordingSession Stop administrative message is sufficient as there is no separate trigger for stoping the session and the trace recording session.
The Trace Session Stop administrative message shall, in the absence of other administrative messages, be the last trace record produced when the trace deactivation is management based.

[bookmark: _Toc44690796][bookmark: _Toc51853330]5.2.4.3a	Trace Recording Session Start administrative message
The Trace Recording Session Start administrative message shall beis used to convey the start of a signalling based Trace Recording Session (see 3GPP TS 32.422 [3] for details). The Streaming Trace Record in this case may have zero-size payload. The value of the traceRecordTypeId field in the Streaming Trace Record Header is set to "TRACE_ RECORDING_SESSION_START".
For management based trace it is not necessary to have an administrative message for every trace recording session initiated within a trace session..
The Trace Recording Session Start administrative message shall be the first trace record produced when the trace activation is signaling based. The vendor_extension_schema_uri field shall be populated in order to support vendor specific extensions to this GPB definition.
[bookmark: _Toc44690797][bookmark: _Toc51853331]5.2.4.3b	Trace Recording Session Stop administrative message
The Trace Recording Session Stop administrative message shall beis used to convey the stop of a signalling based Trace Recording Session (see 3GPP TS 32.422 [3] for details). The Streaming Trace Record in this case may have zero-size payload. The value of the traceRecordTypeId field in the Streaming Trace Record Header is set to "TRACE_ RECORDING_SESSION_STOP".
For management based trace it is not necessary to have an administrative message for every trace recording session terminated within a trace session.
The Trace Recording Session Stop administrative message shall, in the absence of other administrative messages, be the last trace record produced when the trace de-activation is signalling based.
The Trace Recording Session Stop administrative message includes a “reason” field that should be used to capture abnormal reasons for terminating the trace recording session, such as the producer being overloaded.
[bookmark: _Toc36138430][bookmark: _Toc44690798][bookmark: _Toc51853332]5.2.4.4	Trace Stream Heartbeat administrative message
The Trace Stream Heartbeat administrative message may be used in absence of the captured trace data and other administrative messages from the MnS Producer to the MnS Consumer. The message is intended to indicate that a streaming trace connection is alive and does not indicate whether there is an ongoing Trace Session or not. The value of the traceRecordTypeId field in the streaming Trace Record Header is set to "TRACE_STREAM_HEARTBEAT ".
The Trace Stream Heartbeat administrative message is an optional message.The header attributes traceReference and traceRecordingSession reference are not applicable to this administrative message. It is reasonable to expect that the message would have the other mandatory attributes from the header: timestamp, nfinstanceId, networkFunctionfType, traceRecordTypeId, globaGnbId.
A protocol specific replacement need not support these attributes.
Transport protocol level keep-alive mechanisms may be used as an alternative (e.g. use of Ping and Pong WebSocket frames in IETF RFC 6455 [40]) and are out of scope of the present document.
[bookmark: _Toc51853333]5.2.4.5	Trace Recording Session Not Started administrative message
The Trace Recording Session Not Started administrative message shall beis used to convey that a trace recording session could not be started. For example, the number of simultaneous signalling based UE traces may be limited so that UE traces are not started when this limit is reached. It includes the detailed reason. as string in the payload. The value of the traceRecordTypeId field in the Trace Record Header is set to "TRACE_RECORDING_SESSION_NOT_STARTED ".
The Trace Recording Session Not Started administrative message is applicable when signalling based trace activation fails to start.
An equivalent administrative message for management based trace activation failure is not required as the consumer that provisions the activation is given feedback of the failure to start directly.

[bookmark: _Toc51853334]5.2.4.6	Trace Recording Session Dropped Events administrative message
The Trace Recording Session Dropped Events administrative message shall be used to convey the number of dropped trace records. The message provides indication that trace records are dropped from a particular trace recording session. It includes the number of trace records dropped in the payload. The value of the traceRecordTypeId field in the Trace Record Header is set to "TRACE_RECORDING_SESSION_DROPPED_EVENTS".

[bookmark: _Toc36138431][bookmark: _Toc44690799][bookmark: _Toc51853335][bookmark: _Toc90656054]5.2.5	Void
5.2.6	Streaming Trace Format
When streaming trace data individual trace records and their associated length delimeter may be framed and are carried in the payload of the transport protocol messages. Figure 5.2.6.1 illustrates the concept.

