Error! No text of specified style in document.
14
Error! No text of specified style in document.

3GPP TSG-SA5 Meeting #147
S5-232380

Athens, Greece, 27th February - 3rd March 2023
Source:
Nokia, Nokia Shanghai Bell

Title:
Rel-18 CR 28.831 Clarify the mapping from a JSON document into the XPath data model
Document for:
Approval
Agenda Item:
6.8.2.4 - FS_eSBMAe_WoP#4
1
Decision/action requested

The group is requested to discuss and approve the pCR below

2
References

[1]

3GPP TS 28.831: " Management and orchestration; Study on basic Service-Based Management Architecture (SBMA) enabler enhancements"
3
Rationale

None.
4
Detailed proposal

The following changes are proposed for TR 28.831[1].

	Begin of modifications

4.2.5.2.2
Special considerations for JSON
As stated in the previous clause W3C did not provide a real mapping from JSON to the XPath data model. It is possible though to use a mapping from JSON to XML defined in XForms2.0 [10], clause 5.2.2. The resulting XML document can then be mapped to the XPath data model.

Note, XForms2.0 is a W3C draft from 2010 and not a W3C standard. The produced XML document contains in XML attributes information about the original JSON data taypes. JSON arrays are mapped in a very specific way to XML (see example below). These mapping rules preserve all information for mapping the XML document again back to the original JSON document.

For example, the JSON snippet

"load": [0.31, 0.33, 0.32]

is mapped according to XForms2.0 to

<load type="array">

 <_ type="number">0.31</_>

 <_ type="number">0.33</_>

 <_ type="number">0.32</_>

</load>

Other best practices propose to map the JSON snippet as follows:

<load>0.31</load>

<load>0.33</load>

<load>0.32</load>

There is hence not one and only one standard specifying the mapping from a JSON document to an XML document. One could argue that the XML document is anyway a conceptual document only that is not visible on the wire and used only internally in the MnS producer helping to apply the XPath expression to a JSON document. However, the exact way how JSON is mapped to XML has implications on the XPath expression to select nodes.

For example, when the first mapping method is used, the XPath expression snippet to select the first array item is

/load/_[1]

When the second mapping method is used, the XPath expression snippet is

/load/[1]

For a really interoperable solution, the MnS consumer needs to know the exact way the MnS producer maps JSON to XML. This means in turn, that the mapping method needs to be standardized by SA5.

A second option is to provide a mapping from the information elements in a JSON document to the XPath data model directly without an XML mapping in-between. Such a mapping is not provided at all by W3C.
The XPath data model has seven types of nodes: root nodes, element nodes, text nodes, attribute nodes, namespace nodes, processing instruction nodes, comment nodes. Each node has multiple properties.
Here after, a proposal to directly map a JSON document to the XPath data model:

·
·
·
·
· The JSON document is mapped to the root node.
· The name of a name/value pair is mapped to an element node. The element node coming from the name is a child of the root node. Vice versa, the root node is the parent of the element node coming from the name.
· The value of a name/value pair is mapped to a text node if the value is a string, a number, or one of the tree literal names: false, true, null. The element node coming from the name is the parent of the text node coming from the value. Vice versa, the text node coming from the value is the child of the element node coming from the name.
· The value of a name/value pair is mapped to one or more element nodes if the value is an object. There is one element node for each name/value pair contained in the object. The names of the element nodes are equal to the names of the name/value pairs the element nodes are coming from. The element node coming from the name is the parent of the element nodes coming from the value. Vice versa, the element nodes coming from the value are the children of the element node coming from the name.
· The value of a name/value pair is mapped to one or more element nodes if the value is an array. There is one element node for each array item contained in the array. The names of the element nodes are all identical and equal to the name of the name/value pair they are coming from. The element node coming from the name is the parent of the element nodes coming from the value. Vice versa, the element nodes coming from the value are the children of the element node coming from the name.
We can conclude that only root nodes, element nodes and text nodes are used. Attribute nodes, namespace nodes, processing instruction nodes, and comment nodes are not used.
As to node properties, only name, children and parent are used.
In case XPath is chosen as node selection language, then it is necessary to specify in normative fashion either the JSON to XML mapping, or the JSON to XPath data model mapping.

Now we will look at if due to some inherent properties of JSON all XPath concepts are applicable, when the original document from which nodes are selected, is a JSON document.

