
3GPP TSG-SA5 Meeting #147 DOCPROPERTY MtgTitle * MERGEFORMAT
S5-232360
27 February - 03 March 2023, Athens, GR
Source:
Intel, NEC
Title:
pCR 28.908 Split AI/ML configuration management into two phases (inference and ML training)
Document for:
Approval
Agenda Item:
6.7.5.3 - FS_AIML_MGMT_WoP#3
1
Decision/action requested

The group is asked to discuss and agree on the proposal.
2
References

[1]
3GPP TR 28.908-1.0.1 “Study on Artificial Intelligence/Machine Learning (AI/ ML) management”.
3
Rationale
The AI/ML configuration management described in clause 10 of TR 28.908 [1] includes the configurations for both inference phase and ML training phase, however the configurations for these two phases work on different functionalities. Therefore it would bring better clarity to separate the UCs on configurations for these two phases.
4
Detailed proposal
	Start of modification

5.10
Configuration management for AI/ML inference phase
5.10.1
Description

The AI/ML inference function (e.g., NG-RAN intelligence ES function as described in TR 37.817 [15]) may use the ML entity for inference.

The AI/ML inference function needs to be configured (e.g., with policies, target, conditions where applicable) in order to conduct inference in the 5G system aligning with operator's expectation.

To enable the AI/ML inference function to perform inference using the preferred ML entity, the relevant ML entity needs to be able to be activated and deactivated.

As described in clause 4.7 in TR 28.813[3], RAN domain ES can use AI to formulate energy saving solutions. Therefore, the ML entities which enabled RAN domain ES function should be controlled by 3GPP management system. The ML entity configuration needs to be triggered to enable RAN domain ES function.

The AI/ML configuration can be initiated by the MnS consumer or initiated by the MnS producer.
The following aspects are described for AI/ML configuration:

-
Configuration for AI/ML inference function,

-
Configuration for AI/ML entity for RAN domain ES function,

-
Activation for AI/ML inference capabilities on ML entities and inference functions.

5.10.2
Use cases
5.10.2.1
ML entity configuration for RAN domain ES initiated by consumer

The ML entity configuration may be initiated by the AI/ML MnS consumer of Cross domain management. AI/ML MnS Consumer monitor network performance and determine whether to trigger the ML entity configuration. For example, for ES purpose, AI/ML MnS Consumer collects the information of the capacity booster cells and coverage cells inside the RAN domain area, then makes the decision for activation ML entity.

Figure 5.10.2.1-1: ML entity configuration initiated by MnS consumer

5.10.2.2
ML entity configuration for RAN domain ES initiated by producer

The ML entity configuration may be initiated by the AI/ML MnS producer. AI/ML MnS producer can determine` whether to trigger ML entity configuration based on network performance and service requirements In this case, the AI/ML MnS producer responsible for AI/ML management needs to have a capability to trigger the ML entities and inform an authorized AI/ML MnS consumer about the ML entity status.
[image: image2.png]MnS consumer

AL
configuration
status
reporting
MnS producer
AIMLRAN AUMLRAN Domain ALML
domainES training || domain ES inference || management
Capability Capability capability

Figure 5.10.2.2-1: ML entity configuration initiated by producer

5.10.2.3
Partial activation of AI/ML inference capabilities
An ML entity may provide the AI/ML inference capabilities for a scope (e.g., a specific list of NR cells) of the radio coverage area as either of a decision-making capability or an analysis capability. For a given AI/ML inference function, it can be very difficult to accurately “predict” or quantify the benefits of using an ML entity or an inference capability for the ML entity or inference function in a given context of operational system, before using it.
Furthermore, it is also necessary to ensure that AI/ML inference capabilities of an ML entity or an inference function that are being activated in operational system will bring the expected/planned benefits and will not further downgrade the existing network performance. Moreover, it is important to provide means to check which particular AI/ML inference capabilities of an ML entity or an inference function are beneficial to be activated in a given context of operational network. Correspondingly, the MnS producer for AI/ML inference management may provide different steps through which the capabilities of an ML entity or inference function may be activated progressively. This abstraction phased activation of the scope of the ML entities may be referred to as “Abstract activation steps”. For example, with such Abstract activation steps technique, the producer may support a capability to allow only a sub-scope to be activated e.g., to only allow inference activation for a limited or specific number of cells covering part of a geographical coverage area and not the whole city or only for a certain limited period of time (say between 18:00 and 6:00) rather than for the entire operation time.