Figure 5.2.6.1: Transport of Trace Records
As depicted in the Figure 5.2.6.1, each protocol-specific message delivers one or more trace records from the MnS Producer to the MnS Consumer. The header of the transport protocol message is protocol-specific. It may contain protocol specific extensions and/or options related to the transport stream. The payload of the transport protocol carries one of or more length delimited Trace Records. The format of the individual Trace Records is specified in clause 5.2.
The procedures related to the connection establishment and meta-data exchange between the Streaming Trace data reporting MnS Producer and MnS Consumer are out of scope of the present document and are specified in TS 28.532 [43]

	3rd Change

[bookmark: _Toc36138455][bookmark: _Toc44690821][bookmark: _Toc51853357][bookmark: _Toc90656076][bookmark: _Toc51853359][bookmark: _Toc90656078]Annex G (normative):
Trace Record Protocol Buffer (GPB)
[bookmark: _Toc51853358][bookmark: _Toc90656077]G.1	Transport Protocol Payload Format
The payload of one transport protocol message can carry one or more trace records as specified in clause 5.1. For GPB trace payload, the overall encoding format shall adhere to the following rules:
-	Each trace record is encoded as a single TraceRecord GPBv3 message following the schema in clause G.2.
-	Each TraceRecord message is preceded by a length field indicating the size in bytes of the following GPB message. This length field is encoded using the GPB ‘varint’ wire format.
-	If the transport message payload includes multiple trace records, the length field for the next TraceRecord message shall immediately follow the preceding message.
-	No extra padding (unused bytes) is allowed anywhere in the transport message payload.
NOTE:	The total length of the transport message payload is assumed to be available but encoding of this value is specific to the transport protocol in use.
G.2	Trace Record Protocol Buffer (GPB) definitions
Normative GPB Trace Record schema, defined per clause 5.2:

syntax = "“proto3"”;
package v16_3gpp;

/* Trace Record per 3GPP 32.423 specification.
 * v16
 */

enum TraceRecordType {
 TRACE_RECORD_TYPE_NO_VALUE = 0;
 TRACE_TRAFFIC_RECORD = 1;NORMAL = 0;
 TRACE_SESSION_START = 21;
 TRACE_SESSION_STOP = 32;
 TRACE_RECORDING_SESSION_START = 43;
 TRACE_RECORDING_SESSION_STOP = 54;
 TRACE_STREAM_HEARTBEAT = 65;
 TRACE_RECORDING_SESSION_DROPPED_EVENTS = 76;
 TRACE_RECORDING_SESSION_NOT_STARTED = 8;7
 }

[bookmark: _Hlk125956649]enum NetworkFunctionType {
 NETWORK_FUNCTION_TYPE_NO_VALUE = 0;
 GNB_CU_CP = 1;
	GNB_CU_UP = 2;
	GNB_DU = 3;
}

enum InterfaceName {
	INTERFACE_NAME_NO_VALUE = 0;
 UU = 1;
	NG_C = 2;
 Xn_C = 3;
 X2_C = 4;
 F1_C = 5;
 E1 = 6;
}

enum TraceIdType {
 TRACE_TYPE_NO_VALUE = 0;
 IMMEDIATE_MDT = 1;
 LOGGED_MDT = 2;
 TRACE = 3;
 IMMEDIATE_MDT_AND_TRACE = 4;
 RLF_REPORTS = 5;
 RCEF_REPORTS = 6;
 LOGGED_MBFSN_MDT = 7;
}

message TraceIdentifier {
 TraceIdType trace_type_id = 1;
 bytes trace_reference = 2;
 bytes trace_recording_session_reference = 3;
}

[bookmark: _Hlk126572724]message GlobalGnbId {
 bytes plmn_identity = 1;
 int64 gnb_id = 2;
}

message Guami {
	bytes plmn_identity = 1;
 int64 amf_region_id = 2;
	int64 amf_set_id = 3;
	int64 amf_pointer = 4;
}

message GlobalEnbId {
	bytes plmn_identity = 1;
	int64 enb_id = 2;
}

message TraceRecordProducingEntity {
 oneof entity_id {
	GlobalGnbId global_gnb_id = 1;
 int64 gnb_du_id = 2;
	int64 gnb_cu_up_id =3;
 Guami guami_id = 4;
 GlobalEnbId global_enb_id = 5;
 }
}