A JSON object is an unordered collection of zero or more name/value pairs. This is why the concept of document order (clause 5 of XPath 1.0 [2]) is not applicable when an XPath expression is applied to an XPath data model that was generated from a JSON document. This has the following implications:
· The following axes cannot be used: following, following-sibling, preceding, preceding-sibling.

· The following functions cannot be used: position, local-name, namespace-uri, name.

JSON does not have a namespace concept. This is why XPath concepts related to name spaces are not applicable. This has the following implications:

· The following axes cannot be used: namespace

· The following functions cannot be used: local-name, namespace-uri, name

JSON does not have a concept similar to XML attributes. This is why XPath concepts related to attributes are not applicable. This has the following implications:

· The following axes cannot be used: attribute

Out of the seven node types specified in XPath 1.0 [2] only the root node, element node and text node are used. The attribute nodes, namespace nodes, processing instruction nodes and comment nodes are not used.

The name of the root element node is the class name of the base object. The base object is the node that contains the "NtfSubscriptionControl" instance (that in turn has an attribute whose value is the XPath expression).

Note that the root element node (document element) is not the same as the root node. The root element node is the mapping of the top-level name/value pair in the JSON document, whereas the root node is the (conceptual) parent of that object. The root node is the mapping of the JSON document.

When the value of the top-level name/value pair is an array, which is always the case for JSON defined NRMs in SA5, this array can contain only one item, which is the base object, in the special context of notification subscription. Considerations on how to handle the case where a top-level array can contain multiple items are hence not required.

For example, assume the information model is described by annex A.1 in TS 32.158 [11]. Further assume that the "ManagedElement" with the id "ME1" contains a "NtfSubscriptionControl" instance for which a node selection XPath expression shall be constructed. The base object is the "ManagedElement" with the id "ME1". The JSON document, to which the XPath expression is applied to, is as follows:

	{

 "ManagedElement": [

 {

 "id": "ME1",

 "objectClass": "ManagedElement",

 "objectInstance": "SubNetwork=SN1,ManagedElement=ME1",

 "attributes": {

 "userLabel": "Berlin NW 1",

 "vendorName": "Company XY",

 "location": "TV Tower"

 },

 "XyzFunction": [

 {

 "id": "XYZF1",

 "objectClass": "XyzFunction",

 "objectInstance": "SubNetwork=SN1,ManagedElement=ME1,XyzFunction=XYZF1",

 "attributes": {

 "attrA": "xyz",

 "attrB": 551

 }

 },

 {

 "id": "XYZF2",

 "objectClass": "XyzFunction",

 "objectInstance": "SubNetwork=SN1,ManagedElement=ME1,XyzFunction=XYZF2",

 "attributes": {

 "attrA": "abc",

 "attrB": 552

 }

 }

]

 }

]

}

or

	{

 "id": "ME1",

 "objectClass": "ManagedElement",

 "objectInstance": "SubNetwork=SN1,ManagedElement=ME1",

 "attributes": {

 "userLabel": "Berlin NW 1",

 "vendorName": "Company XY",

 "location": "TV Tower"

 },

 "XyzFunction": [

 {

 "id": "XYZF1",

 "objectClass": "XyzFunction",

 "objectInstance": "SubNetwork=SN1,ManagedElement=ME1,XyzFunction=XYZF1",

 "attributes": {

 "attrA": "xyz",

 "attrB": 551

 }

 },

 {

 "id": "XYZF2",

 "objectClass": "XyzFunction",

 "objectInstance": "SubNetwork=SN1,ManagedElement=ME1,XyzFunction=XYZF2",

 "attributes": {

 "attrA": "abc",

 "attrB": 552

 }

 }

]

}

Since a well formed XML document has one and only one root elemet the first alternative is preferred. It contains the key "ManagedElement" that maps to the name of the XML root element. The XPath expression to identify the base object only is then

/MangedElement/attributes

or

/*/attributes

	Next modification

4.2.6
CR proposal
The concrete CR is left for normative work.
4.2.7
Conclusion

It is recommended to define a mapping from a JSON document to the XPath data model and to identify a basic and advanced subset of XPath expressions working on that model.
This allows to apply a certain subset of XPath expressions safely to JSON documents.

It is also recommended to use the mechanism not only for targeted notification subscriptions, but also whenever it is required to identify, when being located on some object or attribute, other attributes in other objects.

1)
2)
3)
a.
b.
c.
d.
e.
f.
g.
h.
i.
j.
k.
l.
m.
n.
o.
4)
5)
a.
b.
c.
6)
7)

	End of modifications

3GPP