Another approach to implement partial or progressive activation of AI/ML inference capabilities for an ML entity or an inference function would be through a predefined policy which may include e.g., time scheduled or conditional progressive or phased activation of the inference capabilities or the scope of activation.
So, it is possible that the AI/ML inference function is configured to start using a newly deployed ML entity for one part (e.g., one NR cell of the gNB) of the function but the existing ML entity for the rest parts, and then gradually switch to use the new ML entities for the larger or full scope, by activating/deactivating the AI/ML inference capabilities in the corresponding scope for the ML entities.

Together, these imply that it is important to ensure that the AI/ML MnS consumer has a finer control on activation and de-activation of AI/ML inference capabilities for an ML entity or an inference function.

5.10.2.4
Configuration for AI/ML inference initiated by MnS consumer

The MnS consumer monitors the network performance and determines on whether to, and when to trigger the AI/ML inference configuration or re-configuration. For example, for NG-RAN intelligence ES function (as described in TR 37.817 [b]), the MnS consumer collects the performance data of the capacity booster cells and coverage cells, then makes the decision for configuring or re-configuring the inference function with a policy may include e.g., performance targets of the inference function, or the activation/deactivation of the ES function and/or the associated ML entities.
In this case, the MnS consumer may need to initiate the AI/ML inference configuration/reconfiguration.
5.10.2.5
Configuration for AI/ML inference initiated by producer

The MnS producer monitors the network performance and determines on whether to, and when to trigger the AI/ML inference configuration or re-configuration. For example, NG-RAN intelligence ES function (as described in TR 37.817 [b]), per the performance of the energy efficiency result by execution of the inference output, the MnS producer may decide to activate or deactivate the inference function, or decide to use another ML entity for inference. In this case, the MnS producer may initiate the configuration and inform an authorized MnS consumer about the configurations. The configuration actions conducted by the MnS producer may also be triggered by a predefined configuration policy.

5.10.2.6
Enabling policy-based activation of AI/ML capabilities
If the activation procedure is entirely relying on the AI/ML MnS consumer to micro-manage every activation step, such process may require extensive signalling between the AI/ML MnS consumer and producer and intrinsically lacks the automation potential. On the other hand, the activation procedure cannot be left fully to the producer either, as the producer may not have a “full picture” on other ML entities/capabilities that are currently in operation, activated by different producers on the request from MnS consumer. The producer needs to be instructed by the MnS consumer on the ways to perform the adequate activation of AI/ML capabilities.
The activation may be instructed via one or more AI/ML activation policies, where an AI/ML activation policy is a sequence of tuples of conditions and activation settings that may be executed by the AI/ML producer. Conditions may define specific outcomes on performance metrics for which a particular activation may be executed while activation settings define specific attributes of the AI/ML capability activation scope (e.g., object or object type, network context, activation time window) for which AI/ML capability should be activated.
5.10.3
Potential requirements

REQ-AIML_INF_CFG- -1: The MnS producer responsible for AI/ML inference management should have a capability to allow an authorized MnS consumer to configure the inference function.
REQ-AIML_INF_CFG -2: The MnS producer responsible for AI/ML inference management should have a capability to configure inference function and inform an authorized MnS consumer about the configurations of the AI/ML inference function.

REQ-AIML_ INF_ACT-1: The MnS producer responsible for AI/ML inference management should have a capability to allow an authorized MnS consumer to activate an AI/ML inference function.
REQ-AIML_ INF_ACT-2: The MnS producer responsible for AI/ML inference management should have a capability to allow an authorized MnS consumer to deactivate an AI/ML AI/ML inference function.

REQ-AIML_ INF_ACT-3: The MnS producer responsible for AI/ML inference management should have a capability to inform an authorized MnS consumer about the activation and deactivation of an AI/ML inference function.

REQ-AIML_ INF_ACT-4: The MnS producer responsible for AI/ML inference management should have a capability to allow an authorized MnS consumer to partially or progressively activate/deactivate the AI/ML inference capabilities for an inference function.
REQ-ML_ENTITY_ACT-1: The MnS producer responsible for AI/ML inference management should have a capability to allow an authorized MnS consumer to activate an ML entity.

REQ-ML_ENTITY_ACT-2: The MnS producer responsible for AI/ML inference management should have a capability to allow an authorized MnS consumer to deactivate an ML entity.
REQ-ML_ENTITY_ACT-3: The MnS producer responsible for AI/ML inference management should have a capability to inform an authorized MnS consumer about the activation and deactivation of an ML entity.
REQ-ML_ENTITY_ACT-4: The MnS producer responsible for AI/ML inference management should have a capability to allow an authorized MnS consumer to partially or progressively activate/deactivate the AI/ML inference capabilities for an ML entity.
REQ-ML_ENTITY_ACT-5: The 3GPP management system should have a capability to allow an authorized MnS consumer to define the policies for activation of AI/ML capabilities in order to instruct the AI/ML MnS producer on how to perform the AI/ML capability activation (e.g., when and where to activate which AI/ML capabilities).