message TracedTraceRecordProducingEntity {
 TraceRecordProducingEntity entity_id = 1;
}

message ConnectedTraceRecordProducingEntity {
 TraceRecordProducingEntity entity_id = 1;
}

message TraceRecordHeader {
 map<string, string> vendor_extension = 1;
 int64 time_stamp = 21;
 string nf_instance_id = 32;
 NetworkFunctionType nf_type = 4;string nf_type = 3;
 InterfaceName interface_name = 5;
 bytes trace_reference = 64;
 bytes trace_recording_session_ref = 75;
 repeated TraceIdentifier trace_identifier = 8;
 TraceRecordType trace_rec_type_id = 96;
 optional bytes ran_ue_id = 107;

 TracedTraceRecordProducingEntity traced_entity_id = 11;
 ConnectedTraceRecordProducingEntity connected_entity_id = 12; optional string payload_schema_uri = 8;
 map<string, string> vendor_extension = 9;
}

message TraceSessionStart {
 map<string, string> vendor_extension = 1;
 string vendor_extension_schema_uri = 2;
}

message TraceSessionStop {
 map<string, string> vendor_extension = 1;
 string reason = 2;
}

message TraceRecordingSessionStart {
map<string, string> vendor_extension = 1;
}

message TraceRecordingSessionStop {
 map<string, string> vendor_extension = 1;
 string reason = 2;
}

message TraceStreamHeartbeat {
 map<string, string> vendor_extension = 1;
}

message TraceRecordingSessionDroppedEvents {
 map<string, string> vendor_extension = 1;
 int64 number_of_dropped_events = 21;
 map<string, string> vendor_extension = 2;
}

message TraceRecordingSessionNotStarted {
 map<string, string> vendor_extension = 12;
 string reason = 21;
 map<string, string> vendor_extension = 2;
}

message CommonTraceAdministrationMessagePayload {
 oneof record_payload {
 TraceSessionStart trace_session_start = 1;
 TraceSessionStop trace_session_stop = 2;
 TraceRecordingSessionStart trace_recording_session_start = 3;
 TraceRecordingSessionStop trace_recording_session_stop = 4;
 TraceStreamHeartbeat trace_stream_heartbeat = 5;
 TraceRecordingSessionDroppedEvents trace_recording_session_dropped_events = 6;
 TraceRecordingSessionNotStarted trace_recording_session_not_started = 7;
 }
}

enum MsgDirection {
 MSG_DIRECTION_NO_VALUE = 0;
 MSG_DIRECTION_SEND = 1;
 MSG_DIRECTION_RECEIVE = 2;
 MSG_DIRECTION_VENDOR_EXTENSION_255 = 255;
 }

enum ProtocolName {
 PROTOCOL_NAME_NO_VALUE = 0;
 PROTOCOL_NAME_RRC_36_331_BCCH_BCH_MESSAGE = 1;
 PROTOCOL_NAME_36_331_BCCH_DL_SCH_MESSAGE = 2;
 PROTOCOL_NAME_RRC_36_331_DL_CCCH_MESSAGE = 3;
 PROTOCOL_NAME_36_331_DL_DCCH_MESSAGE = 4;
 PROTOCOL_NAME_36_331_PCCH_MESSAGE = 5;
 PROTOCOL_NAME_36_331_UL_CCCH_MESSAGE = 6;
 PROTOCOL_NAME_36_331_UL_DCCH_MESSAGE= 7;
 PROTOCOL_NAME_RRC_38_331_BCCH_BCH_MESSAGE = 8;
 PROTOCOL_NAME_RRC_38_331_BCCH_DL_SCH_MESSAGE = 9;
 PROTOCOL_NAME_RRC_38_331_DL_CCCH_MESSAGE = 10;
 PROTOCOL_NAME_RRC_38_331_DL_DCCH_MESSAGE = 11;
 PROTOCOL_NAME_RRC_38_331_PCCH_MESSAGE = 12;
 PROTOCOL_NAME_RRC_38_331_UL_CCCH_MESSAGE = 13;
 PROTOCOL_NAME_RRC_38_331_UL_DCCH_MESSAGE = 14;
 PROTOCOL_NAME_S1AP_36_413 = 15;
 PROTOCOL_NAME_X2AP_36_423 = 16;
 PROTOCOL_NAME_NGAP_38_413 = 17;
 PROTOCOL_NAME_XNAP_38_423 = 18;
 PROTOCOL_NAME_F1AP_38_473 = 19;
 PROTOCOL_NAME_E1AP_38_463 = 20;
 PROTOCOL_NAME_VENDOR_EXTENSION_21 = 21;
	PROTOCOL_NAME_RRC_38_331_UL_CCCH1_MESSAGE = 22;
 PROTOCOL_NAME_VENDOR_EXTENSION_255 = 255;
 }

