
3GPP TSG-SA5 Meeting #146 DOCPROPERTY MtgTitle * MERGEFORMAT
S5-227011
14 - 18 November 2022, Toulouse, FR
Source:
Intel, NEC, CATT
Title:
pCR 28.908 Add possible solution for AI/ML entity deployment
Document for:
Approval
Agenda Item:
6.7.5.3 - FS_AIML_MGMT_WoP#3
1
Decision/action requested

The group is asked to discuss and agree on the proposal.
2
References

[1]
3GPP TR 28.908-040 “Study on Artificial Intelligence/Machine Learning (AI/ ML) management”.
[2]
3GPP TS28.105 Artificial Intelligence / Machine Learning (AI/ML) management.

3
Rationale
In the AI/ML operational workflow described in clause 4.2.1 of TR 28.908 [1], in the deployment phase, the ML entity needs to be deployed to the target inference function.

The UC related to ML entity deployment has been described in clause 5.5 of TR 28.908 [1], this UC needs to be clarified aligning with the AI/ML operational workflow.
This pCR is to add the possible solution for ML entity deployment for the clarified UC in clause 5.5 of TR 28.908 [1].
4
Detailed proposal
	Start of modification

5.5
ML entity loading
5.5.1
Description

ML entity loadingrefers to the process of making an ML entity available in the operational environments, where it could start adding value by conducting inference (e.g., prediction). After a trained ML entity meets the performance criteria per the ML entity testing, the ML entity could be loadedin target inference function(s) in 3GPP system, e.g., via a software installation, file transfer, or a configuration management procedure and subsequently activated. The ML entity loading may be requested by the consumer, or initiated by the producer based on the loadingpolicy (e.g., the threshold of the testing performance of the ML entity, threshold of the inference performance of the existing ML model, predefined time schedule, etc.) provided by the consumer.
The loading of ML entity has no implication about "push" or "pull" method.
After an ML entity is loaded in the target inference function, the data fed to the ML entity may change to the level where it is different from the data used in the initial prior training of the respective ML entity. To improve model performance with the changed data, the ML entity therein may need to be retrained and reloaded.

5.5.2
Use cases

5.5.2.1
ML entity loadingcontrol and monitoring
This use case is appliable to the deployment scenario where the ML training function and inference function are not co-located.
After the ML entity is trained and tested, the ML entity needs to be loaded by the ML entity loadingMnS producer to the target inference function(s) per the request from the MnS consumer or initiated based on aconsumer predefined loadingpolicy.
NOTE: ML entity loadingMnS producer may be a separate entity or co-located with the MnS producer of the inference function or training function.
One potential reflection of loadingpolicy is to enable a scheduled loading.
ML models are typically trained and tested to meet specific requirements for inference, addressing a specific use case or task. Inference requirements could change regularly. For example, a network node supported by AI/ML capability may require employing a specifically trained/different type of ML entity at different time of day, or a specific day in the week with an already known repeated pattern. For example, a gNB providing coverage for a specific location is scheduled to accommodate different load level and/or pattern of services at different time of the day. A dedicated ML model (specifically trained and/or varying type altogether) may be required.

Once the ML entity has been loaded in the target inference function(s), some MnS consumers may need to know the available information of ML entity and to determine the next appropriate action. In this case the MnS consumer needs to be notified about the ML entity loadingor be able to retrieve the loadinginformation of the ML entity. This would allow the consumer to e.g., request ML entity re-training if e.g., performance fall below certain threshold or request the -loading of different ML entity altogather, etc.).
The general information used to describe a loaded ML entity may include:

-
Resource information, which describes the static parameters of the ML entity (e.g., mLEntityVersion, mLEntityId, trainingContext, see TS 28.105 [4])

-
Management information, which describes the information model that is used for ML entity lifecycle management (e.g., activation flag, status, creation time, last update time).

-
Capability information, which describes the capability information (e.g., inference type, performance metrics).
Editor's Note: the liability aspect on loading the ML entity to inference function is FFS.
5.5.3
Potential requirements

REQ-MODEL_DPL-CON-1: The ML entity loadingMnS producer should have a capability allowing the consumer to request and retrieve loadinginformation of an AI/ML entity.