REQ-ML_ENTITY_ACT-6: the 3GPP management system should have a capability to allow a producer to activate the AI/ML capabilities based on the policies specified by the AI/ML MnS consumer.
5.10.4
Possible solutions

5.10.4.1
AI/ML inference function configuration

TBD
5.10.4.2
AI/ML activation
5.10.4.2.1
General framework for activation and deactivation

This subclause describes the general framework for activation and deactivation of AI/ML inference capabilities, ML entities and inference function in inference phase.

A data type or abstract class describing the activation properties, and this data type or abstract class can be used or inherited by the MOI representing the inference function and ML entity.

This general framework supports the general properties for all types of activation/deactivation including:

-
Instant activation and deactivation: The AI/ML inference capabilities to be instantly activated/deactivated on the ML entity or inference function.
-
Policy-based activation and deactivation: The AI/ML inference capabilities to be activated/deactivated on the ML entity or inference function based on a given policy.

-
Schedule-based activation and deactivation: The AI/ML inference capabilities to be activated/deactivated on the ML entity or inference function based on a given schedule.

-
Gradual activation and deactivation: The AI/ML inference capabilities to be activated/deactivated on the ML entity or inference function based on a given scope.

And this data type or abstract class is extended with the attributes supporting these specific types of activation.

5.10.4.2.2
Instant activation and deactivation

The generic framework described in clause 5.10.4.2.1 is extended with the following attributes to support instant activation and deactivation:
-
The AI/ML inference capabilities to be instantly activated/deactivated on the ML entity or inference function.
5.10.4.2.3
Policy based activation and deactivation

The generic framework described in clause 5.10.4.3.1 is extended with the following attributes to support the policy-based activation and deactivation:

-
AI/ML inference capabilities to be activated/deactivation on the ML entity or inference function based on the given policy.

-
The policy (e.g., condition) for activation/deactivation.
5.10.4.2.4
Schedule based activation and deactivation

The generic framework described in clause 5.10.4.3.1 is extended with the following attributes to support the schedule-based activation and deactivation:

-
AI/ML inference capabilities to be activated/deactivation on the ML entity or inference function based on the given schedule.

-
The schedule for activation/deactivation.
5.10.4.2.5
Gradual activation and deactivation

This solution extends the general framework for activation to support gradual/partial/progressive activation.
Multiple options may be considered for the solutions:

1)
Using Activation attributes on the NRM

Introduce a <<datatype >> attribute for partial activation (say called "partialActivation") in the MLEntity or its function. This can have two <<datatype >> attributes - an "activationScope and an "activationLevel".

The activationScope specifies the information on particular network scope and AI/ML capabilities to be activated. It is configured by the MnS consumer to limit the activation of selected AI/ML capabilities to the desired extent. The scope may include:

>
information on the network context, e.g., specific RATs and the object(s) or object types for which the AI/ML capability is applicable,

>
information on the subscope of the applicable expectedRuntimeContext which may include at least one or combination of the following:

>>
object subscope – identifying a subset of the objects with respect to which a certain AI/ML capability should be activated

>>
network characteristics (related to the stated object or object types) for which the MLEntity produces analytics

>>
control parameter sub scope - identifying a subset of the parameters of the stated object or object types which the MLEntity optimizes or controls and for which ten a certain AI/ML capability should be activated

>>
metric sub scope - identifying a subset of the network metrics which the MLEntity optimizes through its actions for which then a certain AI/ML capability should be activated

The activationScope is explicitly stated by the MnS consumer for the desired scope and subscope.

Following the activation, a notification may be provided, e.g., via a MLGradualActivationResponse >>datatype>> that represents the response upon partial or gradual activation of ML entity. This IOC is created by the MnS producer and reported to the MnS consumer, and it contains the following attributes:

-
MLEntity ID - identifier of the ML entity to which the gradual activation applies;

-
Status, e.g. activated/deactivated;

-
Information on particular AI/ML capabilities that have been activated;

-
Scope under which particular AI/ML capabilities have been activated.
2)
Using abstractActivtion levels on the NRM

Introduce a data type on the MnS producer that exposes the abstract ctivation levels supported by the MnS producer. These may be contained in a datatype called SupportedMLActivationLevels which is a list of candidate levels. Each entry in the list is of <<datatype>>
MLActivationLevel - a <<datatype >> representing an individual step in which the activation (or de-activation) can be performed at the MnS Producer.

The MLActivationLevel contains the following attributes:

-
Identifier of the abstracted activation level, e.g, low, medium, high;

-
Information on (the set of) AI/ML capabilities to be activated (or de-activated) for a given abstracted activation level;

-
Information on the scope under which the given AI/ML capabilities will be activated (or de-activated) for a given abstracted activation level.