message Asn1Message {
 map<string, string> vendor_extension = 1;
 MsgDirection msg_direction = 2;
 bytes msg_content = 3;
 ProtocolName protocol_name = 4;
 }

message GpbMessage {
 bytes binary_payload = 1;
 }

message TraceRecordPayload {
 optional int64 payload_size = 1;
 bytes binary_payload = 2;
}

[bookmark: _Hlk114142258]message TraceRecord {
 TraceRecordHeader header = 1;
 TraceRecordPayload payload = 2;
 oneof payload {
 Asn1Message asn1_message = 2;
 GpbMessage gpb_message = 3;
 TraceAdministrationMessage administrative_message = 4;
 }

}

message StreamingTraceRecord {
 TraceRecord record = 1;
 optional CommonTracePayload administrative_message = 2;
}

[bookmark: _Toc36138456][bookmark: _Toc44690822][bookmark: _Toc51853360][bookmark: _Toc90656079]
Annex H (informative):
Examples of Protocol Buffer (GPB) encoded Streaming Trace administrative messages
The following examples illustrate the use of Prococol Buffer encoding for Streaming Trace administrative messages according to the definitions in clause 5.2.4.
The examples are in compact GPB format, using the schema defined in Annex G.

Example 1, Decoded Trace Session start message:

TraceRecord{
 header {
 time_stamp: 1674731506209
 nf_instance_id: "123e4567-e89b-12d3-a456-426614174000"
 nf_type_id: CUUP

trace_reference: "<tr>"
 trace_recording_session_ref: "<trsr>"
 trace_rec_type_id: TRACE_SESSION_START
 global_gnb_id {
 plmn_identity: "<plmn>"
 gnb_id: 123
 }
 cu_up_id: 123
 }
 administrative_message {
 trace_session_start {
 vendor_extension_schema_uri: <uri>
 }
 }
}

TraceRecord {
header {
 time_stamp: 1674731506209
 nf_instance_id: "123e4567-e89b-12d3-a456-426614174000"
 nf_type: GNB_CU_CP
 trace_identifier {
 trace_type_id: TRACE
 trace_reference: "<tr>"
 trace_recording_session_reference: "<trsr>"
 }
 trace_rec_type_id: TRACE_SESSION_START
 traced_entity_id {
 entity_id {
 global_gnb_id {
 plmn_identity: "<plmn>"
 gnb_id: 123
 }
 }
 }
}
administrative_message {
 trace_session_start {
 vendor_extension_schema_uri: "<uri>"
 }
}
}

Example 2, Decoded Trace Session stop message:

TraceRecord{
 header {
 time_stamp: 2274731506209
 nf_instance_id: "123e4567-e89b-12d3-a456-426614174000"
 nf_type: CUUP
 trace_rec_type_id: TRACE_SESSION_START
 global_gnb_id {
 plmn_identity: "<plmn>"
 gnb_id: 123
 }
 cu_up_id: 123
 }
 administrative_message {
 trace_session_stop {
 }
 }
}

Example 3, Decoded Trace Recording Session Dropped Events message:

TraceRecord{
 header {
 time_stamp: 4574731506209
 nf_instance_id: "123e4567-e89b-12d3-a456-426614174000"
 nf_type_id: CUUP
 trace_reference: "<tr>"
 trace_recording_session_ref: "<trsr>"
 trace_rec_type_id: TRACE_SESSION_START
 global_gnb_id {
 plmn_identity: "<plmn>"
 gnb_id: 123
 }
 cu_up_id: 123
 }
 administrative_message {
 trace_recording_session_dropped_events {
 number_of_dropped_events: 6
 }
 }
}

image1.png

image2.emf
Protocol-specific headerProtocol-specific extensionsTransport protocol messageProtocol payload Trace Record......Record LengthRecord Length Trace Record

oleObject1.bin