REQ-MODEL_DPL-CON-2: The ML entity loadingMnS producer should have a capability to notify the consumer about the loadinginformation of an ML entity.
REQ-MODEL_DPL-CON-3: The ML entity loadingMnS producer should have a capability allowing the consumer to request the loadingof an ML entity to the target inference function(s).
REQ-MODEL_DPL-CON-4: The ML entity loadingMnS producer should have a capability allowing the consumer to provide the loadingpolicy for an ML entity.
5.5.4
Possible solutions

5.5.4.1
NRM based solution
This solution uses the instances of following IOCs for interaction between ML loadingMnS producer and consumer to support the ML entity loading, where the ML loadingMnS producer could be part or a separate entity of the inference function:
1)
The IOC representing the ML entity loadingrequest, named for example as MLEntityLoadingRequest.

This IOC is created by the ML entity loadingMnS consumer on the producer, and it contains the following attributes:

-
identifier of the ML entity to be loaded;

-
the identifier (e.g., DN) of target inference functions where the ML entity is loadto. This attribute is optional if the target inference function is itself that provides the ML entity loading MnS.
2)
The IOC representing the ML entity loadingpolicy, for example named as MLEntityLoadingPolicy.

This IOC is created by the ML entity loadingMnS consumer on the producer, so that the producer can load the ML entity according to the policy without an explicit loadingrequest from the consumer, and it contains the following attributes:

-
identifier or inference type of the ML entity to be loaded;

-
trigger of ML entity loading, including e.g., pre-defined scheduled loading, a threshold of the testing performance of the ML entity and/or a threshold of the inference performance of the existing ML entity in the target inference function(s);
-
identifier (e.g., DN) of target inference functions where the ML entity is loaded to. This attribute is optional if the target inference function is itself that provides the ML entity loading MnS.
3)
The IOC representing the ML entity loadingprocess, for example named as MLEntityLoadingProcess.

This IOC is created by the ML entity loadingMnS producer and reported to the consumer, and it contains the following attributes:

-
identifier of the ML entity being loaded;

-
associated ML entity loadingrequest;

-
associated ML entity loadingpolicy;
-
identifier (e.g., DN) of the target inference function; This attribute is optional if the target inference function is itself that provides the ML entity loading MnS.
-
loadingprogress;

-
control of the loadingprocess, like cancel, suspend and resume.
How to load the ML entity by the MnS producer is vendor specific.
4)
The IOC representing the ML entity loadedin the inference function, for example by extension of the existing IOC (MLEntity) representing the ML entity, or by a new IOC.

This IOC is created by the ML loadingMnS producer and reported to the consumer, and it contains the following attributes:

-
identifier of the loadedML entity;

-
associated trained ML entity (e.g., DN of the MOI representing the trained ML entity), which is to be loaded to the inference function;

-
associated ML entity loadingprocess;

-
status (such as activated, de-activated, etc) of the loaded ML entity.
The examples of IOCs and their relations between the IOCs are depicted in the figure below.

[image: image1.emf]«InformationObjectClass»MLEntityLoadingRequest«InformationObjectClass»MLEntityLoadingProcess«InformationObjectClass»MLEntity*«InformationObjectClass»MLEntityLoadingPolicy111{XOR}11

Figure 5.5.4.1-1: Example of ML entity loadingrelated NRMs

NOTE: Further details including e.g., the name of the IOCs and corresponding attributes are to be decided in
normative phase.
5.5.5
Evaluation

The solution described in clause 5.5.4.1 adopts the NRM-based approach, which to a greate extent reuses the existing provisioning MnS operations and notifications. This solution is also consistent with the approach used by ML training MnS defined in TS 28.105 [4]. It does not only reuse the existing capabilities (provisioning MnS operations and notifications), but also cater for the flexibility that is needed to facilitate both co-located and separate implementation and deployment options of ML training and/or testing MnS and ML loadingMnS by using the consistent NRM-based approach.

Therefore, the solution described in clause 5.5.4.1 is considered a feasible solution.
	End of modifications

«InformationObjectClass»
MLEntityLoadingRequest

«InformationObjectClass»
MLEntityLoadingProcess

«InformationObjectClass»
MLEntity
*

«InformationObjectClass»
MLEntityLoadingPolicy
M1
M2
M3
M4
1
1
1
{XOR}
1
1

«InformationObjectClass»
MLEntityDeploymentRequest

«InformationObjectClass»
MLEntityDeploymentProcess

«InformationObjectClass»
MLEntity
*

«InformationObjectClass»
MLEntityDeploymentPolicy
M1
M2
M3
M4
1
1
1
{XOR}
1
1