Introduce an attribute for a selected activation level. This may be termed as SelectedActivationLevel - this is an enumeration of the Identifiers of the abstracted activation level which can be configured by the MnS consumer to select the preferred activation level.

5.10.5
Evaluation

The solutions described in clause 5.10.4 is a fully NRM-based approach and reuses the existing provisioning MnS operation for AI/ML inference configuration. This approach supports both MnS consumer-initiated and MnS producer-initiated configuration based on the existing provisioning MnS operations and notifications. It enables a versatile activation of AI/ML capabilities. This provides the means to better control the usage of AI/ML capabilities in the network using the consistent NRM-based approach.

Therefore, the solution described in clause 5.10.4 is a feasible solution.
	Next modification

5.x
Configuration management for ML training phase
5.x.1
Description

As defined in TS 28.105 [4], ML training can be initiated by MnS consumer or MnS producer.

The ML training function may be located in the OAM system or in the 3GPP NF (e.g., gNB or NWDAF). When ML training is performed, it takes a significant amount of resources. Therefore the producer-initiated ML training needs to be controlled, especially when the training function is co-located with other functions (e.g., inference function).

5.x.2
Use cases
5.x.2.1
Control of producer-initiated ML training

For producer-initiated ML training, the MnS producer has its own algorithm to trigger and perform the ML training.

However, the MnS consumer may expect the training to be performed under certain conditions, for example when the inference performance of the existing ML entity running in the inference function does not meet the target, or the network environment is changed. So the consumer may provide the policy containing the conditions (e.g., inference performance metrics & threshold, network conditions) for the MnS producer to trigger the ML training.

The MnS consumer may also want to avoid the ML training during busy traffic time (especially when the ML training function is located in the NF) and only allow the ML training to occur within a pre-configured time window.

The consumer may even choose to deactivate the ML training, if the training performance consistently cannot meet the performance requirements.

Therefore, the MnS consumer needs to be able to control the producer-initiated ML training with the configurations.

5.x.3
Potential requirements

REQ-MLTRAIN_CFG-1: The ML training MnS producer should have a capability to allow the authorized MnS consumer to configure the policy to control the ML training.
REQ-MLTRAIN_CFG-1: The ML training MnS producer should have a capability to allow the authorized MnS consumer to activate and deactivate the ML training function.
REQ-MLTRAIN_ACT-1: The ML training MnS producer should have a capability to inform an authorized MnS consumer about the activation and deactivation of the ML training function.

5.x.4
Possible solutions

5.x.4.1
ML training policy configuration

A data type or abstract class describing the policy (e.g., condition) for controlling the ML training function, and this data type or abstract class can be used or inherited by the MOI representing the ML training function (i.e., MLTrainingFunction defined in TS 28.105 [4]).

The policy contains the conditions (e.g., thresholds of the performance measurements indicating the inference performance, network conditions (e.g., number of active UEs with certain capabilities, changes of neighbour cells), etc.) for triggering the ML training.

The ML Training MnS producer monitors the conditions and triggers the ML training according to the configured policy.
5.x.4.2
ML training activation and deactivation
5.x.4.2.1
General framework for activation and deactivation

This subclause describes the general framework for activation and deactivation of ML training function.

A data type or abstract class describing the activation properties, and this data type or abstract class can be used or inherited by the MOI representing the ML training function (i.e., MLTrainingFunction defined in TS 28.105 [4]).

This general framework supports the general properties for all types of activation/deactivation including:

-
Instant activation and deactivation: The ML training function to be instantly activated/deactivated.
-
Schedule-based activation and deactivation: The ML training function to be activated/deactivated based on a given schedule.

And this data type or abstract class is extended with the attributes supporting these specific types of activation.

5.x.4.2.2
Instant activation and deactivation

The generic framework described in clause 5.x.4.3.1 is extended with the following attributes to support instant activation and deactivation:
-
switch for “activated” and “deactivated” status.
5.x.4.2.3
Schedule based activation and deactivation

The generic framework described in clause 5.x.4.3.1 is extended with the following attributes to support the schedule-based activation and deactivation:

-
The schedule for activation/deactivation.

5.x.5
Evaluation

The solutions described in clause 5.x.4 is a fully NRM-based approach and reuses the existing provisioning MnS operations for ML training configuration. This solution extends the existing IOC representing the ML training function (i.e., MLTrainingFunction defined in TS 28.105 [4]) with attributes defined by data type for abstract class for controlling the ML training, thus the changes are minimal on the existing NRMs.

Therefore, the solution described in clause 5.x.4 is a feasible solution.
	End of modifications

